

2.5 The inverse function theorem

Recall that if \(f : M \to N \) is a diffeomorphism, then \(df_p \) is nonsingular at all \(p \in M \) (by the chain rule and the observation that \(f \circ f^{-1} \) is the identity function on \(M \)). The main aim of this section is to prove a converse of this phenomenon:

Theorem 1 (The Inverse Function Theorem). Let \(f : M \to N \) be a smooth map, and \(\dim(M) = \dim(N) \). Suppose that \(df_p \) is nonsingular at some \(p \in M \). Then \(f \) is a local diffeomorphism at \(p \), i.e., there exists an open neighborhood \(U \) of \(p \) such that

1. \(f \) is one-to-one on \(U \).
2. \(f(U) \) is open in \(N \).
3. \(f^{-1} : f(U) \to U \) is smooth.

In particular, \(d(f^{-1})_{f(p)} = (df_p)^{-1} \).

A simple fact which is applied a number of times in the proof of the above theorem is

Lemma 2. Let \(f : M \to N \), and \(g : N \to L \) be diffeomorphisms, and set \(h := g \circ f \). If any two of the mappings \(f, g, h \) are diffeomorphisms, then so is the third. \(\square \)

In particular, the above lemma implies

Proposition 3. If Theorem 1 is true in the case of \(M = \mathbb{R}^n = N \), then, it is true in general.
Proof. Suppose that Theorem 1 is true in the case that \(M = \mathbb{R}^n = N \), and let \(f: M \to N \) be a smooth map with \(df_p \) nonsingular at some \(p \in M \). By definition, there exist local charts \((U, \phi)\) of \(M \) and \((V, \psi)\) of \(N \), centered at \(p \) and \(f(p) \) respectively, such that \(\tilde{f} := \phi^{-1} \circ f \circ \psi \) is smooth. Since \(\phi \) and \(\psi \) are diffeomorphisms, \(d\phi_p \) and \(d\psi_{f(p)} \) are nonsingular. Consequently, by the chain rule, \(d\tilde{f}_o \) is nonsingular, and is thus a local diffeomorphism. More explicitly, there exists open neighborhoods \(A \) and \(B \) of the origin \(o \) of \(\mathbb{R}^n \) such that \(\tilde{f}: A \to B \) is a diffeomorphism. Since \(\phi: \phi^{-1}(A) \to A \) is also a diffeomorphism, it follows that \(\phi \circ \tilde{f} : \phi^{-1}(A) \to B \) is a diffeomorphism. But \(\phi \circ \tilde{f} = f \circ \psi \). So \(f \circ \psi : \phi^{-1}(A) \to B \) is a diffeomorphism. Finally, since \(\psi: \psi^{-1}(B) \to B \) is a diffeomorphism, it follows, by the above lemma, that \(f: \phi^{-1}(A) \to \psi^{-1}(B) \) is a diffeomorphism. \(\square \)

So it remains to prove Theorem 1 in the case that \(M = \mathbb{R}^n = N \). To this end we need the following fact. Recall that a metric space is said to be complete provided that every Cauchy sequence of that space converges.

Lemma 4 (The contraction Lemma). Let \((X,d) \) be a complete metric space, and \(0 \leq \lambda < 1 \). Suppose that there exists mapping \(f: X \to X \) such that \(d(f(x_1), (x_2)) \leq \lambda d(x_1, x_2) \), for all \(x_1, x_2 \in X \). Then there exists a unique point \(x \in X \) such that \(f(x) = x \).

Proof. Pick a point \(x_0 \in X \) and set \(x_n := f^n(x) \), for \(n \geq 1 \). We claim that \(\{x_n\} \) is a Cauchy sequence. To this end note that

\[
d(x_n, x_{n+m}) = d(f^n(x_0), f^n(x_m)) \leq \lambda^n d(x_0, x_m).
\]

Further, by the triangle inequality

\[
d(x_0, x_m) \leq d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{m-1}, x_m)
\leq (1 + \lambda + \lambda^2 + \cdots + \lambda^m)d(x_0, x_1)
\leq \frac{1}{1-\lambda}d(x_0, x_1).
\]

So, setting \(K := d(x_0, x_1)/(1-\lambda) \), we have

\[
d(x_n, x_{n+m}) \leq \lambda^n K.
\]

Since \(K \) does not depend on \(m \) or \(n \), the last inequality shows that \(\{x_n\} \) is a Cauchy sequence, and therefore, since \(X \) is complete, it has a limit point, say \(x_\infty \). Now note that, since \(d: X \times X \to \mathbb{R} \) is continuous (why?),

\[
d(x_\infty, f(x_\infty)) = \lim_{n \to \infty} d(x_n, f(x_n)) = 0.
\]
Thus X_∞ is a fixed point of f. Finally, note that if a and b are fixed points of f, then

$$d(a, b) = d(f(a), f(b)) \leq \lambda d(a, b),$$

which, since $\lambda < 1$, implies that $d(a, b) = 0$. So f has a unique fixed point.

