Homework

1) a) We need to show that for any $\epsilon > 0$, there exists $\delta > 0$ so that $p \in F$ and $d(p, p_0) < \delta$, then $d'(f(p), f(p_0)) < \epsilon$

Let us check $p_0 = 0$

If $p < 0$, then $d(p, 0) = p$ and $d'(f(p), f(0)) = d'(0, 0) = 0$

If $p \geq 0$, then $d(p, 0) = p$ and $d'(f(p), f(0)) = d'(p, 0) = p$

Choose $\epsilon > 0$ and $\delta > 0$, for every $\epsilon > 0$, there exists $d(p, 0) < \delta$ and $d'(p, 0) < \epsilon$
Discuss the continuity of the function $f: \mathbb{R} \to \mathbb{R}$ if f is given by:

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is not rational} \\ \frac{1}{q} & \text{if } x = \frac{p}{q}, \text{ where } p \text{ and } q \text{ are integers with no common divisors other than } \pm 1, \text{ and } q > 0. \end{cases}$$

Claim: f is not continuous.

Proof: Pick any $x_0 \in \mathbb{R}$, is f continuous at x_0? If it was then for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in \mathbb{R}$ and $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \varepsilon$. From (LUB 5.) on page 26, there exists a rational number $\frac{r}{s} \in B(x_0; \delta)$ for any $\delta > 0$. (we may assume r, s have no common factors.) Now pick any irrational number $k \in \mathbb{R}$ and choose a positive integer N large enough so that $\frac{r}{s} + \frac{k}{N} \in B(x_0; \delta)$.

If x_0 is irrational then $|f(x) - f(x_0)| = |f(x)| < \varepsilon$. Then letting $x = \frac{r}{s}$ we see that $|f(x)| = \frac{1}{s} < \varepsilon$, so picking $\varepsilon \leq \frac{1}{s}$ leads to a contradiction.

If $x = \frac{p}{q}$ then $|f(x) - f(x_0)| = |f(x) - \frac{1}{q}| < \varepsilon$.

Now let $x = \frac{r}{s} + \frac{k}{N}$ so that $|f(x) - \frac{1}{q}| = \frac{1}{q} < \varepsilon$ and once again pick $\varepsilon \leq \frac{1}{q}$. Thus, f is not continuous.
Let E, E' be metric spaces, $f : E \to E'$ a continuous function. Show that if S is a closed subset of E', then $f^{-1}(S)$ is a closed subset of E. Derive from this the results that if f is a continuous real-valued function on E then the sets \(\{ p \in E : f(p) \leq 0 \} \), \(\{ p \in E : f(p) > 0 \} \), and \(\{ p \in E : f(p) = 0 \} \) are closed.

Proof: We wish to show that $C(f^{-1}(S))$ is an open subset of E. Since SCE' is closed, $C(S)CE'$ is open and from the proposition on page 70 we know that $f^{-1}(C(S))CE$ is open. It follows that:

\[
C(f^{-1}(S)) = \{ p \in E : f(p) \notin S \} = \{ p \in E : f(p) \in C(S) \} = f^{-1}(C(S)).
\]

Then it follows immediately that $f^{-1}(S)$ is closed.

Now since \(\{ x \in \mathbb{R} : x \leq 0 \} \), \(\{ x \in \mathbb{R} : x > 0 \} \), \(\{ 0 \} \) are all closed subsets of \mathbb{R}, it follows that if $f : E \to \mathbb{R}$ then \(\{ p \in E : f(p) \leq 0 \} \), \(\{ p \in E : f(p) > 0 \} \), and \(\{ p \in E : f(p) = 0 \} \) are closed subsets of E.\]
Given \(f: U \to V \), strictly increasing and onto, where \(U, V \subseteq \mathbb{R} \) are open or closed intervals.

Claim: \(f \) is continuous on \(U \).

Proof: Note that \(U, V \) are bounded, \(f \) is one-one.

\(\Rightarrow \) If \(U, V \) are closed then we can see that \(U, V \) are nonempty compact subsets of \(\mathbb{R} \).

Assume \(f \) is not continuous. Then by corollary 2 on pg. 78, \(f \) does not attain a maximum at any \(u \in U \) or attain a minimum at any \(u \in U \).

