Integration on Manifolds, Volume, and Partitions of Unity

Suppose that we have an orientable Riemannian manifold \((M,g)\) and a function \(f: M \to \mathbb{R}\). How can we define the integral of \(f\) on \(M\)? First we answer this question locally, i.e., if \((U,\phi)\) is a chart of \(M\) (which preserves the orientation of \(M\)), we define

\[
\int_U f \, dv_g := \int_{\phi(U)} f(\phi^{-1}(x)) \sqrt{\det(g^\phi_{ij}(\phi^{-1}(x)))} \, dx,
\]

where \(g_{ij}\) are the coefficients of the metric \(g\) in local coordinates \((U,\phi)\). Recall that \(g^\phi_{ij}(p) := g(E^\phi_i(p), E^\phi_j(p))\), where \(E^\phi_i(p) := d\phi^{-1}_p(e_i)\).

Now note that if \((V,\psi)\) is any other (orientation preserving) local chart of \(M\), and \(W := U \cap V\), then there are two ways to compute \(\int_W f \, dv_g\), and for these to yield the same answer we need to have

\[
\int_{\phi(W)} f(\phi^{-1}(x)) \sqrt{\det(g^\phi_{ij}(\phi^{-1}(x)))} dx = \int_{\psi(W)} f(\psi^{-1}(x)) \sqrt{\det(g^\psi_{ij}(\psi^{-1}(x)))} dx.
\]

To check whether the above expression is valid recall that the change variables formula tells that if \(D \subset \mathbb{R}^n\) is an open subset, \(f: D \to \mathbb{R}\) is some function, and \(u: \tilde{D} \to D\) is a diffeomorphism, then

\[
\int_D f(x) \, dx = \int_{\tilde{D}} f(u(x)) \det(du_x) \, dx.
\]

Now recall that, by the definition of manifolds, \(\phi \circ \psi^{-1}: \psi(W) \to \phi(W)\) is a diffeomorphism. So, by the change of variables formula, the integral on the left hand side of (1) may be rewritten as

\[
\int_{\psi(W)} f(\psi^{-1}(x)) \sqrt{\det(g^\psi_{ij}(\psi^{-1}(x)))} \det(d(\phi \circ \psi)^{-1}_x) dx.
\]
So for equality in (1) to hold we just need to check that
\[\sqrt{\det(g_{ij}^\psi(\psi^{-1}(x)))} = \sqrt{\det(g_{ij}^\phi(\psi^{-1}(x))) \det(d(\phi \circ \psi^{-1})_x)}, \]
for all \(x \in \psi(W) \) or, equivalently,
\[\sqrt{\det(g_{ij}^\psi(p))} = \sqrt{\det(g_{ij}^\phi(p)) \det(d(\phi \circ \psi^{-1})_{\psi(p)})}, \tag{2} \]
for all \(p \in W \). To see that the above equality holds, let \((a_{ij}) \) be the matrix of the linear transformation \(d(\phi \circ \psi^{-1}) \) and note that
\[
\begin{align*}
g_{ij}^\psi &= g(d\psi^{-1}(e_i), d\psi^{-1}(e_j)) \\
&= g(d\phi^{-1} \circ d(\phi \circ \psi^{-1})(e_i), d\phi^{-1} \circ d(\phi \circ \psi^{-1})(e_j)) \\
&= g \left(d\phi^{-1} \left(\sum_{\ell} a_{i\ell} e_\ell \right), d\phi^{-1} \left(\sum_k a_{jk} e_k \right) \right) \\
&= \sum_{\ell k} a_{i\ell} a_{jk} g_{\ell k}^\phi.
\end{align*}
\]
So if \((g_{ij}^\psi) \) and \((g_{ij}^\phi) \) denote the matrices with the coefficients \(g_{ij}^\psi \) and \(g_{ij}^\phi \), then we have
\[
(g_{ij}^\psi) = (a_{ij})(a_{ij})(g_{ij}^\phi).
\]
Taking the determinant of both sides of the above equality yields (2). In particular note that \(\sqrt{\det(a_{ij})^2} = |\det(a_{ij})| = \det(a_{ij}) \), because, since \(M \) is orientable and \(\phi \) and \(\psi \) are by assumption orientation preserving charts, \(\det(a_{ij}) > 0 \).

