Topics for Test 4

You should be familiar with the following concepts:

Subspace S of \mathbb{R}^n, which is a subset of \mathbb{R}^n with the property that with any two vectors $\vec{x}, \vec{y} \in S$, $\vec{x} + \vec{y} \in S$ and for all $a \in \mathbb{R}$ and all $\vec{x} \in S$, $a\vec{x} \in S$. Important examples are the kernel of an $m \times n$ matrix A, i.e., $\text{Ker}(A) \subset \mathbb{R}^n$ and $\text{Img}(A) \subset \mathbb{R}^m$, the image of an $m \times n$ matrix A.

A **spanning set** of a subspace $S \subset \mathbb{R}^n$, which is a collection of vectors so that every vector in S can be written as a linear combination of them.

A collection of vectors is **linearly independent** if no vector of this collection can be written as a linear combination of the others. Alternatively, this means that the matrix A which has those vectors as columns has a kernel $\text{Ker}(A)$ that consists only of the zero vector.

A **basis** of a subspace S is a collection of vectors that spans S and is linearly independent. Every basis of the subspace S has the same number of vectors and this number is called the **dimension** of S.

For an $m \times n$ matrix A there is the important dimension formula

$$\dim(\text{Ker}(A)) + \dim(\text{Img}(A)) = n$$

If S is a subspace of \mathbb{R}^n then the **orthogonal complement** of S, which is denoted by S^\perp consists of all vectors that are perpendicular to every vector in S. The important theorem here is that

$$[S^\perp]^\perp = S$$

If A is an $m \times n$ matrix then

$$\text{Ker}(A) \oplus \text{Img}(A^T) = \mathbb{R}^n$$

$$\text{Ker}(A^T) \oplus \text{Img}(A) = \mathbb{R}^m$$
The meaning of these formulas is that

\[\text{Ker}(A)\perp = \text{Img}(A^T) \]

both are subspaces of \(\mathbb{R}^n \). Likewise,

\[\text{Img}(A)\perp = \text{Ker}(A^T) . \]

An \(n \times n \) matrix whose kernel consists only of the zero vector is invertible.

* * *

The above concepts have a computational side to them.

Row reduction leads you to see the pivotal columns and the non-pivotal columns. For an \(m \times n \) matrix \(A \), the pivotal columns are a basis for \(\text{Img}(A) \). The number \(r(A) \) of those columns, is called the **rank of the matrix** \(A \), which equals to the dimension of the image of \(A \), i.e.,

\[\text{dim}(\text{Img}(A)) = r(A) . \]

The number of non-pivotal columns determines the number of free variables which is the same as \(\text{dim}(\text{Ker}(A)) \).

You can check whether the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \) are linearly independent by computing the kernel of the matrix \(A = [\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k] \). If the kernel consists only of the zero vector, then the vectors are linearly independent. So, row reduction is important!

Very important are the least square problems. The **normal equation**

\[A^T A \vec{x} = A^T \vec{b} \]

has always a solution, which in general is not unique. If \(\vec{x}^* \) denotes the solution, then

\[A \vec{x}^* \]
is the vector in $\text{Img}(A)$ that is closest to the vector \vec{B}.

This leads to the **projection onto** $\text{Img}(A)$,

$$P = A(A^TA)^{-1}A^T$$

A nicer way of computing such projections as the Gram-Schmidt procedure, which allows from a spanning set $\vec{v}_1, \ldots, \vec{v}_\ell$ to obtain an **orthonormal basis** $\vec{u}_1, \ldots, \vec{u}_k$ where $k \leq \ell$. Note that $k = \ell$ if the v-vectors form a basis.

The matrix

$$Q = [\vec{u}_1, \ldots, \vec{u}_k]$$

is an isometry and the matrix $A = [\vec{v}_1, \ldots, \vec{v}_\ell]$ can be written as

$$A = QR$$

the **QR factorization** where R is an upper triangular matrix. We have that

$$R = Q^TA.$$

If a subspace S is spanned by $\vec{v}_1, \ldots, \vec{v}_\ell$ then

$$QQ^T$$

is the orthogonal projection onto $\text{Img}(A)$.

Least square problems can be elegantly solved once the **QR** factorization is available. The equation

$$A\vec{x} = QQ^T\vec{b}$$

has always a solution, since $QQ^T\vec{b} \in \text{Img}(A)$. Hence

$$Q^TA\vec{x} = R\vec{x} = Q^T\vec{b}$$

and R is already in row reduced form.