15) Given: \(E \) is a metric space \(\mathbb{C} \subseteq E \)

\(p \in S \) is an interior point

Interior point: \(\exists \ v \in S \) such that \(B(p; r) \subseteq S \)

Claim: The set of all interior points of \(S \)

is an open subset of \(E \) that contains

all other open subsets of \(E \) that are contained in \(S \).

Proof: Let \(A \) be an open subset of \(E \) that

is contained in \(S \) and \(B(p; r) \) be an

open ball in \(E \) of radius \(r \).

\[A \subseteq S \quad B(p; r) = \{ q \in E : d(p; q) < r \} \]

Consider \(S_i \) to be the set of all

interior points in \(S \).

\[S_i = \{ v \in S : \exists \ r > 0 \text{ s.t. } B(p; r) \subseteq S \} \]

Since \(A \) is open, \(A = \{ v \in A : \exists \ u \in A \text{ s.t. } B(p; r) \subseteq A \} \)

Since \(B(p; r) \subseteq A \) and \(A \subseteq S \),

it follows that \(B(p; r) \subseteq A \cap S \) and

\(B(p; r) \subseteq S \). It also follows that

\(A \subseteq S \).

Let \(q, s \in B(p; r) \) and \(\epsilon = \frac{r}{2}, \epsilon > 0 \).
Take \(g, s \in B(p, r) \) and let \(r = \frac{\varepsilon}{2}, \varepsilon > 0 \).
For \(p \in S^i \), let \(B(p, r) \subset S \) where \(r = \varepsilon, \varepsilon > 0 \).
\(\Rightarrow d(g, r) \leq d(g, s) + d(s, r) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \)
Since \(B(g, r) \subset B(p, r) \subset S = B(p, \frac{\varepsilon}{2}) \subset B(p, \varepsilon) \subset \text{AC} \subset S^i \subset \text{CE} \)
g \in S^i \) and \(S^i \) is open.

\(\Rightarrow \) The set of interior points of \(S \) is an open subset of \(E \) that contains all other open subsets of \(E \) that are contained in \(S \).
16) a. Given: E - Metric Space \(\text{SCE} \).
 \(S \) - the closure of \(S \).
 Closure of \(S \) - the intersection of all closed subsets of \(E \) that contain \(S \).

 Claim: \(\overline{S} \supset S \), \(S \) is closed iff \(\overline{S} = S \).

 Proof: Let \(\overline{S} = S_1 \cap S_2 \cap \ldots \cap S_n \). By definition of the closure of \(S \), \(S_1 \cap S_2 \cap \ldots \cap S_n \) are closed subsets of \(E \) that contain \(S \Rightarrow S_1 \cap S_2 \cap \ldots \cap S_n \supset S \). Therefore, \(\overline{S} \supset S \).

 Assume \(S \) is closed and \(\overline{S} \supset S_1 \cap S_2 \cap \ldots \cap S_n \), then since by definition of closure that \(S_1 \cap S_2 \cap \ldots \cap S_n \) is closed, then \(S \) is also closed and \(S = \overline{S} \).

 Assume \(S \) is closed and \(\overline{S} \supset S_1 \cap S_2 \cap \ldots \cap S_n \), then since by definition of closure that \(S_1 \cap S_2 \cap \ldots \cap S_n \) is closed, then \(S \) is also closed and \(\overline{S} \supset S \).

 Since \(S \) is closed by \(\overline{S} \supset S \) and \(\overline{S} \supset S \), then \(S \) is closed iff \(\overline{S} = S \).

 Note: If \(S \) were open, then \(S_1 \cap S_2 \cap \ldots \cap S_n \) would also be open by the definition of closure, \(S \neq S_1 \cap S_2 \cap \ldots \cap S_n \) if for every \(i = 1, 2, \ldots, n \), \(S_i \) was an open set.
\(i=1,2,\ldots, n, \quad S_i \text{ was an open set and } S \subseteq S_1 \cap S_2 \cap \ldots \cap S_n \Rightarrow \overline{S} \) would not be the closure of \(S \).

\[\Rightarrow \overline{S} \subseteq S \text{ and } S \text{ is closed iff } \overline{S} = S. \]

(2) \text{ Given: } E \text{ - metric space, } S \subseteq E

\[\overline{S} \text{ - closure of } S \]

\[\overline{S} \subseteq S \text{ and } S \text{ is closed iff } \overline{S} = S \]

Claim: \(\overline{S} \) is the set of all limits of sequences of points of \(S \) that converge in \(E \).

Proof: Let \(p_n \) be a convergent sequence and \(p_n \to p \). Assume \(p_n \in S \), then by \(S \subseteq \overline{S} \), \(p_n \in \overline{S} \). Since \(\overline{S} \) is closed, then \(p \in \overline{S} \).

