Drs. Fox and Hill respond:

We are gratified that our article has generated general interest.

Dr. Donahoe’s suggestion was included in our list of acceptable perfect cubes, and known by us to be prime, but we had a slight preference for the cube closest to the center of the known range of values. As we stated, any of the ten cubes in that range will serve equally well. Dr. Williams’ suggestion that 2^{29} is a simpler choice is true enough, but $6.024 	imes 10^{23}$ is well outside the current accepted range of values of $6.0221415(10) 	imes 10^{23}$.

Dr. Csuhu made interesting remarks about crystal structure. However, each of Dr. Csuhu’s divisors follows from the prime factors of $84,446,888 = 2 \times 2 \times 2 \times 17 \times 620,933$ that are connected to the crystal lattice. But we prefer a number that is not linked to any particular lattice structure, simply because the defining base element (currently carbon-12) has been changed before, and may well be changed again, in which case the corresponding lattice structure may change. Also, the suggestion of a number based on crystal structures presupposes that one day it may be possible to assemble N$_4^+$ atoms of a pure isotope into the required arrangement. Imagine a process that self-assembles the atoms at a rate of a billion per second. It would take 10 million years to finish. Thus, choosing a particular integer for N$_4^+$ is sufficient to remove the artifact, Le Grand K, from further usage as a mass standard and consequently redefines the kilogram.

How to Write to American Scientist

Brief letters commenting on articles that have appeared in the magazine are welcomed. The editors reserve the right to edit submissions. Please include a fax number or e-mail address if possible. Address: Letters to the Editors, American Scientist, P.O. Box 13975, Research Triangle Park, NC 27709 or editors@amsci.org.

Errata

In “An Exact Value for Avogadro’s Number” (MacroScope, March–April), and accent is missing from Le Système International d’Unités.

In the Table of Contents of the March–April issue, the first author of MacroScope should have been Ronald F. Fox.

Illustration Credits

MacroScope
Pages 201–202 Barbara Aulicino

Computing Science
Pages 201–204 Brian Hayes

Science Observer
Page 215 David Schneider

Liquid-Mirror Telescopes
Figures 5, 6 and page 221 Barbara Aulicino

Extreme Microbes
Figures 2 (left), 5, 8 Barbara Aulicino

Soot: Giver and Taker of Light
Figure 4 Stephanie Freese

The Uniqueness of Human Recursive Thinking
Figures 2–4, 6, 8 and page 248 Tom Dunne

The Most Dangerous Equation
Figures 3–5, 7 Stephanie Freese