boundary of $S = \overline{S} \cap \overline{S^c}$

(a) Show that E is the disjoint union of the interior of S, the interior of S^c, and the boundary of S.

E is the disjoint union of S and S^c: $E = S \cup S^c$

Suppose S is closed, then S^c is open.

S^c is open \Rightarrow any $p \in S^c$ is the center of some open ball that is entirely contained in S^c.

\Rightarrow any $p \in S^c$ is an interior point of S^c.

$\Rightarrow S^c$ is equal to the interior of S^c.

S is closed \Rightarrow for a point $p \in S$ one and only one of the following two statements is true:

- there exists some open ball with center p that is entirely contained in S.

 $\Rightarrow p$ is in the interior of S.

- any open ball with center p contains points of S and points of S^c.

 $\Rightarrow p$ is in \overline{S} and in $\overline{S^c}$: $p \in \overline{S} \cap \overline{S^c}$

 $\Rightarrow p$ is a point of the boundary of S.

\Rightarrow an arbitrary point of E is either in the interior of S, or in the boundary of S, or in the interior of S^c.

$\Rightarrow E = (\text{interior of } S) \cup (\text{boundary of } S) \cup (\text{interior of } S^c)$, which is a disjoint union.

(It was assumed that S is closed. Likewise the result can be shown for the case that S is open, by simply exchanging S and S^c in the statements above.)

(b) Show that S is closed if and only if S contains its boundary.

"If": S contains its boundary:

\Rightarrow there exist $p \in S$ with $p \in \overline{S} \cap \overline{S^c}$ $\Rightarrow p \in \overline{S^c}$

Since $p \in \overline{S^c}$, any open ball with center p contains points of S^c.

\Rightarrow Since $p \in S$, S is closed.

"Only if": S is closed.

\Rightarrow there exist $p \in S$ such that any open ball with center p contains points of S and points of S^c.

$\Rightarrow p$ is in \overline{S} and in $\overline{S^c}$: $p \in \overline{S} \cap \overline{S^c}$

\Rightarrow Since $p \in S$, S contains its boundary.
(c) Show that S is open if and only if S and its boundary are disjoint.

"if": S and its boundary are disjoint.

\Rightarrow any point $p \in S$ is not in $S \cap S^c$, hence $p \in S$ is not in S^c.

\Rightarrow not every ball with center p contains points of S^c; thus, there is some open ball with center p that is entirely contained in S.

\Rightarrow Since p is any point in S, S is open.

"only if": S is open.

\Rightarrow for any point $p \in S$ there is an open ball with center p such that the ball is entirely contained in S. Hence, this ball does not contain points of S^c.

$\Rightarrow p \notin S^c \Rightarrow p \notin S \cap S^c$.

\Rightarrow Since p is any point in S, S does not contain its boundary. Hence, S and its boundary are disjoint.
Let \((a_1, a_2, \ldots)\) and \((b_1, b_2, \ldots)\) be bounded sequences of real numbers. Show

\[
\text{lim sup } (a_n + b_n) \leq \text{lim sup } a_n + \text{lim sup } b_n
\]

with equality if \(a_n \to a\) (or \(b_n \to b\)).

Suppose

\[
\limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n < \limsup_{n \to \infty} (a_n + b_n) \quad (*)
\]

Then let \(d(\overline{a+b}, a+b) = \overline{a+b} - (a+b) = \epsilon\).

Now, we know that if infinite \(n\) sit \(a_n + b_n > a + b - \frac{\epsilon}{2}\), then \(a_n + b_n > a + b + \frac{\epsilon}{3}\).

Now consider \((*)\)

If \(\overline{a} + \overline{b} < \overline{a+b}\), then \(\overline{a} + \frac{\epsilon}{3} + \overline{b} + \frac{\epsilon}{3}\)

\[
\overline{a+b} + \frac{\epsilon}{3} < \overline{a+b} + \frac{\epsilon}{3}.
\]

Since we had an infinite \# of \((a_n + b_n)\), there exists \(\epsilon\) s.t.

\[
\overline{a+b} - \frac{\epsilon}{2} < a + b < \overline{a+b},
\]

must be an infinite \# of \((a_n + b_n)\)'s s.t.

\[
a + b > \overline{a+b} + \frac{\epsilon}{3}
\]

(since \(\overline{a+b} - (a+b) = \epsilon\)).

