\[e^z = e^{x+iy} = e^x (\cos y + i \sin y) \]

Observations:
1. \[e^{z_1 + z_2} = e^{z_1} e^{z_2} \]
2. \[e^{z_1 - z_2} = \frac{e^{z_1}}{e^{z_2}} \]
3. \[f = u + iv \]

\[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad \text{CREE} \]

\[f = e^{x+iy} = e^x \cos y + i e^x \sin y \]
\[u = e^x \cos y \quad v = e^x \sin y \]

\[\frac{\partial u}{\partial x} = e^x \cos y \quad \frac{\partial u}{\partial y} = e^x \cos y \quad \checkmark \]

\[\frac{\partial v}{\partial y} = -e^x \sin y \quad -\frac{\partial v}{\partial x} = -e^x \sin y \quad \checkmark \]

The CREE are satisfied when \(f(z) = e^z \)

Thus, \(e^z \) is analytic everywhere.

\[f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y} = e^x \cos y + i e^x \sin y = e^z \]

\[f(z) = e^z \quad \text{for all } z \in \mathbb{C} \]
\[
\frac{d}{dz} e^z = e^z \quad \text{for all } z \in \mathbb{C}
\]

Logarithms

\[w = \ln z \quad \text{if} \quad e^w = z \]

Need to find \(w \) as a function of \(z \)

\[w = u + iv \]
\[z = x + iy \]

\[e^w = e^u \cos \varphi + i e^u \sin \varphi = x + iy \]

\[e^u \cos \varphi = x \quad \text{and} \quad e^u \sin \varphi = y \]

\[e^u = \sqrt{x^2 + y^2} = |z| \quad \text{if} \quad u = \ln |z| \]

\[\tan \varphi = \frac{y}{x} \]

\[z = e^u (\cos \varphi + i \sin \varphi) \]

\[\theta = \arg(z) \]
\[v = \theta + 2\pi k \quad k \text{ an integer} \]
\[\ln z = w = u + i v = \ln |z| + i (\arg(z) + 2\pi k) \]

\[\ln z = \ln |z| + i (\arg(z) + 2\pi k) \quad k \text{ an integer} \]

Not a problem, \(e^z \) is not one to one

\[e^0 = 1 \]

\[e^{2\pi i} = \cos(2\pi) + i \sin(2\pi) = 1 \]

\[e^{2\pi i} = e^0 \]

\[e^z = e^z + 2\pi k i \quad k \text{ integer} \]

Trigonometric functions \(y \in \mathbb{R} \)

\[e^{iy} = \cos y + i \sin y \]

\[e^{-iy} = \cos y - i \sin y \]

\[\cos y = \frac{e^{iy} + e^{-iy}}{2} \quad \text{and} \quad \sin y = \frac{e^{iy} - e^{-iy}}{2i} \]

For complex numbers, we define

\[\cos z = \frac{e^{iz} + e^{-iz}}{2} \quad \text{and} \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i} \]

The trigonometric identities are also valid for complex numbers.

\[\frac{d}{dz} \cos z = -\sin z \]

\[\frac{d}{dz} \sin z = \cos z \]
\[
\frac{\alpha \cos z}{dz} = -\sin z \\
\frac{\alpha \sin z}{dz} = \cos z
\]

We did section 17.7

Integrals

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(z_k^*) \cdot (z_k - z_{k-1}) = \int f(z) \, dz\]

Evaluation of integrals

Parametrize \(\gamma \)

\[\gamma(t) \quad a \leq t \leq b\]

\[\int_{\gamma} f(z) \, dz = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, dt\]

Example \(\gamma \) is given by \(x = 3t \), \(y = t^2 \), \(-1 \leq t \leq 4\)
Example

Given

\[-1 \leq t \leq 4 \]

Evaluate \(\int_{\gamma} \frac{1}{z} \, dz \)

\[\int_{-1}^{4} \frac{x(t) + iy(t)}{x(t) + iy(t)} (x(t) + iy(t)) \, dt = \]

\[= \int_{-1}^{4} (3t - i t^2) (3 + 2i t) \, dt = \int_{-1}^{4} (9t + 2t^3) \, dt + \]

\[+ i \int_{-1}^{4} (-3t^2 + 6t^2) \, dt = \frac{9}{2} (16 - 1) + \frac{1}{2} (4^4 - 1) + \]

\[+ i (4^3 + 1) \]

Example

\[\int_{\gamma} \frac{1}{z} \, dz \]

\(\gamma \) is the circle centered at 0 of radius \(r \) in the counter clockwise direction

\[z(t) = re^{it}, \quad 0 \leq t \leq 2\pi \]

\[\int_{\gamma} \frac{1}{z} \, dz = \int_{0}^{2\pi} \frac{1}{z(t)} \, dt = \int_{0}^{2\pi} i re^{it} \, dt = \]
\[\oint_{\gamma} \frac{1}{z} \, dz = \int_{0}^{2\pi} \frac{1}{z(t)} \, dt = \int_{0}^{2\pi} \frac{ire^{it}}{re^{it}} \, dt = \int_{0}^{2\pi} ire^{it} \, dt = i \int_{0}^{2\pi} dt = 2\pi i \]

Properties of integrals

1. \[\int_{\gamma} cf(z) \, dz = c \int_{\gamma} f(z) \, dz \]

2. \[\int_{\gamma} [f(z) + g(z)] \, dz = \int_{\gamma} f(z) \, dz + \int_{\gamma} g(z) \, dz \]

3. \[\int_{\gamma} f(z) \, dz = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz \]

4. \[\int_{\gamma_1} f(z) \, dz = -\int_{\gamma_2} f(z) \, dz \]
-\mathcal{C} is the curve \mathcal{C} but with opposite orientation.

We did 18.1

Cauchy–Goursat theorem

Def: A set D is simply connected if it is connected and it does not have holes.

Example

This set is not connected.

It is connected but not simply connected.

It is **NOT** simply connected. It has a hole, the hole is a single point.

Theorem: Let D be simply connected.

Let f be analytic in D. Then, if \mathcal{C} is
A closed curve inside \(D \), then
\[
\oint_{\Gamma} f(z) \, dz = 0
\]

Example
\[f(z) = \frac{1}{z} \]
\[\Gamma = \text{circle of radius 1} \]
\[
\oint_{\Gamma} \frac{1}{z} \, dz = 2\pi i
\]
\[
\Gamma \quad \text{is not analytic at 0, so there is no contradiction}
\]
\[\frac{1}{z} \]

\[D \quad \text{circle of radius one centered at 2} \]
\[
\oint_{\Gamma} \frac{1}{z} \, dz = 0 \quad \text{because} \quad \frac{1}{z}
\]
\[
\Gamma \quad \text{is analytic inside} \quad \Gamma
\]
\[D \quad \text{is the red set} \]
\[D \quad \text{is not simply connected} \]
\[f \quad \text{is analytic in} \quad D \]
If f is analytic in D, then
\[\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz \]
if f is analytic in the region inside C_1 but also outside C_2.

Why?

\[\int_{C_1} f(z) \, dz + \int_{C_3} f(z) \, dz + \int_{C_4} f(z) \, dz = 0 \]

\[\int_{C_3} f(z) \, dz + \int_{C_4} f(z) \, dz = 0 \]

\[\int_{C_1} f(z) \, dz + \int_{C_2} f(z) \, dz \]

\[\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz \]