There are 15 problems on 2 pages of this homework assignment.

1. Let G be a group with identity e and $H = \{a \in G \mid a^2 = e\}$.
 (a) Prove that if G is abelian, then H is a subgroup of G.
 (b) Is the statement true if G is nonabelian? Justify your answer.

2. Let (G, \ast) be a group and H a nonempty subset of G that is closed under \ast.
 (a) Prove that if G is finite, then H is a subgroup of G.
 (b) Is the statement true if G is infinite? Justify your answer.

3. If G is cyclic, prove that every subgroup of G is cyclic.

4. A subgroup is proper if it is neither the identity nor the entire group. Prove that if G has no proper subgroups, then G is cyclic. Do not assume that G is finite.

5. Let G be a group and H a nonempty subset of G such that $ab^{-1} \in H$ for all $a, b \in H$. Prove that H is a subgroup of G.

6. Let G be a group and $a \in G$. The set $C(a) = \{g \in G \mid ag = ga\}$ is called the centralizer of a. Prove that $C(a)$ is a subgroup of G for all $a \in G$.

7. Let S be an infinite set and let $M \subseteq A(S)$ be the set of all $f \in A(S)$ such that $f(s) \neq s$ for at most a finite number of $s \in S$.
 (a) Prove that M is a subgroup of $A(S)$.
 (b) Let $f \in A(S)$. Prove that $f^{-1}Mf = \{f^{-1}gf \mid g \in M\}$ equals M.

8. Let S be a nonempty set with $s_1, s_2 \in S$ and $s_1 \neq s_2$. Let $H = \{f \in A(S) \mid f(s_1) = s_1\}$ and $K = \{f \in A(S) \mid f(s_2) = s_2\}$
 (a) Prove that H is a subgroup of $A(S)$.
 (b) Is K a subgroup of $A(S)$? Justify your answer.
 (c) Prove that there is an $g \in A(S)$ such that $g(s_1) = s_2$.
 (d) Prove that if $f \in K$, then $g^{-1}fg \in H$.
 (e) Prove that if $h \in H$, then there exists some $f \in K$ such that $h = g^{-1}fg$.

9. If $m < n$, prove that there is a 1-1 mapping $F : S_m \to S_n$ such that $F(fg) = F(f)F(g)$ for all $f, g \in S_m$.

10. Let (G, \ast) and (H, \circ) be groups with identities $e \in G$, $f \in H$ and $\phi : G \to H$ an isomorphism.
 (a) Prove that $\phi(e) = f$.
 (b) Prove that $\phi(g^{-1}) = (\phi(g))^{-1}$ for all $g \in G$.
11. Let G be a group with $a \in G$. Prove that the function $\phi : G \to G$ defined by $\phi(g) = aga^{-1}$ for all $g \in G$ is an isomorphism.

12. Let (G, \ast) and (H, \circ) be two groups. Prove that if $\phi : G \to H$ is an isomorphism, then the inverse function ϕ^{-1} is an isomorphism from H to G.

13. Let $G, H,$ and K be three groups. Prove that if $\phi : G \to H$ and $\psi : H \to K$ are isomorphisms, then the composition $\psi \circ \phi : G \to K$ is an isomorphism.

14. Let \mathcal{G} be the set of all groups. Define a relation on \mathcal{G} where $G \simeq G'$ if and only if G is isomorphic to G' for all $G, G' \in \mathcal{G}$. Prove that this is an equivalence relation.

15. Let (G, \ast) be a group. Define a binary operation \circ on G by $a \circ b = b \ast a$.

 (a) Prove that (G, \circ) is a group.

 (b) Prove that (G, \ast) and (G, \circ) are isomorphic.