Exercise 5. Does the previous lemma remain valid if the condition that $d(f(x_1), (x_2)) \leq \lambda d(x_1, x_2)$ is weakened to $d(f(x_1), (x_2)) < d(x_1, x_2)$?

Next we recall

Lemma 6 (The mean value theorem). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^1 functions. Then for every $p, q \in \mathbb{R}^n$ there exists a point s on the line segment connecting p and q such that

$$f(p) - f(q) = Df(s)(p - q) = \sum_{i=1}^{n} D_{ij}f(s_i)(p^i - q^i).$$

Exercise 7. Prove the last lemma by using the mean value theorem for functions of one variable an the chain rule. *(Hint: Parametrize the segment joining p and q by $tq + (1 - t)p$, $0 \leq t \leq 1$).*

The above lemma implies:

Proposition 8. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a C^1 function, U be a convex open neighborhood of 0 in \mathbb{R}^n, and set

$$K := \sup \left\{ \|D_{ij}f^i(p)\| \mid 1 \leq i \leq m, 1 \leq j \leq n, p \in U \right\}$$

Then, for every $p, q \in U$,

$$\|f(p) - f(q)\| \leq \sqrt{mn}K\|p - q\|$$

Proof. First note that

$$\|f(p) - f(q)\|^2 = \sum_{i=1}^{m} (f^i(p) - f^i(q))^2.$$
Secondly, by the mean value theorem (Lemma 6), there exists, for every \(i \) a point \(s_i \) on the line segment connecting \(p \) and \(q \) such that

\[
f^i(p) - f^i(q) = Df^i(s_i)(p - q) = \sum_{j=1}^{n} D_j f^i(s_j)(p - q).
\]

Since \(U \) is convex, \(s_i \in U \), and, therefore, by the Cauchy-Schwartz inequality

\[
|f^i(p) - f^i(q)| \leq \sqrt{\sum_{j=1}^{n} D_j f^i(s_j)^2} \cdot \sqrt{\sum_{j=1}^{n} (p^j - q^j)^2} \leq \sqrt{n}K\|p - q\|.
\]

So we conclude that

\[
\|f(p) - f(q)\|^2 \leq mnK^2\|p - q\|^2.
\]

Finally, we recall the following basic fact

Lemma 9. Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \), and \(p \in \mathbb{R}^n \). Suppose there exists a linear transformation \(A : \mathbb{R}^n \rightarrow \mathbb{R}^m \) such that

\[
f(x) - f(p) = A(p - x) + r(x, p)
\]

where \(r : \mathbb{R}^2 \rightarrow \mathbb{R} \) is a function satisfying

\[
\lim_{x \to p} \frac{r(x, p)}{\|x - p\|} = 0.
\]

Then all the partial derivatives of \(f \) exist at \(p \), and \(A \) is given by the jacobian matrix \(D f(p) := (D_1 f(p), \ldots, D_n f(p)) \) whose columns are the partial derivatives of \(f \). In particular, \(A \) is unique. Conversely, if all the partial derivative \(D_i f(p) \) exist, then \(A := D f(p) \) satisfies the above equation.

Proof. Let \(e_1, \ldots, e_n \) be the standard basis for \(\mathbb{R}^n \). Then

\[
D_i f(p) = \lim_{t \to 0} \frac{f(p + te_i) - f(p)}{t} = \lim_{t \to 0} \frac{A(te_i) + r(p + te_i, p)}{t} = A(e_i).
\]

Thus all the partial derivatives of \(f \) exist at \(p \), and \(D_i f(p) \) coincides with the \(i^{th} \) column of (the matrix representation) of \(A \). In particular, \(A = D f(p) \) and therefore \(A \) is unique.
Conversely, suppose that all the partial derivatives $D_i f(p)$ exist and set
\[r(x, p) := f(x) - f(p) - Df(p)(p - x). \]
By the mean value theorem,
\[r(x, p) = (Df(s) - Df(p))(p - x) \]
for some s on the line segment joining p and s. Thus it follows that
\[\lim_{x \to p} \frac{r(x, p)}{\|x - p\|} = \lim_{x \to p} (Df(s) - Df(p)) \left(\frac{p - x}{\|p - x\|} \right) = 0, \]
as desired. \hfill \Box

Now we are finally ready to prove the main result of this section.