However, since \(a\) is the lim sup of \(a_i\), if only finitely \(a_i > a + \frac{\epsilon}{6}\), likewise for the \(b_i\). This implies only a finite \# of \((a_i + b_i) > a + b + \frac{\epsilon}{3}\).

(In fact the \# would be at most \(2\#(a_i > a + \frac{\epsilon}{6}) + 2\#(b_i > b + \frac{\epsilon}{6})\).)

This is a contradiction.\(\square\)
Now, we must show equality when \(a_n \to a \) or \(b_n \to b \).

WLOG, just assume \(a_n \to a \).

Now suppose

\[
\limsup_{n \to \infty} (a_n + b_n) < \limsup_{n \to \infty} (a_n) + \limsup_{n \to \infty} (b_n)
\]

Since \(a_n \to a \), we have

\[
\limsup_{n \to \infty} (a_n) = \limsup_{n \to \infty} (a) = a
\]

So,

\[
\limsup_{n \to \infty} (a_n + b_n) \leq a + \limsup_{n \to \infty} (b_n)
\]

or

\[
\frac{a + b}{a + b} < a + b \rightarrow \frac{a + b}{a + b}
\]

As before let \(d(a + b, a + b) = \varepsilon \).

Now, since \(a + b \) is the \(\limsup \) of \(a \) and \(b \),

we can have only finitely many \(a_i + b_i \) s.t. \(a_i + b_i > a + b + \frac{\varepsilon}{4} \).

However, since \(a \) can converge, we can pick \(N \) large enough s.t.

\(d(a_n, a) < \frac{\varepsilon}{8} \), for \(n > N \).

Furthermore, we can find infinitely many \(b_i \) s.t. \(b_i < \frac{\varepsilon}{8} \), since \(b \) is the \(\limsup \).

Hence \(n_i > N \), we have

\[
\frac{a + b + 3\varepsilon}{4} \geq a + b + \frac{3\varepsilon}{4}
\]

But since

\[
\frac{a + b + 3\varepsilon}{4} > a + b + \frac{\varepsilon}{8}
\]

this is a contradiction.
Let \(z_1, z_2, \ldots \) and \(w_1, w_2, \ldots \) be convergent sequences of complex numbers with
\[
\lim_{n \to \infty} z_n = z, \quad \lim_{n \to \infty} w_n = w_0, \text{ which are bounded.}
\]

Consider
\[
\| z_n + w_n - z - w \| = \| z_n - z \| + \| w_n - w \|
\]
\[
\leq \| z_n - z \| + \| w_n - w \| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad \text{for sufficiently large } n.
\]

So
\[
\| z_n + w_n - z - w \| \leq \varepsilon.
\]

Thus,
\[
\lim_{n \to \infty} (z_n + w_n) = z + w.
\]

\[
\lim (z_n - w_n) = z - w \quad \text{clearly by considering} \quad \| z_n - w_n - (z - w) \|
\]
\[
\leq \| z_n - z \| + \| w_n - w \|
\]
\[
\leq \varepsilon.
\]

Now consider
\[
\| z w - z_n w_n \| = \| z w + z_n w - z_n w - z_n w_n \|
\]
\[
= \| w(z - z_n) + z_n (w - w_n) \|
\]

Because \(z_1, z_2, \ldots \) and \(w_1, w_2, \ldots \) are bounded, \(\exists M \in \mathbb{R} \) with \(|z_n| \leq M \) and \(|w_n| \leq M \)

So
\[
\| w(z - z_n) + z_n (w - w_n) \|
\]
\[
\leq \| w(z - z_n) \| + \| z_n (w - w_n) \| \leq \| w(z - z_n) \| + \| M (w - w_n) \|
\]

Now, for sufficiently large \(n \):
\[
\leq (w)\left(\frac{\varepsilon}{2w} \right) + M \left(\frac{\varepsilon}{2M} \right)
\]
\[
\leq \varepsilon
\]

