Remark about problem 27

\(f(x) \) an odd degree polynomial.

Can assume that it look like

\[f(x) = ax^n + \ldots, \quad a > 0. \quad \text{For } a < 0 \text{ the argument is similar.} \]

As \(x \to \infty \), \(f(x) \to \infty \) and as \(x \to -\infty \), \(f(x) \to -\infty \).

\(f(x) \) is continuous. Let \(p \in \mathbb{R} \) be any number. There exist \(x_1 \) so that \(f(x_1) > p \) and \(x_2 \) such that \(f(x_2) < p \). By the Intermediate Value Theorem there exists \(c \in \mathbb{R} \) with \(f(c) = p \).
Solution of problem 32

\[f_0(x) = 0, \quad f_n(x) = \sqrt{x + f_{n-1}(x)}, \quad x \geq 0 \]

a) For every \(x \geq 0 \), \(f_n(x) \leq f_m(x) \).

\textit{Proof:} Assume it is true that \(f_{m-1}(x) \leq f_m(x) \). Then

\[f_n(x) = \sqrt{x + f_{n-1}(x)} \leq \sqrt{x + f_m(x)} = f_{m+1}(x) \]

by the monotonicity of the root.

Now \(f_0(x) = 0 \leq f_1(x) \).

and by induction, the result follows.

b) The sequence \(f_n(x) \) is bounded for every \(x > 0 \).

Pretend for the moment that \(f_n(x) \) converges, for some \(x \). Then by the continuity of the square root and with \(f(x) = \lim_{n \to \infty} f_n(x) \),

\[f(x) = \sqrt{x + f(x)} \text{ or} \]

\[f^2(x) = x + f(x). \]

This leads to
\[f(x) = \frac{1}{2} \sqrt{\frac{1}{4} + x}, \quad \text{since} \]

only the positive root yields a non-negative function.

Now we claim that \(f_n(x) \leq \frac{1}{2} + \sqrt{\frac{1}{4} + x} \)
for all \(x \geq 0 \) and all \(n = 1, 2, 3, \ldots \).

Clearly \(f_0(x) = 0 \leq \frac{1}{2} + \sqrt{\frac{1}{4} + x} \).

If \(f_n(x) \leq \frac{1}{2} + \sqrt{\frac{1}{4} + x} \), then

\[f_{n+1}(x) = \sqrt{x + f_n(x)} \leq \sqrt{x + \frac{1}{2} + \sqrt{\frac{1}{4} + x}} = \frac{1}{2} + \sqrt{\frac{1}{4} + x} \]

and by induction this claim is also proved to be true.

Thus for every \(x \geq 0 \), \(f_n(x) \) is a bounded monotone sequence which therefore converges to some function \(f(x) \) \(x \geq 0 \). We have seen before that

\[f(x) = \sqrt{x + f(x)} \]
and hence \(f(x) = \frac{1}{2} + \sqrt{\frac{1}{4} + x} \).