Proof of Theorem 1. By 3 we may assume that $M = \mathbb{R}^n = N$. Further, after replacing $f(x)$ with $(Df(p))^{-1}f(x - p) - f(p)$ we may assume, via Lemma 2, that
\[p = o, \quad f(o) = o, \quad \text{and} \quad Df(o) = I, \]
where I denotes the identity matrix. Now define $g: \mathbb{R}^n \to \mathbb{R}^n$ by
\[g(x) = x - f(x). \]
Then $g(o) = o$, and $Dg(o) = 0$. Thus, by Proposition 8, there exists $r > 0$ such that for all $x_1, x_2 \in B_r(o)$, the closed ball of radius r centered at o,
\[\|g(x_1) - g(x_2)\| \leq \frac{1}{2} \|x_1 - x_2\|. \]
In particular, $\|g(x)\| = \|g(x) - g(o)\| \leq \|x\|/2$. So $g(B_r(o)) \subset B_{r/2}(o)$. Now, for every $y \in B_{r/2}(o)$ and $x \in B_r(o)$ define
\[T_y(x) := y + g(x) = y + x - f(x). \]
Then, by the triangle inequality, $\|T_y(x)\| \leq r$. Thus $T_y: B_r(o) \to B_r(o)$. Further note that
\[T_y(x) = x \iff y = f(x). \]
in particular, \(T_y \) has a unique fixed point on \(B_r(o) \) if and only if \(f \) is one-to-one on \(B_r(o) \). But

\[
\|T_y(x_1) - T_y(x_2)\| = \|g(x_1) - g(x_2)\| \leq \frac{1}{2} \|x_1 - x_2\|.
\]

Thus by Lemma 4, \(T_y \) does indeed have a unique fixed point, and we conclude that \(f \) is one-to-one on \(B_r(o) \). In particular, we let \(U \) be the interior of \(B_r(o) \).

Next we show that \(f(U) \) is open. To this end it suffices to prove that \(f^{-1}: f(B_r(o)) \to B_r(o) \) is continuous. To see this note that, by the definition of \(g \) and the triangle inequality,

\[
\|g(x_1) - g(x_2)\| = \|(x_1 - x_2) - (f(x_1) - f(x_2))\| \geq \|x_1 - x_2\| - \|f(x_1) - f(x_2)\|.
\]

Thus,

\[
\|f(x_1) - f(x_2)\| \geq \|x_1 - x_2\| - \|g(x_1) - g(x_2)\| = \frac{1}{2} \|x_1 - x_2\|,
\]

which in turn implies

\[
\|y_1 - y_2\| \geq \frac{1}{2} \|f^{-1}(y_1) - f^{-1}(y_2)\|.
\]

So \(f^{-1} \) is continuous.

It remains to show that \(f^{-1} \) is smooth on \(f(U) \). To this end, note that by Lemma 9, for every \(p \in U \),

\[
f(x) - f(p) = Df(p)(x - p) + r(x, p).
\]

Now multiply both sides of the above equality by \(A := (Df(p))^{-1} \), and set \(y := f(x), q := f(p) \). Then

\[
A(y - q) = f^{-1}(y) - f^{-1}(q) + Ar(f^{-1}(y), f^{-1}(q)),
\]

which we may rewrite as

\[
f^{-1}(y) - f^{-1}(q) = A(y - q) + \overline{r}(y, q),
\]

where

\[
\overline{r}(y, q) := Ar(f^{-1}(y), f^{-1}(q)).
\]
Finally note that
\[
\lim_{y \to q} \frac{r(y, q)}{\|y - q\|} = A \lim_{y \to q} \frac{r(f^{-1}(y), f^{-1}(q))}{\|y - q\|} \leq 2A \lim_{y \to q} \frac{r(f^{-1}(y), f^{-1}(q))}{\|f^{-1}(y) - f^{-1}(q)\|} = 0.
\]
Thus, again by Lemma 9, \(f^{-1} \) is differentiable at all \(p \in U \) and
\[
D(f^{-1})(p) = \left(Df(f^{-1}(p)) \right)^{-1}.
\]
Since the right hand side of the above equation is a continuous function of \(p \) (because \(f \) is \(C^1 \) and \(f^{-1} \) is continuous), it follows that \(f^{-1} \) is \(C^1 \). But if \(f \) is \(C^r \), then the right hand side of the above equation is \(C^r \) (since \(Df \) is \(C^\infty \) everywhere), which in turn yields that \(f^{-1} \) is \(C^{r+1} \). So, by induction, \(f^{-1} \) is \(C^\infty \).