So
\[
\lim_{n \to \infty} (z_n w_n) = zw.
\]

\[
\lim_{n \to \infty} \left(\frac{z_n}{w_n} \right) = \frac{z}{w} \quad \text{for } w_n, w \neq 0 \text{ can be shown similarly by considering} \quad \| \frac{z_n}{w_n} - \frac{z}{w} - \frac{z_n}{w_n} \| = \| w(z - z_n) + z_n (\frac{1}{w} - \frac{1}{w_n}) \| \text{ and proceeding similarly since } \frac{1}{w} - \frac{1}{w_n} < \varepsilon \text{ for sufficiently large } n.
27. Consider a non-empty subset S of \mathbb{R} that is bounded from above and has no greatest element. Prove that $\inf S$ is a cluster point of S.

Since S is non-empty and bounded from above, $\inf S$ exists.

S has no greatest element, thus $\inf S$ is not an element of S.

\Rightarrow for any $p \in S$, $p < \inf S$.

For any $\epsilon > 0$, $\inf S - \epsilon, \inf S - \frac{\epsilon}{2}, \inf S - \frac{\epsilon}{4}, \ldots$ are in S.

\Rightarrow there exist $a, b \in S$ with $|b-a| < \epsilon$, $b \in S$ with $|b-\inf S| < \frac{\epsilon}{2}$, \ldots

This can be continued infinitely, there are points in S that are arbitrarily close to $\inf S$.

\Rightarrow for each $\epsilon > 0$ there are infinitely many points $p \in S$ such that $|p-\inf S| < \epsilon$.

\Rightarrow any ball with center $\inf S$ and radius $\epsilon > 0$ contains infinitely many points of S.

\Rightarrow $\inf S$ is a cluster point of S.
29. Let S be a subset of a $M.S. E.$ and let $p \in E$. Show p is a cluster pt of $S \iff p$ is the limit of a Cauchy sequence in $S \cap E^c$.

(\Rightarrow) p is a cluster point of S. Show p is limit of a Cauchy sequence in $S \cap E^c$.

Consider $B(p, t) \subset$ infinite pts in S for any $t > 0$.

Pick $p_1 \in B(p, 1), p_2 \in B_2(p, \frac{1}{2}), \ldots$.

We must ensure $p_1 \neq p, p_2 \neq p,$ etc. But since each B_n contains an infinite # of pts which are in S, each B_n contains an infinite # of pts in S which are not p. So never pick p_+^+ we have a Cauchy sequence of pts in $S \cap E^c$ which converge to p.

$L = p$ is the limit of a Cauchy sequence in $S \cap E^c$.

Then for every $t > 0$ we have $d(p, p_n) < \varepsilon$ for some integer N and $n > N$. Hence any $B(p, t)$ contains an infinite number of pts p_+ with the $p_+ \in S \cap E^c$. $S \supset S \cap E^c$, all of these $p_+ \in S$. So, p is a cluster point of S.
31. Let $a, b \in \mathbb{R}$ and $a < b$. Have $[a, b]$ compact.

Let \(S = \{ \frac{x}{n} : x \in [a, b], n \in \mathbb{N} \} \) and \([a, x]\) is contained in the union of \(\{ U_i \}_{i=1}^n \). Set \(S \) is finite.

\(S \) must be non-empty, by \(a \in U_i \) for some \(i \).

This means we have some \(e > 0 \) s.t. \(B(a, e) \subseteq U_i \).

Hence \(0 < e < a \) and \(a < x < c \) as well.

Since \(x \in [a, b] \), it is \(x \in S \). Then \(\inf S \leq b \). Hence \(\inf S \in [a, b] \). It is also \(\inf S \in U_i \) for some \(i \).

Suppose now that \(y = \inf S \) and \(y < b \).

Then we know \(y \in U_i \) for some \(i \), so \(B(y, e) \subseteq U_i \). Hence \(B(y, e) \subseteq U_i \) and \([a, y + e] \) is also contained in a finite union of \(U_i \).

Hence \(y \) was not a least upper bound.

(Note: there need be no sort of jumping over \(b \) here; \(b \) is \(y + e \); so is \(y + \frac{e}{2} \).

So we can have \(d(y, y + \frac{e}{2}) < d(y, b) \)
31. Suppose $S \cap T$ is compact, but S is not compact. So S is not both closed and bounded.