\(\Rightarrow \) Since \(V \) is a nonempty compact set \(a = \text{lub} V, b = \text{glb} V \) but \(f \) is onto so \(\exists a_0, b_0 \in U \) such that \(f(a_0) = a \) and \(f(b_0) = b \). Then, \(f(b_0) \leq V, f(a_0) \geq V \) for all \(v \in V \). Once again, since \(f \) is onto this means:

\[
\begin{align*}
&f(b_0) \leq f(u) \quad \text{for all } u \in U, \\
&f(a_0) \geq f(u)
\end{align*}
\]

A contradiction. Thus, \(f \) is continuous.

\(\Rightarrow \) Now consider the case when \(U, V \) are open.

Once again, assume \(f \) is not continuous.

(continued \(\Rightarrow \))
Then by the proposition on page 70, there must exist some open subset \(B \subset V \) such that
\[
\mathcal{F}^{-1}(B) = \{ u \in U : \mathcal{F}(u) \in B \}
\]
is not an open subset of \(U \). Now pick \(u_0 = \mathcal{F}^{-1}(B) \).
Then \(\mathcal{F}(u_0) \in B \), but since \(B \) is open \(\exists \varepsilon > 0 \)
such that \(|\mathcal{F}(u) - \mathcal{F}(u_0)| < \varepsilon \) for all \(u \in U \) this holds. But now if we pick \(\delta > 0 \) such that \(|u - u_0| < \delta \) then \(|\mathcal{F}(u) - \mathcal{F}(u_0)| < \varepsilon \) where \(u \in \mathcal{F}^{-1}(B) \).
\[
\Rightarrow \text{But this implies that } \mathcal{F}^{-1}(B) \text{ is open, a contradiction.} \quad \text{\color{red}{Thus } } \mathcal{F} \text{ must be continuous.} \]
(a) Prove that \(\sqrt{x^2} \) is continuous on \(\{x \in \mathbb{R} : x \geq 0\} \).
Proof: Let \(E = \{x \in \mathbb{R} : x \geq 0\} \) and pick \(x_0 \in E \). If \(f \) is continuous on \(E \) then for every \(\varepsilon > 0 \) we must find \(\delta > 0 \) such that if \(x \in E \) and \(|x - x_0| < \delta \) then \(|f(x) - f(x_0)| = |\sqrt{x^2} - \sqrt{x_0^2}| < \varepsilon \).
Using some algebraic manipulation we see that
\[
|\sqrt{x^2} - \sqrt{x_0^2}| = \left| \frac{(\sqrt{x^2} - \sqrt{x_0^2})(\sqrt{x^2} + \sqrt{x_0^2})}{\sqrt{x^2} + \sqrt{x_0^2}} \right| = \left| \frac{x - x_0}{\sqrt{x^2} + \sqrt{x_0^2}} \right| \leq \frac{|x - x_0|}{\sqrt{x_0}}
\]
If we let \(|x - x_0| < \varepsilon \) then \(|\sqrt{x^2} - \sqrt{x_0^2}| < \varepsilon \) for all \(x \in \mathbb{R} \) such that \(|x - x_0| < \varepsilon \cdot \sqrt{x_0} = \delta \). Thus \(\sqrt{x^2} \) is continuous on \(E \).

(b) Evaluate \(\lim_{{x \to 1}} \frac{x - 1}{\sqrt{x^2} - 1} \). Let \(f : \{1\} \to \mathbb{R} \) where \(f(x) = \frac{x - 1}{\sqrt{x^2} - 1} \). Clearly, \(1 \) is a cluster point of \(\mathbb{R} \).
Using some algebra:
\[
\frac{x - 1}{\sqrt{x^2} - 1} \cdot \frac{\sqrt{x^2} + 1}{\sqrt{x^2} + 1} = \frac{(x - 1)(\sqrt{x^2} + 1)}{(x - 1)(\sqrt{x^2} + 1)} = \frac{\sqrt{x^2} + 1}{x - 1}
\]
Thus, \(\lim_{{x \to 1}} \frac{x - 1}{\sqrt{x^2} - 1} = \lim_{{x \to 1}} (\sqrt{x^2} + 1) = \lim_{{x \to 1}} \sqrt{x^2} + \lim_{{x \to 1}} 1 = \sqrt{1} + 1 = 2 \)
since \(\sqrt{x^2}, 1 \) are continuous functions on \(\mathbb{C}(\{1\}) \subset \mathbb{R} \), so this follows from the corollary on page 76, and the first paragraph on page 74.
9(c) By exercise 8 we define \(\lim_{x \to +\infty} \frac{x}{2x^2 + 1} = \lim_{y \to 0} g(y) \)
where \(g: (0, 1) \to \mathbb{R} \) and \(g(y) = f\left(\frac{1}{y}\right) = \frac{1}{2y^2 + 1} = \frac{y}{2 + y^2} \).

