In: \(f: E \to E' \) continuous. \(E \) compact \(\implies f \) is uniformly continuous.

Proof: Let \(\varepsilon > 0 \). \(\forall x \in E \) \(\exists \delta_x > 0 \) such that \(f(B_{\delta_x}(x)) \subseteq B_{\varepsilon/2}(f(x)) \).

\(E = \bigcup_{x \in E} B_{\delta_x}(x) \). Since \(E \) is compact, \(\exists x_1, \ldots, x_n \) such that \(E = \bigcup_{i=1}^{n} B_{\delta_{x_i}}(x_i) \).

Let \(\delta = \min_{1 \leq i \leq n} \frac{\delta_{x_i}}{2} \).

Let \(y, z \in E \) such that \(d(y, z) < \delta \).

Let \(i \) such that \(y \in B_{\delta_{x_i}/2}(x_i) \subseteq B_{\delta_{x_i}}(x_i) \).
\[d(z, x_i) \leq d(z, y) + d(y, x) \leq \varepsilon + \frac{\varepsilon x_i}{2} \leq \frac{\varepsilon x_i}{2} + \frac{\varepsilon x_i}{2} = \varepsilon x_i \]

Thus, both \(y \) and \(z \) belong to \(B_{\frac{\varepsilon}{2}}(x_i) \), then \(d'(f(y), f(x_i)) \leq \varepsilon \) and \(d'(f(z), f(x_i)) \leq \varepsilon \). Then \(d'(f(y), f(z)) \leq d'(f(y), f(x_i)) + d'(f(x_i), f(z)) \leq \varepsilon + \frac{\varepsilon}{2} = \varepsilon \).

Ex. \[f(x) = \frac{1}{x} \] : \([0, 1] \rightarrow \mathbb{R} \) is not uniformly continuous. \([0, 1]\) is not compact.

Ex. \(f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \in (0, 1] \\ 0 & x = 0 \end{cases} \) : \([0, 1] \rightarrow \mathbb{R}\)
Ex. \(f(x) = \sqrt{x} \) \(f: [0,1] \to \mathbb{R} \) is uniformly continuous.

Direct proof. Let \(\varepsilon > 0 \). Let \(0 \leq x < y < x + \delta \)

\[\sqrt{y} - \sqrt{x} \leq \sqrt{x+\delta} - \sqrt{x} \leq \sqrt{\delta} \]

Take \(\delta = \varepsilon^2 \) \(\checkmark \)

\[\sqrt{x+\delta} \leq \sqrt{\delta} + \sqrt{x} \] \(\checkmark \)
Theorem: \(f : E \to E' \) continuous. \(E \) connected \(\Rightarrow f(E) \) connected.

Proof: \(f \) and \(f^{-1} \) are open in \(f(E) \), \(V \cap V = \emptyset \), \(V \neq \emptyset \), \(U \neq \emptyset \).

and \(f(E) = U \cup V \), then \(E = f^{-1}(U) \cup f^{-1}(V) \) \(\Rightarrow E \) is disconnected. Contradiction.

Corollary: \(f : [a, b] \to \mathbb{R} \) continuous. \(\forall \lambda \) between \(f(a) \) and \(f(b) \) \(\exists c \in (a, b) \) such that \(f(c) = \lambda \).
Obs.: Balls in \mathbb{R}^n are connected. Let x be in the ball.

$f([0,1])$ where $f(t) = x_0 + t(x-x_0)$

is continuous. $[0,1]$ is connected, thus the segment $f_x : x_0 + t(x-x_0) \leq t \leq 1$ is also connected and $x \in f_x$, and f_x is included in the ball, because $d(x_0 + t(x-x_0), x_0) = \| x_0 + t(x-x_0) - x_0 \| = t \ d(x, x_0)$

$\| z \| = \sqrt{z_1^2 + z_2^2 + \cdots + z_n^2}$ Then ball $= \bigcup f_x$. Then

the ball is the union of a collection of connected sets that
have a point in common, and thus, the ball is connected.

\[\text{Def: } f_n : E \to E', \ n \in \mathbb{N} \]

1) \(f_n \) converges at \(x \) if \(\lim_{x \to x_0} f_n(x) \) exists.

2) \(f_n \) converges on \(E \) if \(f_n \) converges at \(x \) \(\forall x \in E \).

In this case \(f = \lim_{n \to \infty} f_n \) if \(f(x) = \lim_{n \to \infty} f_n(x) \) \(\forall x \in E \).