- If S is not closed, exist S' with $x_0 \notin S$ but $x_0 \in B(x, \varepsilon)$. $\forall \varepsilon > 0$.

Consider $z \in S \cap T$ with x_0 as the first n coordinates. That is, if

$z = (x_1, x_2, ..., x_n), \quad x = (x_1, x_2, ..., x_n, y_1, ..., y_m).$ And z_0 be a point in $S \cap T$ with x_0 as the first n coordinates. Since $x_0 \notin S$, $z_0 \notin S \cap T$.

But $B(z, \varepsilon)$ contains z_0, since $d(z, z_0) = d(x, x_0) < \varepsilon$. This implies that $S \cap T$ is not closed. Contradiction, since $S \cap T$ is compact.

Also note, this proves that if defined the same way, if x is a boundary point of S, then $z = (x_1, x_2, ..., x_n, y_1, ..., y_m)$ is a boundary point of $S \cap T$. This will be used later.

- If S is not bounded, $\sqrt{x_1^2 + x_2^2 + ... + x_n^2} \neq M$ for any M for any $x \in S$. Observe $z \in S \cap T$.

$z = (x_1, x_2, ..., x_n, y_1, ..., y_m)$. Since $y_1^2, ..., y_m^2$ are nonnegative,

$\sqrt{x_1^2 + x_2^2 + ... + x_n^2 + y_1^2 + ... + y_m^2} \neq M$ for any M as well. This implies $S \cap T$ is not bounded, but it's compact. This contradicts the assumption.

Now, if $S \cap T$ is compact, we've shown S and T must be bounded and closed. They are both subsets of E^n for some n. So S, T are compact.

Finally assume $S \cap T$ is open, but S is not open. This means that S contains one of its boundary points, called $x \in S$. We showed earlier that if x is a boundary point of S, then $z = (x_1, x_2, ..., x_n, y_1, ..., y_m)$ is a boundary point of $S \cap T$. But $S \cap T$ is open, so it cannot contain any boundary points; yet $z \in S \cap T$ since $x \in S$. This contradicts that S is not open.

So far we've shown:

- $S \cap T$ open \implies S, T open
- $S \cap T$ closed \implies S, T closed
- $S \cap T$ bounded \implies S, T bounded
- $S \cap T$ compact \implies S, T compact
Lemma

Let $S \subseteq \mathbb{E}^n$, $T \subseteq \mathbb{E}^m$, $S \times T \subseteq \mathbb{E}^{n+m}$.

$x \in S \Rightarrow x = (x_1, x_2, \ldots, x_n)$

$y \in T \Rightarrow y = (y_1, \ldots, y_m)$

$z \in S \times T \Rightarrow z = (x_1, \ldots, x_n, y_1, \ldots, y_m)$

Then z is a boundary point of $S \times T$ if

- x is a boundary point of S or
- y is a boundary point of T.

Proof

Let $x \in S$ be a boundary point of S. Hence $\exists \varepsilon > 0$

$B(x, \varepsilon) \cap S \neq \emptyset$ and $B(x, \varepsilon) \cap S^c \neq \emptyset$.

Now $\exists B(x_1, \varepsilon) \subseteq E^n$, $\exists y_0 \in E^m$.

So $B(x_1, \varepsilon) \times T \subseteq \mathbb{E}^{n+m}$. The set $B(x_1, \varepsilon) \times T$ clearly contains the point $z_0 = (x_1, \ldots, x_n, y_0, \ldots, y_m)$.

So $z_0 \in S \times T$.

Now, since $x \in S$, $y \in T \Rightarrow z \in S \times T$.

Hence for $x \in S$ a boundary pt x any $\varepsilon > 0$ we can always find $x_0 \in B(x_1, \varepsilon)$ s.t. $d(z_0, z_0) \leq \varepsilon$.

