Potential Theory on Berkovich Spaces
Lecture 1: The Berkovich Projective Line

Matthew Baker

Georgia Institute of Technology

Arizona Winter School on p-adic Geometry
March 2007
In this course, we will describe in detail the structure of Berkovich analytic curves, with a particular emphasis on the Berkovich projective line.
In this course, we will describe in detail the structure of Berkovich analytic curves, with a particular emphasis on the Berkovich projective line.

In particular, we will introduce potential theory (Laplacians, harmonic and subharmonic functions, . . .) on such spaces. The results obtained closely parallel classical facts over \mathbb{C} (e.g. the maximum modulus principle, Poisson formula . . .)
In this course, we will describe in detail the structure of Berkovich analytic curves, with a particular emphasis on the Berkovich projective line.

In particular, we will introduce potential theory (Laplacians, harmonic and subharmonic functions, . . .) on such spaces. The results obtained closely parallel classical facts over \(\mathbb{C} \) (e.g. the maximum modulus principle, Poisson formula . . .)

The ultimate goal (which we will unfortunately not say much about) is to treat archimedean and non-archimedean analytic spaces in a unified way, and to make precise Arakelov’s analogy between intersection theory on arithmetic surfaces and potential theory on Riemann surfaces.
The definitions and results we will be describing have been developed by various people, including (in no particular order):
The definitions and results we will be describing have been developed by various people, including (in no particular order):

- Vladimir Berkovich
The definitions and results we will be describing have been developed by various people, including (in no particular order):

- Vladimir Berkovich
- M.B. and Robert Rumely
The definitions and results we will be describing have been developed by various people, including (in no particular order):

- Vladimir Berkovich
- M.B. and Robert Rumely
- Antoine Chambert-Loir
The definitions and results we will be describing have been developed by various people, including (in no particular order):

- Vladimir Berkovich
- M.B. and Robert Rumely
- Antoine Chambert-Loir
- Amaury Thuillier
The definitions and results we will be describing have been developed by various people, including (in no particular order):

- Vladimir Berkovich
- M.B. and Robert Rumely
- Antoine Chambert-Loir
- Amaury Thuillier
- Juan Rivera-Letelier
The definitions and results we will be describing have been developed by various people, including (in no particular order):

- Vladimir Berkovich
- M.B. and Robert Rumely
- Antoine Chambert-Loir
- Amaury Thuillier
- Juan Rivera-Letelier
- Charles Favre and Mattias Jonsson
The definitions and results we will be describing have been developed by various people, including (in no particular order):

- Vladimir Berkovich
- M.B. and Robert Rumely
- Antoine Chambert-Loir
- Amaury Thuillier
- Juan Rivera-Letelier
- Charles Favre and Mattias Jonsson
- Ernst Kani
Notation

- K: an algebraically closed field which is complete with respect to a nontrivial non-archimedean absolute value (e.g. $K = \mathbb{C}_p$)
K: an algebraically closed field which is complete with respect to a nontrivial non-archimedean absolute value (e.g. $K = \mathbb{C}_p$)

\tilde{K}: the residue field of K
Notation

- **K:** an algebraically closed field which is complete with respect to a nontrivial non-archimedean absolute value (e.g. $K = \mathbb{C}_p$)
- **\tilde{K}**: the residue field of K
- **$B(a, r)$**: the closed disk $\{ z \in K : |z - a| \leq r \}$ of radius r about a in K. Here r is any positive real number, and sometimes we allow the degenerate case $r = 0$ as well. If $r \in |K^*|$ we call the disk rational, and if $r \not\in |K^*|$ we call it irrational.
Notation

- K: an algebraically closed field which is complete with respect to a nontrivial non-archimedean absolute value (e.g. $K = \mathbb{C}_p$)
- \tilde{K}: the residue field of K
- $B(a, r)$: the closed disk $\{z \in K : |z - a| \leq r\}$ of radius r about a in K. Here r is any positive real number, and sometimes we allow the degenerate case $r = 0$ as well. If $r \in |K^*|$ we call the disk rational, and if $r \notin |K^*|$ we call it irrational.
- $B(a, r)^-$: the open disk $\{z \in K : |z - a| < r\}$ of radius r about a in K.