Next we discuss, how to integrate a function on all of \(M \). To see this we need the notion of *partition of unity* which may be defined as follows: Let \(U_i, i \in I, \) be an open cover of \(M \), then by a (smooth) partition of unity subordinate to \(U_i \) we mean a collection of smooth functions \(\theta_i: M \to \mathbb{R} \) with the following properties:

1. \(\text{supp} \theta_i \subset A_i. \)
2. for any \(p \in M \) there exists only finitely many \(i \in I \) such that \(\theta_i(p) \neq 0. \)
3. \(\sum_{i \in I} \theta_i(p) = 1, \) for all \(p \in M. \)

Here \(\text{supp} \) denotes *support*, i.e., the closure of the set of points where a given function is nonzero. Further note that by property 2 above, the sum in item 3 is well-defined.

Theorem 0.1. If \(M \) is any smooth manifold, then any open covering of \(M \) admits a subordinate smooth partition of unity.
Using the above theorem, whose proof we postpone for the time being, we may define \(\int_M f dv_g \), for any function \(f : M \to \mathbb{R} \) as follows. Cover \(M \) by a family of local charts \((U_i, \phi_i) \), and let \(\theta_i \) be a subordinate partition of unity. Then we set
\[
\int_M f dv_g := \sum_{i \in I} \int_{U_i} \theta_i f dv_g.
\]
Note that this definition does not depend on the choice of local charts or the corresponding partitions of unity. The *volume* of any orientable Riemannian manifold may now be defined as the integral of the constant function one:
\[
\text{vol}(M) := \int_M dv_g.
\]
Now we proceed towards proving Theorem 0.1.

Exercise 0.2. Compute the area of a torus of revolution in \(\mathbb{R}^3 \).

Lemma 0.3. Any open cover of a manifold has a countable subcover.

Proof. Suppose that \(U_i, i \in I \), is an open covering of a manifold \(M \) (where \(I \) is an arbitrary set). By definition, \(M \) has a countable basis \(B = \{B_j\}_{j \in J} \). For every \(i \in I \), let \(A_i := \{B_j \mid B_j \subset U_i\} \). Then \(A_i \) is an open covering for \(M \). Next, let \(A := \bigcup_{i \in I} A_i \). Since \(A \subset B \), \(A \) is countable, so we may denote the elements of \(A \) by \(A_k \), where \(k = 1, 2, \ldots \). Note that \(A_k \) is still an open covering for \(M \). Further, for each \(k \) there exists an \(i \in I \) such that \(A_k \subset U_i \). We may collect all such \(U_i \) and reindex them by \(k \), which gives the desired countable subcover. \(\square \)

Lemma 0.4. Any manifold has a countable basis such that each basis element has compact closure.

Proof. By the previous lemma we may cover any manifold \(M \) by a countable collection of charts \((U_i, \phi_i) \). Let \(V_j \) be a countable basis of \(\mathbb{R}^n \) such that each \(V_j \) has compact closure \(\overline{V_j} \), e.g., let \(V_j \) be the set of balls in \(\mathbb{R}^n \) centered at rational points and with rational radii less than 1. Then \(B_{ij} := \phi_i^{-1}(V_j) \) gives a countable basis for \(U_i \) such that each basis element has compact closure, since \(\overline{B_{ij}} = \phi_i^{-1}(\overline{V_j}) \). So \(\bigcup_{ij} B_{ij} \) gives the desired collection, since a countable collection of countable sets is countable. \(\square \)

Lemma 0.5. Any manifold \(M \) is countable at infinity, i.e., there exists a countable collection of compact subsets \(K_i \) of \(M \) such that \(M \subset \bigcup_i K_i \) and \(K_i \subset \text{int} K_{i+1} \).

Proof. Let \(B_i \) be the countable basis of \(M \) given by the previous lemma, i.e., with each \(\overline{B_i} \) compact. Set \(K_1 := \overline{B_1} \) and let \(K_{i+1} := \bigcup_{j=1}^r B_j \), where \(r \) is the smallest integer such that \(K_i \subset \bigcup_{j=1}^r B_j \). \(\square \)
By a refinement of an open cover \(U_i \) of \(M \) we mean an open cover \(V_j \) such that for each \(j \in J \) there exists \(i \in I \) with \(V_j \subset U_i \). We say that an open covering is locally finite, if for every \(p \in M \) there exists finitely many elements of that covering which contain \(p \).

Lemma 0.6. Any open covering of a manifold \(M \) has a countable locally finite refinement by charts \((U_i, \phi_i)\) such that \(\phi_i(U_i) = B^n(o) \) and \(V_i := \phi^{-1}(B^n(o)) \) also cover \(M \).