Assume \(p \in \overline{S} \), then there exists to exist a \(p_n \in S \) s.t. \(p_n \to p \). Let \(\epsilon > 0 \), \(\exists \) an integer \(N \) s.t. \(|p_n - p| < \epsilon \), pick an integer \(M \) s.t. \(|p_m - p| < \frac{\epsilon}{2} \) for every \(n > N \) and \(n < M < N+1 \) and \(p_m \neq p \). Then, \(p_m \in B(p, \frac{\epsilon}{2}) \cap S \Rightarrow B(p, \frac{\epsilon}{2}) \cap S \neq \emptyset \).

Let \(p_n \in B(p, \epsilon) \cap S \) and \(\epsilon = \frac{1}{n} \). Then, \(|p_n - p| < \frac{1}{n} \Rightarrow p_n \in S \) and \(p_n \to p \).

(3) \text{ Given: } E \text{ - metric space, } S \subseteq E
\overline{S} - closure of S
$\overline{S} = \bigwedge_{i=1}^{n} S_i$, for every $S_i, i=1,2,\ldots,n$, S_i is closed
$\overline{S} \supset S$
S is closed iff $\overline{S} = S$
\overline{S} is the set of all limit points of sequences of S that converge in E

Claim: A point $p \in E$, $p \in \overline{S}$ iff any ball in E with center p contains points of S. This is true iff p is not an interior point of S^c.

Proof: This is the same as saying that $\overline{S} = \{ p \in E : d(p, S) \leq 0 \}$. For this to be true, then $\forall \varepsilon > 0$, $B(p, \varepsilon) \cap S \neq \emptyset$ and $B(p, \varepsilon) \cap S^c \neq \emptyset$. $B(p, \varepsilon) \cap S \neq \emptyset$ is true by part (b) when $\varepsilon = \frac{1}{n}$ and $p \in B(p, \frac{1}{n}) \cap S \Rightarrow p \in S$.

For $B(p, \varepsilon) \cap S^c \neq \emptyset$, let p be an interior point of S^c. By definition of an interior point, $B(p, \varepsilon) \subset S^c$ which contradicts $B(p, \varepsilon) \cap S \neq \emptyset$, therefore $p \notin$ the interior of S^c. Let p be a boundary point of S^c, then $B(p, \varepsilon) \cap S^c \neq \emptyset$ and $B(p, \varepsilon) \cap S \neq \emptyset$ as $B(p, \varepsilon)$ would contain at least one point of S.

\Rightarrow A point $p \in E$ is in \overline{S} iff a ball in E of center p contains points of S, iff
p is not an interior point of \(\mathcal{C} \).
If \(\{a_n\} \) is a bounded sequence of real numbers

\[
\lim \sup \ a_n = \lim a_n = \text{l.u.b.} \{ x \in \mathbb{R} : a_n < x, \text{ for many } n's \}
\]

\[
\lim \ inf \ a_n = \lim a_n = \text{g.l.b.} \{ x \in \mathbb{R} : a_n > x, \text{ for many } n's \}
\]

(a) Prove that \(\lim a_n \leq \lim a_n \).

Set \(\lim a_n = a \) and \(\lim a_n = \bar{a} \). We want to show that \(a \leq \bar{a} \).

Consider \(a + \varepsilon \). There are only finitely many \(n \)'s with \(a_n \geq a + \varepsilon \).

Therefore, all but finitely many \(a_n \)'s satisfy that \(a_n < \bar{a} + \varepsilon \).

Now consider \(a - \varepsilon \). There are only finitely many \(a_n \)'s with \(a_n \leq a - \varepsilon \).

So, all but finitely many \(a_n \)'s satisfy that \(a_n > a - \varepsilon \).

It implies there exist at least one \(a_n \) with \(a - \varepsilon < a_n < \bar{a} + \varepsilon \)

\[
\Rightarrow a - \varepsilon < \bar{a} + \varepsilon
\]

\[
\Rightarrow a < \bar{a} + 2\varepsilon
\]

\[
\Rightarrow a \leq \bar{a} \text{ since } 2\varepsilon > 0 \text{ and arbitrary.}
\]

(b) \(\lim a_n = \lim a_n \) if and only if \(a_n \) converges.

(\(\Rightarrow \)) If \(\lim a_n = \lim a_n = a \), then \(a_n \) converges because all but finitely many \(a_n \)'s satisfy \(a - \varepsilon < a_n < a + \varepsilon \),

where \(\varepsilon > 0 \) and arbitrarily small.

