1. Let $n \geq 2$ be an integer, and let a be an integer with $(a, n) = 1$.
 a. Define the order of a modulo n.
 b. Compute $\text{ord}_{31} 2$ (the order of 2 modulo 31).
 c. Define what it means for a to be a primitive root modulo n.

2. a. How many primitive roots are there modulo 100?
 b. Is 2 a primitive root modulo 79? Justify your answer.

3. State Miller’s test.

4. State Lucas’ “converse” to Fermat’s Little Theorem.

5. Find $\lambda(400)$, where $\lambda(n)$ denotes the Carmichael λ-function, or minimal universal exponent of n.

6. Using the table below of indices modulo 19 with respect to the primitive root 2, find all solutions to the equation

 $$x^4 \equiv 11 \pmod{19}.$$

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
I(n) & 18 & 1 & 13 & 2 & 16 & 14 & 6 & 3 & 8 & 17 & 12 & 15 & 5 & 7 & 11 & 4 & 10 & 9 \\
\hline
\end{array}
\]

7. Describe the procedure for encrypting and decrypting a message m using the RSA cryptosystem.

8. Suppose $n = pq$ where p and q are distinct odd primes. Explain how to factor n if you know $\phi(n)$.

9. Let p be an odd prime number, and let a be an integer with $(a, p) = 1$.
 State and prove Euler’s criterion for the Legendre symbol $\left(\frac{a}{p} \right)$. (You may assume basic facts about primitive roots.)

10. If p is an odd prime and g is a primitive root mod p, what is $\text{ind}_g(p - 1)$?
 Justify your answer.

11. Suppose $p = 12k + 1$ is a prime. Is k a quadratic residue modulo p?