Q10 A) The set \(\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots \} \)

has a sup = 1 and \(\inf = \lim_{n \to \infty} \frac{1}{n} = 0 \).

B) Let \(S = \{\frac{1}{3}, \frac{4}{9}, \frac{15}{27}, \frac{40}{81}, \ldots, \frac{(3^n-1)/2}{3^n}, \ldots \} \)

thus \(\sup(S) = \lim_{n \to \infty} \frac{(3^n-1)/2}{3^n} = \lim_{n \to \infty} \frac{1}{2} \left(\frac{3^n}{3^n} \right) = \frac{1}{2} \)

and \(\inf(S) = \frac{1}{3} \).

C) Let \(S = \{\sqrt{2}, \sqrt{2+\sqrt{2}}, \ldots, a_n, \ldots \} \)

where \(a_n = \sqrt{2 + a_{n-1}} \) and \(a_0 = 0 \) \(\forall n \in \mathbb{Z}^+ \)

Suppose \(a_n \) converges to \(L \) \(\Rightarrow \lim_{n \to \infty} a_n = L \)

\(\Rightarrow L = \sqrt{2 + L} \) \(\Rightarrow L^2 = 2 + L \) \(\Rightarrow L^2 - L - 2 = 0 \) \(\Rightarrow L = 2 \text{ or } -1 \) (NA)

Thus \(\sup(S) = 2 \) and \(\inf(S) = \sqrt{2} \).

Q11

Let \(A = \{a, a^2, a^3, \ldots \} \)

Proof by contradiction.

Suppose \(A \) is bounded above; since \(A \neq \emptyset \) and \(A \subset \mathbb{R} \)

\(\Rightarrow \exists x = \sup(A) \) for \(x \in \mathbb{R} \), so \(x \leq y \) for any \(y \in \mathbb{R} \) (y is upper bound of \(A \))

we have \(a^n \leq x \) \(\forall a \in A \) thus \(a^{n+1} \leq x \) \(\Rightarrow a^n \cdot a \leq x \Rightarrow a^n \leq \frac{x}{a} \)

this implies that \(\frac{x}{a} \) is an upper bound of \(A \)

since \(a > 1 \) \(\Rightarrow \frac{x}{a} < x \) but this contradicts the statement that \(x = \text{least upper bound of } A \).

Hence, we show that \(A \) is not bounded above.
12. Since \(x \in \mathbb{R} \) and \(y \in \mathbb{R} \), and that each element of \(x \) is less than each element of \(y \), then if we pick \(x \in \mathbb{R} \),
\(x \) either belongs to \(x \) or \(y \).

Now, since each element of \(x \) is less than each element of \(y \), \(x \) is bounded from above. Also, \(x \) is a nonempty subset of \(\mathbb{R} \), therefore, \(x \) has a L.u.b.

Let \(\alpha = \text{l.u.b.} x \). There are two cases: \(\alpha \in x \) or \(\alpha \in y \).

Assume \(\alpha \in x \), then \(\forall x \in x, x \leq \alpha \). This makes sense because then
\(\forall y \in y, y > \alpha \) making \(\alpha \) the least upper bound of \(x \).

Hence, \(x = \{ x \in \mathbb{R} : x \leq \alpha \} \). Next, assume that \(\alpha \in y \) and \(\alpha \leq y \) for all \(y \in y \). It follows that \(\forall x \in x, x < \alpha \), since \(\alpha \in y \). Thus also makes \(\alpha \) the least upper bound of \(x \).

It follows that \(x = \{ x \in \mathbb{R} : x < \alpha \} \). Q.E.D.

14. First, suppose that \(x \) is rational. Assume \(0 \leq a < b \), then

Let \(x = \frac{m}{n}, m, n \in \mathbb{N} \), let \(n \) be large enough so that \(\frac{1}{n} < b-a \) and choose \(m \in \mathbb{N} \) such that \(m < na \).

It follows that \(a < \frac{m}{n} \). Also, \(m \leq na \) means that

\(m-1 \leq na \).
\[m \leq n + 1 < n(b-h)+1 = nb-1+1 = nb \]

Since \(m < nb \), then \(\frac{m}{n} < b \). It follows that \(a < \frac{m}{n} < b \).

Therefore, there exists a rational number \(x \) such that \(a < x < b \).

Now suppose \(x \) is an irrational number. By applying the above result, there exists \(y \in \mathbb{Q} \) such that \(a + \sqrt{2} < y < b + \sqrt{2} \). It follows that \(a < y - \sqrt{2} < b \). Let \(x = y - \sqrt{2} \).

Since \(y - \sqrt{2} \) is not rational, we conclude that there exists an irrational number \(x \) such that \(a < x < b \).

QED.