Trigonometric functions

Obs: \(y \in \mathbb{R} \), then \(e^{iy} = \cos y + i\sin y \)
\(e^{-iy} = \cos y - i\sin y \)

Add & divide by 2 you get \(\cos y = \frac{e^{iy} + e^{-iy}}{2} \)

Subtract & divide by 2i \(\sin y = \frac{e^{iy} - e^{-iy}}{2i} \)

Def. \(z \in \mathbb{C} \) \(\cos z = \frac{e^{iz} + e^{-iz}}{2} \) and \(\sin z = \frac{e^{iz} - e^{-iz}}{2i} \)

Obs: 1) \(\frac{d}{dz} \cos z = \frac{i}{2} e^{iz} - \frac{i}{2} e^{-iz} = (i) \frac{e^{iz} - e^{-iz}}{2i} = -i \sin z \)
2) \(\frac{d}{dz} \sin z = \cos z \)

3) \(\cos^2 z + \sin^2 z = 1 \)

4) \(\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2 \)

5) \(\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2 \)

Integrals \(C \) is a curve in the complex plane
\[\int f = \lim_{n \to \infty} \sum_{k=1}^{n} f(z_k^*) (z_{k+1} - z_k) \]

Evaluation of integrals

1) Parameterize \(C \) and find \(z = z(t) \) a function defined on a real interval \(z : [a, b] \to C \)

As \(t \) goes from \(a \) to \(b \) you move in the direction of \(C \) and visit each point exactly once.
\[\int f = \int_a^b f(z(t)) z'(t) \, dt \]

Example 1) \(f \) given by \(x = 3t, \ y = t^2 \) \(-1 \leq t \leq 4\)

\[z(t) = 3t + it^2 \quad -1 \leq t \leq 4 \]

Compute \(\int \overline{z} \, z' \, dt \)

\[\int_{-1}^{4} (3t - it^2)(3 + 2it) \, dt = \]

\[= \int_{-1}^{4} (9t + 2t^3) + i(6t^2 - 3t^2) \, dt = \left(\frac{9t^2 + t^4}{2} \right)_{-1}^{4} + i \left(\frac{t^3}{3} \right)_{-1}^{4} = \]
\[
\left(\frac{9}{2} \cdot 4^2 + \frac{4^4}{2} \right) - \left(\frac{9}{2} + \frac{1}{2} \right) + i \left(4^3 - (-1)^3 \right)
\]

Ex: \(C \): circle centered at 0 of radius 1 in the counter-clockwise direction. Compute \(\int_{C} \frac{1}{z} \, dz = \int_{0}^{2\pi} \frac{-\text{e}^{it} \, dt}{z} \) \(\text{e}^{it} \)

\[
\int_{0}^{2\pi} \frac{-\text{e}^{it} \, dt}{\text{e}^{it}} = 2\pi i
\]

Obs: The integral does not depend on the parametrization.

Properties: 1) \(\oint_{C} c f(z) \, dz = c \oint_{C} f(z) \, dz \) \(c \in \mathbb{C} \)
2) \[\int_{\gamma} (f + g)(z) \, dz = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} g(z) \, dz \]

3) \[\int_{\gamma} f(z) \, dz = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz \]
\[\gamma = \gamma_1 \cup \gamma_2 \]

Notation \(\gamma = \gamma_1 + \gamma_2 \)

4) \[-\gamma \]
\[-\gamma \text{ is } \gamma \text{ but traveled in the opposite direction} \]
\[\int_{-\gamma} f(z) \, dz = -\int_{\gamma} f(z) \, dz \]
Def. Connected sets

Connected

Not connected

Def. A set D is simply connected if it is connected and does not have holes.

Ex. a) Simply connected

b) Not simply connected
c) not simply connected (a point is missing) inside

Theorem: \(D \) simply connected. \(\gamma \) closed curve, \(\gamma \subset D \)

\[\text{D open, } f \text{ analytic in } D. \]

Then:

Closed curves

Not closed

\[\int_{C} f(z) \, dz = 0 \]
Examples: 1) $f(z) = z$
$$\int_{0}^{2\pi} e^{it} \, dt = i \left. \frac{1}{2i} e^{2it} \right|_{0}^{2\pi} = 0$$

2) Same curve, but $f(z) = \frac{1}{z}$
$$\int_{0}^{2\pi} \frac{1}{z} \, dz = 2\pi i \quad \text{OK, because} \quad \frac{1}{z} \quad \text{is not differentiable at} \quad z = 0.$$
Obs

\[\mathcal{L}_1 \text{ & } \mathcal{L}_2 \text{ closed curves} \]

\[\mathcal{L}_1 \text{ without self intersections.} \]

\[\mathcal{L}_2 \text{ inside } \mathcal{L}_1 \text{ (they do not intersect)} \]

