Names: ________________________________

Solutions are to be written on the board.

1. Give an example, and justify your answer, of a function from \(\mathbb{N} \) to \(\mathbb{N} \) that is
 (a) one-to-one but not onto.
 (b) onto but not one-to-one.
 (c) both onto and one-to-one but not the identity function.
 (d) neither onto nor one-to-one.

2. Let \(A = [0, 1] \) denote the closed interval of real numbers \(x \in \mathbb{R} \) such that \(0 \leq x \leq 1 \). Give an example of two different bijective functions \(f_1 \) and \(f_2 \) from \(A \) to \(A \), neither of which is the identity function. Justify your answers.

3. Let \(X, Y, \) and \(Z \) be sets with \(A, B \subseteq X \) and \(C, D \subseteq Y \). Let \(f : X \to Y \) and \(g : Y \to Z \) be functions. Prove the following statements.
 (a) If \(A \subseteq B \), then \(f(A) \subseteq f(B) \).
 (b) If \(C \subseteq D \), then \(f^{-1}(C) \subseteq f^{-1}(D) \).

4. Let \(f : A \to B \) and \(g : B \to C \) be functions on nonempty sets \(A, B, \) and \(C \). Prove that if \(f \) and \(g \) are bijective, then so is \(g \circ f \) directly from the definitions.

5. Prove that a function \(f : A \to B \) is a bijection if and only if there exists \(g : B \to A \) with \(g \circ f = i_A \) and \(f \circ g = i_B \).

6. Let \(A \) and \(B \) be finite nonempty sets with \(|A| = |B| \), and let \(f \) be a function from \(A \) to \(B \). Prove that \(f \) is one-to-one if and only if \(f \) is onto.