There are 10 problems on 2 pages of this homework assignment.

Recall that \(i_S \) is the identity function on a nonempty set \(S \).

1. Let \(f : X \to Y \), \(g : Y \to Z \) and \(h : Z \to W \) be functions on nonempty sets \(X \), \(Y \), \(Z \), and \(W \).

 (a) Prove that \(h \circ (g \circ f) = h \circ (g \circ f) \).

 (b) Prove that \(i_Y \circ f = f \) and \(f \circ i_X = f \).

 (c) Prove that if \(f \) and \(g \) are bijective, then so is \(g \circ f \) directly from the definitions.

2. The set of all one-to-one mappings from a nonempty set \(S \) onto itself is denoted \(A(S) \).

 (a) Prove that \(A(S) \) is a group under the operation of function composition.

 \(\text{For simplicity, write } g \circ f \text{ as } gf \text{ for } f, g \in A(S). \)

 (b) Prove that if \(|S| \geq 3 \), then there exists \(f, g \in A(S) \) such that \(fg \neq gf \).

3. Let \(S \) be a nonempty set and \(f : S \to S \) a function.

 (a) Prove that if \(S \) is finite and \(f \) is onto, then \(f \) is one-to-one.

 (b) Prove that if \(S \) is finite and \(f \) is one-to-one, then \(f \) is onto.

 (c) Prove that the first statement is not true if \(S \) is infinite.

 (d) Prove that the second statement is not true if \(S \) is infinite.

4. Let \(S \) be a nonempty set and \(f : S \to S \) a bijection. We define \(f^0 = i_S \), \(f^1 = f \), and \(f^n = f \circ f^{n-1} \) for \(n \in \mathbb{N} \) with \(n \geq 2 \). We also define \(f^{-n} = (f^{-1})^n \) for \(n \in \mathbb{N} \). It follows that \(f^n f^m = f^{n+m} \) and \((f^n)^m = f^{nm} \) for \(n, m \in \mathbb{N} \).

 (a) Suppose \(S \) is finite. Prove that there exists an integer \(m > 0 \) such that \(f^m = i_S \).

 \(\text{Hint: try contradiction, not construction.} \)

 (b) When \(|S| = n < \infty \), then \(A(S) \) is called the symmetric group of degree \(n \), often denoted \(S_n \). The elements of \(S_n \) are called permutations of \(S \). How many elements does \(S_n \) have?

 Justify your answer.

 (c) Find an \(m \) (in terms of \(n \)) such that \(g^m = i_S \) for all \(g \in S_n \). Justify your answer.

5. Let \(\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{0\} \). Prove, from the definitions, that \(\mathbb{Z}_n^* \) is a group under multiplication if and only if \(n \geq 2 \) is a prime.

6. Let \(G \) be a finite group with identity \(e \in G \).

 (a) Prove that for all \(a \in G \) there exists \(n \in \mathbb{N} \) with \(n > 0 \) such that \(a^n = e \).

 (b) Prove that there exists \(m \in \mathbb{N} \) with \(m > 0 \) such that \(a^m = e \) for all \(a \in G \).
7. Let G be a group with identity e.

(a) For each G below, how many different product tables can G have? Justify your answer.

i. Let $G = \{ e, a, b \}$.

ii. Let $G = \{ e, a, b, c \}$.

iii. Let $G = \{ e, a, b, c, d \}$.

(b) Give a direct proof that a group of order 5 or less is abelian.

8. Prove by contradiction that a group of order 5 or less is abelian.

9. Let G be a group.

(a) Prove that G is abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$.

(b) Prove that G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.

(c) Suppose that $a = a^{-1}$ for every $a \in G$. Prove that G is abelian.

10. If G is a finite group of even order, show that there must be an element $a \neq e$ such that $a = a^{-1}$. *Hint: What does $(a^{-1})^{-1}$ equal?*