Now $z_0 \in S \times T$ and hence $z_0 \in S \times T$, so z_0 is a boundary point.
\[(\Rightarrow) \text{ \(\exists \) is a boundary point. Suppose} \]
\[\exists \in (x_1, y_1) \text{ with neither } x_1 \text{ nor } y_1 \text{ a} \]
\[\text{boundary point of } S \text{ or } T \text{, respectively.} \]

This \(\Rightarrow \) that \(\exists \in S \) \text{ s.t. } \bar{B}(x_1, \varepsilon) \subseteq S \]
\[\text{and } \exists \in T \text{ s.t. } \bar{B}(y_1, \delta) \subseteq T. \]

We'll assume \(\delta = \min(\varepsilon, \delta) \).

Consider \(\exists \in (x_1, y_1) \). Take \(\bar{B}(\exists, 6) \)
\[\Rightarrow \left\{ \left(x_1 - x_i \right)^2 + \ldots + \left(y_n - y_i \right)^2 \right\} \leq 6 \]

Consider points... (you get it right?)

Certainly this means
\[\exists \sum_{i=1}^n \left(x_1 - x_i \right)^2 \leq \varepsilon^2 \]
\[\text{and } \exists \sum_{i=1}^n \left(y_1 - y_i \right)^2 \leq \delta^2 \]

Hence all such \(\exists \in \bar{B}(\exists, 6) \) have \(x \in S \) \& yet \(y \in T \)

so that \(\exists \) is \textbf{not} a boundary point, a contradiction.
Now assume \(S, T \) are compact, but \(S \times T \) is not compact. So \(S \times T \) is either not closed or not bounded.

If \(S \times T \) is not closed, it \(\exists \mathbf{z} \in S \times T \) with \(\mathbf{z}_0 \in S \times T \) but \(\mathbf{z}_0 \notin B(\mathbf{z}, \varepsilon) \).

So \(d(\mathbf{z}, \mathbf{z}_0) < \varepsilon \). Take \(\mathbf{x} \in S \) to be the first \(n \) coordinates of \(\mathbf{z}_0 \), and \(\mathbf{x}_0 \in S \) to be the first \(n \) coordinates of \(\mathbf{z}_0 \). Surely \(d(\mathbf{z}, \mathbf{z}_0) \geq d(\mathbf{x}, \mathbf{x}_0) \). So \(d(\mathbf{x}, \mathbf{x}_0) < \varepsilon \). So \(\mathbf{x}_0 \in B(\mathbf{x}, \varepsilon) \). But this implies \(S \) is not closed, a contradiction.

If \(S \times T \) is not bounded, \(\int x_1^2 + x_2^2 + \ldots + x_n^2 + y_1^2 + \ldots + y_m^2 \neq M \) for any \(M \).

So \(x_1^2 + \ldots + x_n^2 + y_1^2 + \ldots + y_m^2 \neq M^2 \) for any \(M \). Since \(T \) is bounded, \(x_1^2 + \ldots + x_n^2 \neq M^2 - (y_1^2 + \ldots + y_m^2) \).

Then call \(a^2 = (y_1^2 + \ldots + y_m^2) \).

So \(\sqrt{x_1^2 + \ldots + x_n^2} < a \) for any \(a \). So \(S \) is not bounded.

This is a contradiction since \(S \) is compact.

So now, \(S, T \) are compact \(\Rightarrow \) \(S \times T \) is closed, bounded subset of \(\mathbb{E}^{m+n} \).

So \(S \times T \) is compact.

Finally, suppose \(S, T \) are open, but \(S \times T \) is not open. We've previously proven that if \(\mathbf{x} \) is a boundary point of \(S \), then \(\mathbf{z} = (\mathbf{x}, \ldots, \mathbf{x}, \mathbf{y}, \ldots, \mathbf{y}) \) is a boundary point of \(S \times T \). Since \(S \times T \) is not open, it contains a boundary point.

Given that \(\mathbf{z} = (\mathbf{x}, \ldots, \mathbf{x}, \mathbf{y}, \ldots, \mathbf{y}) \) is the boundary point, either \(\mathbf{x} \) or \(\mathbf{y} \) must be a boundary point of \(S \) or \(T \) respectively. But since \(\mathbf{z} \in S \times T \), \(\mathbf{x}, \mathbf{y} \) exist. Yet, they cannot both be in their respective sets. This contradicts that \(S \times T \) is not open.