Clearly, \(\lim_{y \to 0} \frac{y}{2 + y^2} = 0 \). We now prove this:
For every \(\varepsilon > 0 \) we must find \(\delta > 0 \) such that if \(y \in (0, 1) \) and \(|y| < \delta \) then \(\left| \frac{y}{2 + y^2} \right| < \varepsilon \). But,
\[
\Rightarrow \left| \frac{y}{2 + y^2} \right| = \frac{|y|}{|2 + y^2|} \leq \frac{|y|}{2 + y^2} \leq |y| < \delta.
\]
Therefore, if we let \(\varepsilon = \delta \) and \(|y| < \varepsilon \) then \(\left| \frac{y}{2 + y^2} \right| < \varepsilon \) as desired.

10(a) \(f: \mathbb{E}^2 \to \mathbb{R} \) where \(f(x, y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \)
We only need to check the origin for continuity.
Consider the convergent sequence: \(\lim_{n \to \infty} (\frac{1}{n}, 0) = (0, 0) \)
If \(f \) is continuous at \((0, 0) \) then we must have
\[
\lim_{n \to \infty} f\left(\frac{1}{n}, 0\right) = f(0, 0) = 0 \quad \text{but} \quad f\left(\frac{1}{n}, 0\right) = n^2
\]
so the limit doesn't exist.

10(b) \(f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \)
\[
\lim_{n \to \infty} (\frac{1}{n}, \frac{1}{n}) = (0, 0) \quad \text{but} \quad \lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2} \neq f(0, 0).
\]
\(f \) is not continuous at \((0, 0) \).
(c) \(f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \)

Once again \(f(x, y) \) is continuous at all points \((x, y) \neq (0, 0)\) so we need to check for continuity at the origin: \(f \) is continuous at \((0, 0)\) if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d((x, y), (0, 0)) < \delta \) then we have

\[\left| \frac{xy^2}{x^2 + y^2} \right| < \varepsilon. \]

Note that \((x - y)^2 = x^2 - 2xy + y^2 \geq 0\) which implies that \(x^2 + y^2 \geq 2xy\). Then we write:

\[\Rightarrow \left| \frac{xy^2}{x^2 + y^2} \right| = \frac{|xy|^2}{x^2 - 2xy + y^2} \leq \frac{|xy|^2}{2xy} = \left| \frac{y}{2} \right| < \varepsilon \]

we have \(|y| < 2 \varepsilon\) and we may also suppose \(|x| < 2 \varepsilon\) so that \(x^2 + y^2 < 8 \varepsilon^2 \Leftrightarrow d((x, y), (0, 0)) = \sqrt{x^2 + y^2} < 2\sqrt{2}\varepsilon\). Therefore, \(f \) is continuous at \((x, y) = (0, 0)\).

11(i) If \(f : E \to \mathbb{R}, g : E \to \mathbb{R} \) are continuous at \(p_0 \in E \), show \((f + g)(p) = f(p) + g(p) \) is continuous at \(p_0 \in E \).

Since \(f, g \) are continuous at \(p_0 \in E \) we can find \(\delta_1, \delta_2 > 0 \) such that if \(p \in E \) and \(d(p, p_0) < \min\{\delta_1, \delta_2\} \) then \(|f(p) - f(p_0)| < \frac{\varepsilon}{2} \) and \(|g(p) - g(p_0)| < \frac{\varepsilon}{2} \).

Then:\n
\[|(f + g)(p) - (f + g)(p_0)| = |f(p) - f(p_0) + g(p) - g(p_0)| \]
\[\leq |f(p) - f(p_0)| + |g(p) - g(p_0)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \]

for all \(p \in E \) such that \(d(p, p_0) < \min\{\delta_1, \delta_2\} \).
We now show that if \(g(p) \) is continuous at \(p_0 \in E \) then \(h : E \to \mathbb{R} \), \(h(p) = -g(p) \) is continuous at \(p_0 \in E \).