Yellow region = outside \(\mathcal{L}_2 \) & inside \(\mathcal{L}_1 \)

+ analytic on \(\mathcal{L}_1 \), on \(\mathcal{L}_2 \), and between the curves (in the yellow region).

\[\mathcal{L}_4 = - \mathcal{L}_3 \]

\[0 = \int_{\mathcal{L}_1} f = \int_{\mathcal{L}_2} f + \int_{\mathcal{L}_3} f + \int_{\mathcal{L}_4} f = \int_{\mathcal{L}_2} f - \int_{\mathcal{L}_3} f - \int_{\mathcal{L}_4} f \]
\[f = f_2 + f_3 - f_1 - f_3 = \int_{f_2} f + \int_{f_3} f - \int_{f_1} f - \int_{f_3} f \]

\[0 = \int_{f_2} f + \int_{f_1} f \]

\[\oint_{f_1} f = \oint_{f_2} f \]

Example

\[\int_{\frac{1}{z}} \frac{1}{z} \, dz = \int_{\frac{1}{z}} \frac{1}{z} \, dz = 2\pi i \]

\[f : |z| = r \]
The only point $z^* = \chi$ where f is not analytic

\[
\int_{\gamma} f = \lim_{\varepsilon \to 0} \int_{|z-z^*| = \varepsilon} f
\]

Observations:

γ analytic inside γ and $\gamma \setminus \gamma_1 \cup \gamma_2$ outside γ_1 and γ_2.

Then

\[
\int_{\gamma} f = \int_{\gamma_1} f + \int_{\gamma_2} f + \int_{\gamma_1} f
\]
Example

\[\oint \frac{dz}{z^2 + 1} \]

\[|z| = 3 \]

\[z^2 + 1 = 0 \quad \text{then} \quad z = \pm i \]

\[\oint_{|z| = 3} \frac{dz}{z^2 + 1} = \oint_{|z-1| = 3} \frac{dz}{z^2 + 1} + \oint_{|z+1| = 3} \frac{dz}{z^2 + 1} \]

\[
\int_{|z-i|=3} \frac{dz}{z^2 + 1} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{i} e^{i\theta} + \frac{1}{-i} e^{-i\theta} \right) d\theta
\]

\[z = i + e^{i\theta} \]
\[
\int_0^{2\pi} \frac{e^{it} e^{it}}{2(e^{it} + g e^{2it})} \, dt = \int_0^{2\pi} \frac{i}{2i + \epsilon e^{it}} \, dt =
\]

\[
= \int_0^{2\pi} \frac{i}{2i} \, dt = \pi
\]

Verify
\[
\oint_{|z| = 3} \frac{dz}{z^2 + 1} = -\pi
\]

\[
\oint_{|z| = 3} \frac{dz}{z^2 + 1} = 0
\]
Obs: \(f \) analytic in \(D \), \(D \) open.
\(D \) simply connected.

\(\gamma_1 \) and \(\gamma_2 \) curves in \(D \)

\[0 = \int_{\gamma_1 - \gamma_2} f = \int_{\gamma_1} f - \int_{\gamma_2} f \]

\[\int_{\gamma_1} f = \int_{\gamma_2} f \]
Obs: If open simply connected, f analytic in D. Then $\int_{C} f$ depends only on the end points of C.

Ex:

\[
\int_{\ell_1} \frac{1}{z} \, dz = \pi i \\
\int_{\ell_2} \frac{1}{z} \, dz = -\pi i
\]

not equal

not contradiction of theorem because $\frac{1}{z}$ is not
analytic at 0 and 0 is inside the region determined
by the two curves.

Theorem. D open simply connected. f analytic in D. then
there exists F in D such that \(F(z) = f(z) \) for all \(z \in D \). If \(z_1 \) a curve in D, \(z_i \) its initial and \(z_f \) its
final points. Then

\[
\int_{z_1}^{z_f} f = F(z_f) - F(z_i)
\]
Cauchy's integral formula

If \(D \) is simply connected open, \(f \) analytic in \(D \), \(\gamma \subset D \)
\(\gamma \) closed curve without self intersections, \(z_0 \) inside \(\gamma \).

Then \(f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-z_0} \, dz \).

Proof: \(g(z) = \frac{f(z)}{z-z_0} \)
\(g(z_0) = 0 \) = \(0 \) to \(z \to 0 \) to get the result.