Proof. First note that for every point \(p \in M \), we may find a local chart \((U_p, \phi_p)\) such that \(\phi_p(U_p) = B^n(o) \), and set \(V_p := \phi^{-1}(B^n(o)) \). Further, we may require that \(U_p \) lies inside any given open set which contains \(p \). Let \(A_\alpha \) be an open covering for \(M \). By a previous lemma, after replacing \(A_\alpha \) by a subcover, we may assume that \(A_\alpha \) is countable. Now consider the sets \(A_\alpha \cap (\text{int} \ K_{i+2} - K_{i-1}) \). Since \(K_{i+1} - \text{int} \ K_i \) is compact, there exists a finite number of open sets \(U_{p_j}^{\alpha,i} \subset A_\alpha \cap (\text{int} \ K_{i+2} - K_{i-1}) \) such that \(V_{p_j}^{\alpha,i} \) covers \(A_\alpha \cap (K_{i+1} - \text{int} \ K_i) \). Since \(K_i \) and \(A_\alpha \) are countable, the collection \(U_{p_j}^{\alpha,i} \) is a countable. Further, by construction \(U_{p_j}^{\alpha,i} \) is locally finite, so it is the desired refinement. \(\square \)

Note 0.7. The last result shows in particular that every manifold is paracompact, i.e., every open cover of \(M \) has a locally finite refinement.

Proof of Theorem 0.1. Let \(A_\alpha \) be an open cover of \(M \). Note that if \(U_i \) is any refinement of \(A_\alpha \) and \(\theta_i \) is a partition of unity subordinate to \(U_i \) then, \(\theta_i \) is subordinate to \(A_\alpha \). In particular, it is enough to show that the refinement \(U_i \) given by the previous lemma has a subordinate partition of unity. To this end note that there exists a smooth nonnegative function \(f: \mathbb{R} \to \mathbb{R} \) such that \(f(x) = 0 \) for \(x \geq 2 \), and \(f(x) = 1 \) for \(x \leq 1 \). Define \(\overline{\theta}_i : M \to \mathbb{R} \) by \(\overline{\theta}_i(p) := f(||\phi_i(p)||) \) if \(p \in U_i \) and \(\overline{\theta}_i(p) := 0 \) otherwise. Then \(\overline{\theta}_i \) are smooth. Finally, \(\theta_i(p) := \overline{\theta}_i(p)/\sum_j \overline{\theta}_j(p) \), is the desired partition of unity. \(\square \)

Recall that earlier we showed that any compact manifold admits a Riemannian metric, since it can be isometrically embedded in some Euclidean space. As an application of the previous result we now can show:

Corollary 0.8. Any manifold admits a Riemannian metric

Proof. Let \((U_i, \phi_i)\) be an atlas of \(M \), and let \(\theta_i \) be a subordinate partition of unity. Now for \(p \in U_i \) define \(g_p(X, Y) := \langle d\phi_i(X), d\phi_i(Y) \rangle \). Then we define a Riemannian metric \(g \) on \(M \) by setting \(g_p(X, Y) := \sum_i \theta_i(p) g_p(X, Y) \). \(\square \)

Exercise 0.9. Show that every manifold is normal, i.e., for every disjoint closed sets \(A_1, A_2 \) in \(M \) there exists a pair of disjoint open subsets \(U_1, U_2 \) of \(M \) such that \(X_1 \subset U_1 \) and \(X_2 \subset U_2 \). [Hint: Use the fact that every manifold admits a metric]
Exercise 0.10. Show that if U is any open subset of a manifold M and $A \subset U$ is a closed subset, then there exists smooth function $f: M \to \mathbb{R}$ such that $f = 1$ on A and $f = 0$ on $M - U$.

Exercise 0.11. Compute the volume (area) of a torus of revolution in \mathbb{R}^3.

Exercise 0.12. Let $M \subset \mathbb{R}^n$ be an embedded submanifold which may be parameterized by $f: U \to \mathbb{R}^n$, for some open set $U \subset \mathbb{R}^m$, i.e., f is a one-to-one smooth immersion and $f(U) = M$. Show that then $\text{vol}(M) = \int_U \sqrt{\det(J_x(f) \cdot J_x(f)^T)} \, dx$, where $J_x(f)$ is the jacobian matrix of f at x.