⇒ We know for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(p \in E \) and \(d(p, p_0) < \delta \) then \(|g(p) - g(p_0)| < \varepsilon \).

but, \(|g(p) - g(p_0)| = |(-1)(g(p) - g(p_0))| = |(-g(p)) - (-g(p_0))| = |h(p) - h(p_0)| < \varepsilon \). Thus, \(h(p) \) is continuous at \(p_0 \in E \).

Now to prove \((f - g)(p) = f(p) - g(p) \) is continuous at \(p_0 \in E \) simply apply part (a) to \(f(p) + (-g(p)) \).

Without loss of generality, we may assume that \(f(p_0) \neq 0 \), \(g(p_0) \neq 0 \) since the proof is straightforward if \(f(p_0) = g(p_0) = 0 \), where \(p_0 \in E \).

Now find \(\delta_1, \delta_2 > 0 \) so that if \(|p - p_0| < \delta \) then \(|f(p) - f(p_0)| < \varepsilon \) and \(|g(p) - g(p_0)| < \min \left\{ \varepsilon, \frac{\varepsilon}{2|f(p_0)|} \right\} \) where \(\varepsilon > 0 \) is arbitrary.

since, \(|g(p) - g(p_0)| < \varepsilon \) then \(|g(p)| < |g(p_0)| + \varepsilon \).

⇒ \(|(f - g)(p) - (f - g)(p_0)| = |f(p) - f(p_0)| \)

\[= |(f(p) - f(p_0))g(p) + (g(p) - g(p_0))f(p)| \]

\[\leq |f(p) - f(p_0)| |g(p)| + |g(p) - g(p_0)| |f(p)| \]

\[\leq |f(p) - f(p_0)| (|g(p_0)| + \varepsilon) + |g(p) - g(p_0)| |f(p)| \]

continued.⇒
Then: \[|(g^2)(p) - (g^2)(p_0)| < \frac{\varepsilon}{2(|g(p_0)| + \varepsilon)} (|g(p_0)| + \varepsilon) + \frac{\varepsilon}{2 |S(p)|} |f(p_0)| \]
\[= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \text{ for } d(p, p_0) < \delta. \]

Since \(\varepsilon > 0 \) was arbitrary we find that \(f \cdot g \) is continuous at \(p_0 \in E \).

(2) To prove that \(\frac{f}{g} \) is continuous at \(p_0 \in E \), we first prove \(\frac{1}{g} \) is continuous at \(p_0 \in E \) provided that \(g(p_0) \neq 0 \).

Since \(g(p) \) is continuous at \(p_0 \in E \) we can pick \(\delta \) such that \(|g(p)| = |g(p_0) - (g(p_0) - g(p))| \geq |g(p_0)| - |g(p) - g(p_0)| \)
\[> |g(p_0)| - \frac{|g(p)|}{2} = \frac{|g(p_0)|}{2}. \]
Then we have:
\[\left| \frac{1}{g(p)} - \frac{1}{g(p_0)} \right| = \frac{|g(p) - g(p_0)|}{|g(p)| |g(p_0)|} < \frac{|g(p)|^2}{|g(p)| \cdot \left(\frac{|g(p)|}{2} \right)} = \varepsilon. \]

Since \(|g(p)| > \frac{|g(p_0)|}{2} \) \(\Rightarrow \) \(\frac{1}{|g(p)|} < \frac{1}{\frac{|g(p)|}{2}} \). Then \(\frac{1}{g} \) is continuous at \(p_0 \in E \). Now we apply part (c) to \(\frac{f}{g} = f \cdot \left(\frac{1}{g} \right) \) to show that \(\frac{f}{g} \) is continuous at \(p_0 \in E \).
Let $f : E \to \mathbb{R}$ be a continuous function on a compact metric space E.

Claim: f is bounded and attains a maximum.

