Completeness

Def: \(x_n \) is a Cauchy sequence if \(\forall \varepsilon > 0 \ \exists N \text{ such that if } n, k \geq N \text{ then } d(x_n, x_k) < \varepsilon \)

Prop: \(x_n \) convergent \(\Rightarrow \) \(x_n \) is Cauchy

Proof: \(\forall \varepsilon > 0 \ \exists N \text{ such that } n, k \geq N \Rightarrow d(x_n, x_k) < \frac{\varepsilon}{2} \), where \(x = \lim_{n \to \infty} x_n \). Then, \(n, k \geq N \Rightarrow d(x_k, x_n) \leq d(x_k, x) + d(x, x_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \)

Prop: \(x_n \) Cauchy \(\Rightarrow \) \(x_n \) is also Cauchy

Proof: \(\exists M \text{ such that } n, k \geq M \Rightarrow d(x_k, x_n) < \varepsilon \).
Let \(I \) be such that \(n \geq M \). Then, if \(i, j \geq I \), \(n_i, n_j \geq n \), \(\forall i, j \geq I \),
then \(d(x_{n_i}, x_{n_j}) \leq \varepsilon \)

Prop. \(x_n \) Cauchy \(\Rightarrow \) \(x_n \) bounded

Proof. \(\varepsilon = 1 \) \(\forall N \) such that \(n, k \geq N \), \(d(x_n, x_k) < 1 \)

Let \(a = x_N \), then \(d(a, x_n) < 1 \) \(\forall n > N \)

\(R = \max \{ d(a, x_1), d(a, x_2), \ldots, d(a, x_{n-1}) \} + 1 \)

Then \(x_n \in B_R(a) \) \(\forall i \leq n \)

Prop. \(x_n \) is Cauchy, \(x_{n_i} \) is a convergent subsequence of \(x_n \),
then, \(x_n \) is convergent
Proof: Let \(a = \lim_{i \to \infty} x_n \). Let \(\epsilon > 0 \) \(\exists \) \(i \) such that \(i \geq i \)

then \(d(x_n, a) < \frac{\epsilon}{2} \). \(\exists M \) such that \(n, k \geq M \) \(d(x_n, x_k) < \frac{\epsilon}{2} \).

let \(N = \max \{ M, n_0 \} \). Let \(n \geq N \), let \(i \) be such that \(n_i \geq N \)

then \(d(x_n, a) \leq d(x_n, x_{n_0}) + d(x_{n_0}, a) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \)

Def: A metric space \(E \) is said to be complete if every Cauchy sequence in \(E \) converges in \(E \).

Prop: \(E \) complete. \(S \subseteq E \), \(S \) is closed. Then, \(S \) is complete.

Proof: \(x_n \in S \) \(x_n \) Cauchy, \(\exists a \in E \) such that \(\lim_{n \to \infty} x_n = a \)
because E is complete. If $a \in S \Rightarrow \exists \varepsilon > 0 \ B_e(a) \cap S = \emptyset$.

Since $x_n \to a \in \mathbb{N}$ such that if $n \geq N$ \ $x_n \in B_e(a)$. But $x_n \in S$. Contradiction, then $a \in S$

Theorem: \mathbb{R} is complete

Proof: x_n Cauchy

$$S = \{x \in \mathbb{R} : x = x_n \text{ for an infinite number of } n \}$$

x_n is bounded $\Rightarrow S$ is bounded from above

Let $a = \text{lub} \ S$

Let $\varepsilon > 0$. Let N such that $n, k \geq N \Rightarrow |x_n - x_k| < \frac{\varepsilon}{2}$
\(a - \frac{\varepsilon}{2} \) is not an upper bound of \(S \). If \(a - \varepsilon < x \leq a \) such that \(x \in S \), then some number of \(x_n \) such that \(x_n > x \). Also \(a + \frac{\varepsilon}{2} \not\in S \), then only a finite of \(x_n \) can satisfy \(x_n \geq a + \frac{\varepsilon}{2} \).

Then an \(\infty \) of \(x_n \) satisfy \(a - \frac{\varepsilon}{2} \leq x_n \leq a + \frac{\varepsilon}{2} \).

Thus, if \(n \geq N \), and \(k \) is one of \(\uparrow \), i.e. \(|x_k - a| < \frac{\varepsilon}{2} \) and \(k \geq N \), then \(|x_n - a| \leq |x_n - x_k| + |x_k - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \).