1. If \(r \in \mathbb{R} \) is irrational and \(q \in \mathbb{R}, \; q \neq 0 \) is rational, show from the definitions of (ir)rational numbers and the properties of the integers, that \(r + q \) and \(rq \) are irrational.

2. Let \(a \in \mathbb{R} \) with \(a > -1 \). Prove that \((1 + a)^n \geq 1 + na \) for all \(n \in \mathbb{N} \).

3. Show that if \(a \leq x \leq b \) and \(a \leq y \leq b \) for \(a, b, x, y \in \mathbb{R} \), then \(|x - y| \leq b - a \). Also give a geometric interpretation for this.

4. Let \(X \subseteq Y \subseteq \mathbb{R} \) be bounded, non-empty sets. Prove that \(\inf Y \leq \inf X \leq \sup X \leq \sup Y \).

5. Consider nonempty sets \(X, Y \subseteq \mathbb{R} \) with \(X \cap Y = \emptyset \) and \(X \cup Y = \mathbb{R} \). Suppose that \(x < y \) for all \(x \in X, \; y \in Y \). Prove there exists a unique \(\alpha \in \mathbb{R} \) such that \(x \leq \alpha \) for all \(x \in X \) and \(\alpha \leq y \) for all \(y \in Y \).

6. Consider a set \(X \neq \emptyset \). Let \(f \) and \(g \) be functions \(f : X \to \mathbb{R} \) and \(g : X \to \mathbb{R} \) both having bounded ranges. Show that

\[
\inf\{f(x) \mid x \in X\} + \inf\{g(x) \mid x \in X\} \leq \inf\{f(x) + g(x) \mid x \in X\} \leq \inf\{f(x) \mid x \in X\} + \sup\{g(x) \mid x \in X\} \leq \sup\{f(x) + g(x) \mid x \in X\} \leq \sup\{f(x) \mid x \in X\} + \sup\{g(x) \mid x \in X\}
\]

Also, give examples to show that each inequality is strict.