Proof: Assume f is not bounded. Then for each $n = 1, 2, 3, \ldots$ we can find $|f(p_n)| > n$. Since E is compact there exists a convergent subsequence $\{p_{n_k}\}$ of $\{p_n\}$ with

$$\lim_{k \to \infty} p_{n_k} = p_0, \quad p_0 \in E.$$

Now using the fact that f is continuous, implies:

$$\lim_{k \to \infty} f(p_{n_k}) = f(p_0).$$

Thus we can find a positive integer N such that:

$$1 > |f(p_{n_k}) - f(p_0)|$$

$$\geq |f(p_{n_k})| - |f(p_0)|$$

$$> n_k - |f(p_0)| \Rightarrow 1 + |f(p_0)| > n_k$$

for an infinite number of positive integers, a contradiction.

Therefore, f is bounded and nonempty, so we can find a sequence in $f(E)$ with:

$$\lim_{n \to \infty} f(q_n) = \text{l.u.b.}\{f(p) : p \in E\}.$$

Once again, since E is compact there exists a convergent subsequence $\{q_{n_k}\}$ of $\{q_n\}$ with:

$$\lim_{k \to \infty} q_{n_k} = q_0, \quad q_0 \in E.$$

(continued \Rightarrow)
but since \(\lim_{n \to \infty} f(q_n) = \lim_{k \to \infty} f(q_{nk}) \) we must have \(f(q_0) = \text{lub} \{ f(p) : p \in E \} \). Therefore, \(f(q_0) \geq f(p) \) for all \(p \in E \). Thus, \(f(q_0) \) is the maximum value.

(14) Let \(S \) be a nonempty compact subset of a metric space \(E \) and \(p_0 \in E \).

Claim: \(\min \{ d(p_0, p) : p \in S \} \) exists.

Consider the function \(f : E \to \mathbb{R} \) where \(f(p) = d(p, p_0) \). By example 2 on page 69, \(f \) is continuous on \(E \) but by example 7, page 70 \(f \) is continuous on the metric space \(S \). Since \(f \) is continuous function (real-valued) on the nonempty compact metric space \(S \) by corollary 2 on page 78 \(f \) attains a minimum at some point \(p \in S \) so \(\min \{ d(p_0, p) : p \in S \} \) exists.

(b) Let \(S \) be a nonempty closed subset of \(E^n \) and \(p_0 \in E^n \).

Claim: \(\min \{ d(p_0, p) : p \in S \} \) exists.

Note if \(p \in S \) then \(\min \{ d(p_0, p) : p \in S \} = 0 \) so we may assume that \(p_0 \in \mathcal{C}(S) \). (continued...)
Now pick $\varepsilon > 0$ such that the closed ball $\overline{B(p_0, \varepsilon)} \subset \mathbb{R}^n$ contains points in S, i.e. $\overline{B(p_0, \varepsilon)} \cap S \neq \emptyset$.

Once again consider the continuous function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ given by $f(p) = d(p_0, p)$. (Example 2, pg. 69).

Then f is continuous on $\overline{B(p_0, \varepsilon)} \cap S$ as well. (Example 7, pg. 70).

Note that $\overline{B(p_0, \varepsilon)} \cap S$ is a closed and bounded subset of \mathbb{R}^n, hence compact.

Then, by corollary 2 on pg. 78 f attains a minimum at some point in $\overline{B(p_0, \varepsilon)} \cap S$, i.e. $\min \{d(p_0, p) : p \in S\}$ exists.

Let E be a nonempty compact metric space.

Claim: $\max \{d(p, q) : p, q \in E\}$ exists.

Proof: Clearly E is bounded since it is compact and $\{d(p, q) : p, q \in E\}$ is bounded and nonempty.

Then we can find a sequence of points $\{(p_n, q_n)\}_{n=1}^{\infty}$ of E such that:

$$\lim_{n \to \infty} d(p_n, q_n) = \text{l.u.b.} \{d(p, q) : p, q \in E\}.$$ (continued \Rightarrow)
Since E is compact there exists convergent subsequences of $\{p_n\}$, $\{q_n\}$ where $\{p_{n_k}\}$, $\{q_{n_k}\}$ converge to some p_0, $q_0 \in E$, respectively.

Hence: $d(p_0, q_0) = \lim_{k \to \infty} d(p_{n_k}, q_{n_k})$

$= \lim_{n \to \infty} d(p_n, q_n)$

$= \text{L.u.b.} \{d(p, q) : p, q \in E\}$.

Thus, $\max\{d(p, q) : p, q \in E\}$ exists, as desired. □