Black-Scholes model

\[dS = \mu S \, dt + \sigma S \, dW \]

\(f(S,t) \) = value of the option at time \(t \) when the value of the asset at that time is \(S \)

Portfolio: Short in an option + long in \(A \) shares of stock

Value of portfolio = \(g = A S - f(S,t) \)

Reminder of Itô's lemma

\[dX = a \, dt + b \, dW \quad \text{and} \quad F(X,t) \text{ then} \]

\[dF = \left(a \frac{\partial F}{\partial X} + b \frac{\partial F}{\partial t} + \frac{1}{2} b^2 \frac{\partial^2 F}{\partial X^2} \right) \, dt + b \frac{\partial F}{\partial X} \, dW \]
In our case \(X = S \), \(a = \mu S \), \(b = \sigma S \) and \(F = g \)

\[
dq = (\mu S \frac{\partial g}{\partial S} + \frac{\partial g}{\partial t} + \frac{1}{2} (\sigma S)^2 \frac{\partial^2 g}{\partial S^2}) \, dt + \sigma S \frac{\partial g}{\partial S} \, dW
\]

\[
dq = \left[\mu S \left(A - \frac{\partial f}{\partial S} \right) - \frac{\partial f}{\partial t} + \frac{1}{2} (\sigma S)^2 \left(-\frac{\partial^2 f}{\partial S^2} \right) \right] \, dt + \sigma S \left[A - \frac{\partial f}{\partial S} \right] \, dW
\]

set \(A = \frac{\partial f}{\partial S} (S, t) \) in \(\left[t, t+dt \right] \)

\[
dq = (-\frac{\partial f}{\partial t} - \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2}) \, dt
\]

So in \(dt \), \(g \) increases by \((-\frac{\partial f}{\partial t} - \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2}) \, dt \) no randomness

Thus, no arbitrage implies that this should be equal to
\[\frac{rg}{r} \, dt = - \left(s \frac{\partial f}{\partial s} - f \right) \, dt \]

Then,

\[\frac{\partial f}{\partial t} + S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} - rf = 0 \]

Black-Scholes equations

Assumptions used to get Black-Scholes

1) No arbitrage

2) Frictionless market (no transaction costs, borrowing and lending interest rates are the same, etc....)
3) Asset price follows a geometric Brownian motion
4) r & σ are constants for 0 ≤ t ≤ T. No dividends are paid in this period of time. The option is European

Need to impose terminal conditions to solve Black-Scholes, i.e. we need to prescribe \(f(S,T) \), i.e. \(f \) at \(t = T \). This is the payoff function

For calls \(f(S,T) = \max(S - K, 0) \)

For puts \(f(S,T) = \max(K - S, 0) \)
Binomial

\[S_0 = \text{asset price at } t=0 \]
\[S_t = \text{asset price at } t = \Delta t \]
\[t=0 \quad t=\Delta t \]

\[\begin{aligned}
 &uS_0 \quad p(S_t = uS_0) = p_u \quad u > d \\
 &dS_0 \quad p(S_t = dS_0) = p_d \\
 &\quad \quad p_u + p_d = 1 \quad p_u > 0 \quad \& \quad p_d > 0
\end{aligned} \]

European option

Exercise time = \Delta t

\[f_0 = \text{value of the option at } t=0 \]
Goal: find f_0

$f_u =$ value of option at $t = s T$ if $S_t = u S_0$

$f_d =$ value of option at $t = s T$ if $S_t = d S_0$

Obs: 1) We know f_u & f_d

If it is a call option

$$f_u = \max \left\{ u S_0 - K, 0 \right\}$$

$$f_d = \max \left\{ d S_0 - K, 0 \right\}$$

If it is a put option

$$f_u = \max \left\{ K - u S_0, 0 \right\}$$

$$f_d = \max \left\{ K - d S_0, 0 \right\}$$

2) No arbitrage $\Rightarrow \quad d < e^{r s T} < u$
Portfolio \(P_1 \): an option

Portfolio \(P_2 \): \(\alpha \) shares of the asset + \(\beta \) cash

At \(t = sT \)

<table>
<thead>
<tr>
<th>(S_t)</th>
<th>Value of (P_2)</th>
<th>Value of (P_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_{0u})</td>
<td>(\alpha s_{0u} + \beta e^{r sT})</td>
<td>(f_u)</td>
</tr>
<tr>
<td>(s_{0d})</td>
<td>(\alpha s_{0d} + \beta e^{-r sT})</td>
<td>(f_d)</td>
</tr>
</tbody>
</table>

