2. (a) \(f(x) = (2x = 3)^3 = -27 + 54x - 38x^2 + 8x^3 \) so the sequence generated by \(f(x) \) is
\(-27, 54, -38, 8, 0, 0, 0, \ldots \). In other words, \(f(x) \) generates the sequence \(a_0, a_1, a_2, a_3, \ldots \) with
\(a_0 = -27, a_1 = 54, a_2 = -38, a_3 = 8, \) and \(a_i = 0 \) for \(i \geq 4 \).

(b) \(f(x) = x^4/(1-x) = x^4(1+x+x^2+x^3+\ldots) = x^4(\sum_{i=0}^{\infty} x^i) = 0 + 0x + 0x^2 + 0x^3 + \sum_{i=4}^{\infty} x^i \) so
the sequence generated by \(f(x) \) is \(0, 0, 0, 1, 1, 1, 1, \ldots \). In other words, \(f(x) \) generates
the sequence \(a_0, a_1, a_2, a_3, \ldots \) with \(a_0 = a_1 = a_2 = a_3 = 0 \) and \(a_i = 1 \) for \(i \geq 4 \).

(c) \(f(x) = x^3/(1-x^2) = x^3(1 + x^2 + x^4 + x^6 + \ldots) = x^3 + x^5 + x^7 + x^9 + \ldots \) so the sequence
generated by \(f(x) \) is \(0, 0, 0, 1, 0, 1, 0, 1, \ldots \). In other words, \(f(x) \) generates the sequence
\(a_0, a_1, a_2, a_3, \ldots \) with \(a_0 = a_1 = 0 \), and for \(j \geq 1 \), \(a_{2j+1} = 1 \) and \(a_{2j} = 0 \). We could also
write \(a_0 = a_1 = a_2 = 0 \), and for \(j \geq 2 \), \(a_{2j-1} = 1 \) and \(a_{2j} = 0 \).

(d) \(f(x) = 1/(1 + 3x) = 1 + (-3)x + (-3x)^2 + (-3x)^3 + \ldots = \sum_{i=0}^{\infty} (-1)^i 3^i x^i \) so the sequence
generated by \(f(x) \) is \(1, -3, 9, -27, \ldots \). In other words, \(f(x) \) generates the sequence
\(a_0, a_1, a_2, a_3, \ldots \) with \(a_i = (-3)^i \) for \(i \geq 0 \).

(e) \(f(x) = 1/(3 - x) = (1/3)[1/(1 - x/3)] = (1/3)[1 + (x/3) + (x/3)^2 + (x/3)^3 + \ldots] = \sum_{i=0}^{\infty} (1/3)(1/3)^i x^i \) so the sequence generated by \(f(x) \) is \(1/3, 1/9, 1/27, 1/81, \ldots \). In other
words, \(f(x) \) generates the sequence \(a_0, a_1, a_2, a_3, \ldots \) with \(a_i = (1/3)^{i+1} \) for \(i \geq 0 \).

(f) \(f(x) = 1/(1 - x) + 3x^7 - 11 = (1 + x + x^2 + x^3 + \ldots) + 3x^2 - 11 = -11 + 3x^2 + (\sum_{i=0}^{\infty} x^i) \) so
the sequence generated by \(f(x) \) is \(a_0, a_1, a_2, a_3, \ldots \) where \(a_0 = -10 \), \(a_7 = 4 \), and \(a_i = 1 \)
for all \(i > 0 \) with \(i \neq 7 \).