So we've now proven:

\[
\begin{align*}
S \times T \text{ close} \iff S, T \text{ close} \\
S \times T \text{ closed} \iff S, T \text{ closed} \\
S \times T \text{ compact} \iff S, T \text{ compact}
\end{align*}
\]
Prove that a metric space is sequentially compact if and only if every infinite subset has a cluster point.

"if": every infinite subset has a cluster point.
Consider the set of terms \(\{ p_1, p_2, \ldots \} \) of an arbitrary sequence.

- If the set \(\{ p_1, p_2, \ldots \} \) is finite, then at least one \(p \in \{ p_1, p_2, \ldots \} \) is repeated infinitely many times in the sequence.
 \(\Rightarrow \) \(p, p, p, \ldots \) is a convergent subsequence of the sequence \(p_1, p_2, p_3, \ldots \).
- If the set \(\{ p_1, p_2, \ldots \} \) is infinite, then the set is an infinite subset of the metric space.
 Hence, the set \(\{ p_1, p_2, \ldots \} \) has a cluster point \(p \).
 Since any ball with center \(p \) contains an infinite number of elements of the set, one can pick a \(p_n \) of the set with \(d(p_n, p) < \frac{1}{n} \), then a \(p_{n+1} \) with \(d(p_{n+1}, p) < \frac{1}{n+1} \), ...
 Thus one can construct a subsequence that converges to \(p \).
 \(\Rightarrow \) every sequence has a convergent subsequence.
 \(\Rightarrow \) the metric space is sequentially compact.

"only if": a metric space is sequentially compact.
Consider a sequence \(p_1, p_2, p_3, \ldots \) in the infinite subset \(S \) of the metric space.
Since the metric space is sequentially compact, the sequence \(p_1, p_3, p_5, \ldots \) has a convergent subsequence \(p_{n_1}, p_{n_2}, p_{n_3}, \ldots \) with limit \(p \).
 \(\Rightarrow \) for any \(\varepsilon > 0 \) there exists \(N \) such that \(d(p_n, p) < \varepsilon \) for all \(n \geq N \).
 \(\Rightarrow \) any open ball with center \(p \) and some radius \(\varepsilon > 0 \) contains an infinite number of elements of the subsequence, and thus infinitely many elements of the sequence.
 Since the sequence is in the infinite subset \(S \), any open ball with center \(p \) contains an infinite number of elements of \(S \). Hence, \(p \) is a cluster point of \(S \).
 \(\Rightarrow \) every infinite subset of a sequentially compact metric space has a cluster point.
Problem 3(e) states that if every sequence has a Cauchy subsequence then the space is totally bounded. Since it is totally bounded, it is the union of finitely many closed balls, so it is closed. Thus all Cauchy sequences converge in E, so E is complete.

iii \rightarrow i: Assume E is totally bounded and complete but not compact.

We know that $E = \bigcup B_i$, a finite union of closed balls.

Also, by assumption, $E = \bigcup E_i \ni E$ s.t. there is no finite subcover.

So $E = (E \cap B_1) \cup (E \cap B_2) \ldots \cup (E \cap B_n)$

The remainder of the proof follows precisely from the final proof of Section 5.
If two subsets of E are open then their complements are closed. (closed)

$S_1 \cup S_2 = S$ and S_2 open then S_2 is connected.

Suppose $S_1 \cup S_2 = S$ and S_2 open. Then S_1, S_2 are both open and closed.

If S_1 is connected then S_2 is connected. Then $S_1 \cup S_2 = S$ is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.

If $S_1 \cup S_2 = S$ and S_2 open then S_1 is connected.
Converse, once again using contrapositive.

\[\sim B \Rightarrow \sim B \]

(An open/closed) subset of \[L \]

\(S \) is not connected \(\Rightarrow \) \(S = S_1 \cup S_2 \), \(S_1, S_2 \) nonempty and open/closed.

It is not connected then \(\exists \) a subset of \(S \) such that \(S \) is open and closed, \(S \neq \emptyset \) or \(S \).

Let \(S_2 = S \setminus S_1 \) then since \(S_1 \) is open and closed, \(S_2 \) is open and closed.

Then \(S = S_1 \cup S_2 \), \(S_1 \cap S_2 = \emptyset \) and \(S_1, S_2 \) are both nonempty and are both open/closed. Thus they are both open and closed.

QED.