Select \(\alpha \) \& \(\beta \) so value of \(P_1 = \) value of \(P_2 \) at \(t = sT \)

Regardless of the value of \(S_t \)
\[x S_0 u + \beta e^{rst} = f_u \]
\[x S_0 d + \beta e^{rst} = f_d \]

Then

\[x = \frac{f_u - f_d}{(u-d)S_0} \]
\[\beta = \frac{(uf_d - uf_u)}{d-u} \]

Since value of \(P_1 \) = value of \(P_2 \) at \(t = \infty \), no arbitrage implies value of \(P_1 \) = value of \(P_2 \) at \(t = 0 \)

Value of \(P_2 \) at \(t = 0 \) = \(x S_0 + \beta \)

Value of \(P_1 \) at \(t = 0 \) = \(f_0 \)
\[f_0 = \alpha S_0 + \beta = \frac{f_u - f_d}{u-d} + \frac{(u-f_d)(u-d)}{u-d} e^{-rst} \]

\[f_0 = e^{-rst} \left\{ \frac{e^{rst} - d}{u-d} f_u + \frac{u - e^{rst}}{u-d} f_d \right\} \]

Def.
- \(T_u = \frac{e^{rst} - d}{u-d} \)
- \(T_d = \frac{u - e^{rst}}{u-d} \)

Obs.
1. \(T_u + T_d = 1 \)
2. \(T_u > 0 \) \& \(T_d > 0 \). So we can interpret them as probability.

Def.
- \(f_i \): value of the option at \(t = st \)

Obs.
- \(P(f_i = f_u) = P(S_i = uS_0) = p_u \). Note that \(f_0 \) is independent of \(p_u \).
\[E(f_i) = p_u f_u + p_d f_d \]

Definition: \(E(f_i) = \pi_u f_u + \pi_d f_d \) is the expected value with respect to this new probability \(\pi_u \) and \(\pi_d \).

Notation: This "artificial probability" \(\pi_u \) & \(\pi_d \) is called risk-neutral.

\[\text{As } f_0 = e^{-\text{rst}} E(f_i) \]

\[\text{As } p_u = \pi_u \quad \pi_d = \pi_d \quad \iff \quad E(S_i) = \hat{E}(S_i) \]

Algorithm (One step binomial)
Input: $S_0, u, d, K, r, \Delta t$

Output: f_0

If call then

$$f_u = \max \left\{ S_0 u - K, 0 \right\}$$
$$f_d = \max \left\{ S_0 d - K, 0 \right\}$$

If put then

$$f_u = \max \left\{ K - S_0 u, 0 \right\}$$
$$f_d = \max \left\{ K - S_0 d, 0 \right\}$$

$$\Pi_u = \frac{e^{r \Delta t} - d}{u - d}$$
\[T_{d} = 1 - T_{u} \]

\[f_{0} = e^{-rS} \left(T_{u} f_{u} + T_{d} f_{d} \right) \]

Calibration: How do we pick \(u, d \) and \(p \)?

We assume the asset value follows a geometric Brownian motion

\[ds = \mu S \, dt + \sigma S \, dW \]

We are interested in the value of the option, which does not depend on \(\mu \). If we change \(\mu \), the value of the option does not change. Note

\[E(S) = S(0) e^{\mu t} \]
After S_t, $E(S(st)) = S(0) e^{\mu st}$

If we change μ by γ, we will get the risk-neutral probabilities. This is a widely adopted strategy that we will follow:

$$dS = \gamma S dt + \sigma S dW$$

$$\log(S(st)) \sim N(\log(S(0)) + (\gamma - \frac{\sigma^2}{2}) st, \sigma^2 st)$$

Thus,

$$E[S(st)] = S(0) e^{\gamma st}$$ \hspace{1cm} (1)$$

$$Var[S(st)] = (S(0))^2 e^{2\gamma st} (e^{\sigma^2 st} - 1)$$ \hspace{1cm} (2)$$

Pick μ, d & p_{mu} so the expectation and variance using the
binomial are the same as equations (1) and (2)

Set \(u = \frac{1}{d} \) (using the freedom we have because we have two equations with 3 unknowns)

From binomial: \(p = p_\infty \quad S = S_0 = S(0) \)

\[
E[S(st)] = E[S_i] = pSu + (1-p)Sd \quad (3)
\]

\[
\text{Var}[S(st)] = E[S_i^2] - (E[S_i])^2 = p(Su)^2 + (1-p)(Sd)^2 - (pSu + (1-p)Sd)^2 \quad (4)
\]