(\(\Leftarrow \)) \(\varepsilon > 0 \). There exists \(N \) such that \(a - \varepsilon < a_n < a + \varepsilon \) for all \(n > N \); where

\[
a - \varepsilon < a_n < a + \varepsilon \text{ for all but finitely many } a_n's. \quad \text{--- 1}
\]

\[
a - \varepsilon < a_n < a + \varepsilon \text{ for all but finitely many } a_n's. \quad \text{--- 2}
\]

There exist \(\infty \) many \(a_n \)'s with \(a_n > \bar{a} - \varepsilon \) because \(\bar{a} \) is the least upper bound of the set

where all the elements of that set is less than \(a_n \). From 2, \(a + \varepsilon > a_n > \bar{a} - \varepsilon \Rightarrow a \geq \bar{a} \), \(\varepsilon > 0 \) arbitrarily small.

There exist \(\infty \) many \(a_n \)'s with \(a_n < a + \varepsilon \) because \(a \) is the greatest lower of the set

where all the elements of that set is greater than \(a_n \). From 1, \(a - \varepsilon < a_n < a + \varepsilon \Rightarrow a < a \), \(\varepsilon > 0 \) arbitrarily small,

\[
\Rightarrow \ a > a \geq a \Rightarrow a = a = a
\]
28 \[|z| = d(z,0) \]

a) \[|x+iy| = d(x+iy,0) \text{, where } x \text{ and } y \in \mathbb{R} \]

\[|x+iy| = d((x,y),(0,0)) = \sqrt{x^2+y^2} \]

- \[x+iy = (x+iy,0) \]

b) Suppose that \[z_1 = x_1 + iy_1 \] and \[z_2 = x_2 + iy_2 \].

\[z_1 + z_2 = x_1 + iy_1 + x_2 + iy_2 = x_1 + x_2 + i(y_1 + y_2) \]

\[|z_1 + z_2| = |x_1 + x_2 + i(y_1 + y_2)| \]

It is known that \[|z_1| = \sqrt{x_1^2+y_1^2} \] and \[|z_2| = \sqrt{x_2^2+y_2^2} \], (from the definition of \(|x+iy| = \sqrt{x^2+y^2} \) of complex numbers)

We need to show \[|z_1 + z_2| = |x_1 + x_2 + i(y_1 + y_2)| \]

\[= \sqrt{(x_1+x_2)^2 + (y_1+y_2)^2} \leq \sqrt{x_1^2+y_1^2} + \sqrt{x_2^2+y_2^2} \]

Corollary of page 35 from Rosenlicht tells that

\[\sqrt{(a_1+b_1)^2 + (x_1+b_1)^2 + \ldots + (a_n+b_n)^2} \leq \sqrt{a_1^2+x_1^2} + \sqrt{b_1^2+b_2^2} + \ldots + \sqrt{b_n^2} \]

This applies to

\[\sqrt{(x_1+x_2)^2 + (y_1+y_2)^2} \leq \sqrt{x_1^2+y_1^2} + \sqrt{x_2^2+y_2^2} \]

Therefore, \[|z_1 + z_2| \leq |z_1| + |z_2| \]

c) Suppose \[z_1 = x_1 + iy_1 \] and \[z_2 = x_2 + iy_2 \].

Then, \[|z_1 z_2| = |(x_1 + iy_1)(x_2 + iy_2)| = |x_1 x_2 + i(x_1 y_2 + y_1 x_2) + i^2 y_1 y_2| \]

\[= |z_1 z_2| = |x_1 x_2 + y_1 y_2 + i(x_1 y_2 + y_1 x_2)| \]

\[= \sqrt{(x_1 x_2 - y_1 y_2)^2 + (x_1 y_2 + y_1 x_2)^2} \]

It is known that \[|z_1| = \sqrt{x_1^2+y_1^2} \] and \[|z_2| = \sqrt{x_2^2+y_2^2} \]

\[|z_1 z_2| = \sqrt{(x_1 x_2 - y_1 y_2)^2 + (x_1 y_2 + y_1 x_2)^2} = \sqrt{x_1^2 x_2^2 - 2x_1 x_2 y_1 y_2 + y_1^2 y_2^2 + x_1^2 y_2^2 + y_1^2 x_2^2 + 2x_1 y_2 x_1 y_1} \]

\[= \sqrt{x_1^2 x_2^2 + x_2^2 y_1^2 + y_1^2 y_2^2} = \sqrt{x_1^2 (x_2^2 + y_2^2) + y_1^2 (x_2^2 + y_2^2)} = \sqrt{(x_1^2 + y_1^2) + (x_2^2 + y_2^2)} \]

\[= \sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2} = |z_1| |z_2| \]
29) S complete subspace of E.

Since S is complete, all Cauchy sequences must converge in S. So any convergent sequence is Cauchy and therefore must converge in S. So S must be closed.

