Prop: \(S_i \) connected for all \(i \in I \). Assume \(j_0 \in I \) such that such that \(S_{j_0} \neq \emptyset \) for all \(i \in I \). Then \(\bigcup_{i \in I} S_i \) is connected.

\[\text{Proof: } \bigcup_{i \in I} S_i \subset CA \cup B \text{, } A \text{ and } B \text{ open in } E \]

\[AN = \emptyset. \text{ We want to show that } \bigcup_{i \in I} S_i \subset CA \text{ or } \]

\[\bigcup_{i \in I} S_i \subset B. \text{ } S_{j_0} \text{ is connected and } S_{j_0} \subset CA \Rightarrow \]

\[S_{j_0} \subset A \text{ or } S_{j_0} \subset B. \text{ Assume } S_{j_0} \subset CA. \text{ Let } i \in I \]
S_i is connected $\Rightarrow S_i \subset A$ or $S_i \subset B$, but $S_i \cap S_i^c \neq \emptyset$

and $S_i \cap S_i^c \subset S_i^c \subset A \Rightarrow S_i \subset A$ for all i. Then

$\bigcup S_i \subset A$

Th. Intervals in \mathbb{R} are connected

Proof. Let $I \subset \mathbb{R}$ be an interval. Assume $I \subset A \cup B$ where $A \cap B = \emptyset$ and both A and B are open in \mathbb{R}.

Assume $A \cap I \neq \emptyset$ and $B \cap I \neq \emptyset$. Let $a \in A \cap I$ and $b \in B \cap I$.
\[A \cap (B \cap I) \]

\[S = \{ x \in A : x \leq b \} \]

S is bounded from above. Let \(c = \text{lub} \ S \). If \(c \in A \Rightarrow \exists \varepsilon > 0 \)

such that \(B_\varepsilon(c) = (c-\varepsilon, c+\varepsilon) \subset A \) because \(A \) is open. But \(c < b \),

because \(b \in B \), then we can take \(\varepsilon < b-c \) and thus \(c+\varepsilon \in S \).

Impossible because \(c \) is an upper bound. If \(c \in B \), then \(c + \varepsilon > 0 \) and \(\varepsilon < c-a \) such that \(B_\varepsilon(c) = (c-\varepsilon, c+\varepsilon) \subset B \)

then \(c-\varepsilon \) is an other bound of \(S \) and it is smaller than \(c \),

IMPOSSIBLE. Then \(c \notin A \cup B \cap I \) impossible because \(c \in [a, b] \subset I \). Contradiction.

Then \(A \cap I = \emptyset \) or \(B \cap I = \emptyset \)
Thus \(I \) is connected.

Continuous functions

Def. \(f : E \rightarrow E' \), \(E \) and \(E' \) metric spaces. \(x_0 \in E \)

- \(f \) is continuous at \(x_0 \) if \(\forall \varepsilon > 0 \exists \delta > 0 \) such that \(d_E(x, x_0) < \delta \)

\(\Rightarrow d_E(f(x), f(x_0)) < \varepsilon \)

\[\]

Def. \(f : E \rightarrow E' \), \(f \) is continuous (on \(E \)) if it is continuous...
At every x in E

Ex: Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x) = x^2$ is continuous.

Given $\varepsilon > 0$, what is δ?

$$d(f(x), f(x_0)) = |f(x) - f(x_0)| = |x^2 - x_0^2| = |x + x_0||x - x_0| \leq (|x| + |x_0|)|x - x_0| \leq (2|x_0| + 1)|x - x_0| \leq (2|x_0| + 1)\varepsilon$$

If $\varepsilon \leq 1$,

$$|x - x_0| < \delta \Rightarrow |x| \leq |x_0| + 1$$

Take $\delta = \min \{1, \frac{\varepsilon}{2|x_0| + 1}\}$
Example: \(x_0 \in E \quad f: E \rightarrow \mathbb{R} \quad f(x) = d(x, x_0) \)

Proof: \(x \in E \). Let's show \(f \) is continuous at \(x_1 \).

\[
d(f(x), f(x_1)) = |f(x) - f(x_1)| = |d(x, x_0) - d(x_1, x_0)| \leq d(x, x_1) < \delta = \epsilon
\]

Take \(\delta = \epsilon \)

\[
d(x, x_0) \leq d(x_0, x_1) + d(x_1, x) \Rightarrow d(x, x_0) - d(x_0, x_1) \leq d(x, x_1)
\]

\[
d(x_0, x_1) \leq d(x_0, x) + d(x, x_1) \Rightarrow d(x, x_0) - d(x_0, x_1) \leq d(x, x_1)
\]