Exercise 10. Give a simpler proof of the inverse function theorem for the special case of mappings \(f: \mathbb{R} \to \mathbb{R} \).

2.6 The rank theorem

The inverse function theorem we proved in the last section yields the following more general result:

Theorem 11 (The rank theorem). Let \(f: M \to N \) be a smooth map, and suppose that \(\text{rank}(df_p) = k \) for all \(p \in M \), then, for each \(p \in M \), there exists local charts \((U, \phi)\) and \((V, \psi)\) of \(M \) and \(N \) centered at \(p \) and \(f(p) \) respectively such that
\[
\psi \circ f \circ \phi^{-1}(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0).
\]

Exercise 12. Show that to prove the above theorem it suffices to consider the case \(M = \mathbb{R}^n \) and \(N = \mathbb{R}^m \). Furthermore, show that we may assume that \(p = o, f(o) = o \), and the \(k \times k \) matrix in the upper left corner of the jacobian matrix \(Df(o) \) is nonsingular.

Proof. Suppose that the conditions of the previous exercise hold. Define \(\phi: \mathbb{R}^n \to \mathbb{R}^n \) by
\[
\phi(x) := (f^1(x), \ldots, f^k(x), x^{k+1}, \ldots, x^n).
\]
Then
\[
D\phi(o) = \begin{pmatrix}
\frac{\partial(f^1, \ldots, f^k)}{(x^1, \ldots, x^k)}(o) & * \\
0 & I_{n-k}
\end{pmatrix}.
\]
Thus $D\phi(o)$ is nonsingular. So, by the inverse function theorem, ϕ is a local diffeomorphism at o. In particular ϕ^{-1} is well defined on some open neighborhood U of o. Let $\pi_i: \mathbb{R}^k \to \mathbb{R}$ be the projection onto the i^{th} coordinate. Then, for $1 \leq i \leq k$, $\pi_i \circ \phi = f^i$. Consequently, $f^i \circ \phi^{-1} = \pi_i$. Thus, if we set $\tilde{f}^i := f^i \circ \phi^{-1}$, for $k + 1 \leq i \leq m$, then

$$f \circ \phi^{-1}(x) = (x^1, \ldots, x^k, \tilde{f}^{k+1}(x), \ldots, \tilde{f}^m(x))$$

for all $x \in U$. Next note that

$$D(f \circ \phi^{-1})(o) = \begin{pmatrix} I_k & 0 \\ \partial(\tilde{f}^{k+1}, \ldots, \tilde{f}^m)(o) \\ (x^{k+1}, \ldots, x^n) \end{pmatrix}.$$

On the other hand, $D(f \circ \phi^{-1})(o) = D(f)(p) \circ D(\phi^{-1})(o)$. Thus

$$\text{rank}(D(f \circ \phi^{-1})(o)) = \text{rank}(D(f)(p)) = k,$$

because $D(\phi^{-1}) = D(\phi)^{-1}$ is nonsingular. The last two equalities imply that

$$\frac{\partial(\tilde{f}^{k+1}, \ldots, \tilde{f}^m)}{(x^{k+1}, \ldots, x^n)}(o) = 0,$$

where 0 here denotes the matrix all of whose entries is zero. So we conclude that the functions $\tilde{f}^{k+1}, \ldots, \tilde{f}^m$ do not depend on x^{k+1}, \ldots, x^n. In particular, if V is a small neighborhood of o in \mathbb{R}^m, then the mapping $T: V \to \mathbb{R}^m$ given by

$$T(y) := (y^1, \ldots, y^k, y^{k+1} + f^{k+1}(y^1, \ldots, y^k), \ldots, y^m + f^m(y^1, \ldots, y^k))$$

is well defined. Now note that

$$DT(o) = \begin{pmatrix} I_k & 0 \\ 0 & I_{m-k} \end{pmatrix}.$$

Thus, by the inverse function theorem, $\psi := T^{-1}$ is well defined on an open neighborhood of o in \mathbb{R}^m. Finally note that

$$\psi \circ f \circ \phi^{-1}(x) = \psi(x^1, \ldots, x^k, \tilde{f}^{k+1}(x), \ldots, \tilde{f}^m(x))$$

$$= \psi \circ T(x^1, \ldots, x^k, 0, \ldots, 0)$$

$$= (x^1, \ldots, x^k, 0, \ldots, 0),$$

as desired.

\textbf{Exercise 13.} Show that there exists no C^1 function $f: \mathbb{R}^2 \to \mathbb{R}$ which is one-to-one.