26) $S = E + tm : n, m \in \mathbb{Z}^+^3$. Any cluster point in S has at least one sequence that converges to it. Any convergent sequence in S is of the form

$$a_n = \frac{1}{n} + \frac{1}{m}, \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} + \frac{1}{m} = \frac{1}{m}.$$

So, the set of cluster points is

$$\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{m} : m \in \mathbb{Z}^+ \}.$$

Taking the limit as n goes to infinity yields 0 as a cluster point.

So our set of cluster points is

$$\{1, \frac{1}{2}, \frac{1}{3}, \ldots, 0 \}.$$
28 S is a closed subset of E, E metric space.
Suppose S contains all of its cluster points. Take any convergent series in S, \(p_n \rightarrow p \). The point limit of the convergent series \(p \) is itself a cluster point. Since any \(B(p, \epsilon) \) \(\epsilon > 0 \) must contain infinitely many points, since \(p_n \) is convergent. So every convergent sequence in S converges to a point in \(S \), hence \(S \) is closed.
Suppose \(S \) is closed. Let \(p \) be a cluster point of \(S \), by way of contradiction.
Suppose \(p \notin S \). Since \(p \) is a cluster point, any open ball around \(p \) contains infinitely many points. We can construct a sequence \(p_n \in B(p, \frac{1}{n}) \).
So for any \(\epsilon > 0 \) pick \(N \) such that \(\frac{1}{N} < \epsilon \). For \(n > N \), \(d(p_n, p) < \frac{1}{N} < \epsilon \).
So \(\lim p_n = p \) must converge. Since \(p \in S \), S must be open, a contradiction.
3b) a) Infinite subset of IR with no cluster point: \(\mathbb{Z} \)

The set of integers is an infinite subset of IR. To have a cluster point, we need to find a point \(p \) s.t. an open ball centered at \(p \) contains infinitely many points. However, for any finite radius ball, we have finitely many integers contained in the ball.

Therefore, the set of integers has no cluster points.

b) A complete metric space, that is bounded but not compact: \(E=(0,1) \)

The metric space is bounded but not compact. If we take the open cover \(E \cup \bigcup_{x \in (0,1)} B(x,r), r < 1 \), there is no finite subcover.

Only Cauchy sequences in the metric space are in the form \(\frac{1}{n}, 0, \ldots \) and obviously they converge to 0 \(\in E \). Therefore the metric space is complete.

c) A metric space none of its closed balls are complete: \(\mathbb{Q} \), \(d(x,y) = |x-y| \)

Take any closed ball in the metric space: \(\overline{B(x,r)}, r^2 \leq \frac{|x-y|}{n} \) enough \(n \) for each \(r \).

\(y = x + \frac{\sqrt{2}}{n} \) is irrational for any \(n \), and in the closed ball for large enough \(n \) for each \(r \).

Therefore, we can take a Cauchy sequence in a closed ball of the metric space which does not converge in the metric space.
32) Union of finite # of subsets of a metric space is compact.

E is a metric space

Take a collection of compact subsets of E: So CE, Si compact in E.

Let \(S = \bigcup_{i=1}^{n} S_i\), and let \(\bigcup_{j=1}^{m} U_j\) be an open cover of S.

For each \(i = 1, \ldots, n\)

Since we have \(S_i \subset S\) and \(S_i\) is compact, there must be a finite subcover

\[S_i \subset \bigcup_{j \in J_i} U_j\]

Now consider the union \(\bigcup_{i=1}^{n} J_i\), since it is finite and \(J_i\) are finite sets, this set is finite. Call this union K.

Then \(\bigcup_{j \in K} U_j\) is a finite subcover containing \(S = \bigcup_{i=1}^{n} S_i\).

Therefore S is compact.

33) E is a compact metric space, \(\forall i \in I\), a collection of open subsets of E s.t.

\(\bigcup_{i \in I} U_i = E\). We want to show \(\exists \varepsilon > 0\) s.t. any closed ball in E with radius \(\varepsilon\) is entirely contained in at least one \(U_i\).

Suppose the claim is not true: For each \(\varepsilon > 0\), there exists a closed ball with radius \(\varepsilon\) which is not contained in any of \(U_i\)’s.

Take \(\varepsilon = 1/n\), due to our assumption, for each n there is at least one closed ball \(\overline{B}(x_n, 1/n)\) which is not contained in any of \(U_i\)’s.

Note that sequence of centers of balls, \(x_n\), has a convergent subsequence in E, since E is compact. Call that limit \(x\), \(x \in E\).

Then we know \(x \in U_i\) for some i. (we’ll call that set just U)

Take an open ball around \(x\) in U: \(B(x, \varepsilon) \subset U\), \(\varepsilon > 0\)

Take \(\varepsilon = 1/n\), \(d(x_n, x) < \frac{\varepsilon}{2}\)

Then we get \(\overline{B}(x_n, 1/n) \subset \overline{B}(x, \varepsilon) \subset U\), contradiction.