Matthew Baker
Lecture 1: The Berkovich Projective Line
Motivation

- The usual topology on K is totally disconnected and not locally compact.
Motivation

- The usual topology on K is totally disconnected and not locally compact.
- Tate dealt with this problem by developing rigid analysis, in which one works with a certain Grothendieck topology on K. This gives a satisfactory theory of analytic functions on K, but the underlying topological space is unchanged.

The Berkovich affine line A^1_{Berk} over K is a locally compact, Hausdorff, and uniquely path-connected topological space which contains K as a dense subspace. The Berkovich projective line P^1_{Berk} is obtained by adjoining a point ∞ to A^1_{Berk}. One can view P^1_{Berk} as a profinite \mathbb{R}-tree. This allows one to define a Laplacian operator on P^1_{Berk} which comes from the usual Laplacian on a finite graph. The tree structure also leads to a good theory of harmonic and subharmonic functions which closely parallels the classical theory over \mathbb{C}.
The usual topology on K is **totally disconnected** and not **locally compact**.

Tate dealt with this problem by developing **rigid analysis**, in which one works with a certain Grothendieck topology on K. This gives a satisfactory theory of analytic functions on K, but the underlying topological space is unchanged.

The Berkovich affine line \mathbb{A}^1_{Berk} over K is a **locally compact**, **Hausdorff**, and **uniquely path-connected** topological space which contains K as a dense subspace. The Berkovich projective line \mathbb{P}^1_{Berk} is obtained by adjoining a point ∞ to \mathbb{A}^1_{Berk}.

Matthew Baker
Lecture 1: The Berkovich Projective Line
The usual topology on K is totally disconnected and not locally compact.

Tate dealt with this problem by developing rigid analysis, in which one works with a certain Grothendieck topology on K. This gives a satisfactory theory of analytic functions on K, but the underlying topological space is unchanged.

The Berkovich affine line $\mathbb{A}^1_{\text{Berk}}$ over K is a locally compact, Hausdorff, and uniquely path-connected topological space which contains K as a dense subspace. The Berkovich projective line $\mathbb{P}^1_{\text{Berk}}$ is obtained by adjoining a point ∞ to $\mathbb{A}^1_{\text{Berk}}$.

One can view $\mathbb{P}^1_{\text{Berk}}$ as a profinite \mathbb{R}-tree. This allows one to define a Laplacian operator on $\mathbb{P}^1_{\text{Berk}}$ which comes from the usual Laplacian on a finite graph. The tree structure also leads to a good theory of harmonic and subharmonic functions which closely parallels the classical theory over \mathbb{C}.
A multiplicative seminorm on a ring A is a function $|\cdot|_x : A \to \mathbb{R}_{\geq 0}$ satisfying:

- $|0|_x = 0$ and $|1|_x = 1$.
A multiplicative seminorm on a ring A is a function $| \cdot |_x : A \to \mathbb{R}_{\geq 0}$ satisfying:

- $|0|_x = 0$ and $|1|_x = 1$.
- $|fg|_x = |f|_x \cdot |g|_x$ for all $f, g \in A$.
A multiplicative seminorm on a ring A is a function $|\cdot|_x : A \to \mathbb{R}_{\geq 0}$ satisfying:

- $|0|_x = 0$ and $|1|_x = 1$.
- $|fg|_x = |f|_x \cdot |g|_x$ for all $f, g \in A$.
- $|f + g|_x \leq |f|_x + |g|_x$ for all $f, g \in A$.
A **multiplicative seminorm** on a ring A is a function $|\cdot|_x : A \to \mathbb{R}_{\geq 0}$ satisfying:

- $|0|_x = 0$ and $|1|_x = 1$.
- $|fg|_x = |f|_x \cdot |g|_x$ for all $f, g \in A$.
- $|f + g|_x \leq |f|_x + |g|_x$ for all $f, g \in A$.

As a set, $\mathbb{A}^1_{\text{Berk}, K}$ consists of all multiplicative seminorms on the polynomial ring $K[T]$ which extend the usual absolute value on K.
Remarks

1. We will assume throughout that our field K is complete and algebraically closed.
Remarks

1. We will assume throughout that our field K is complete and algebraically closed.

2. We will identify seminorms $|\cdot|_x$ with points $x \in \mathbb{A}^1_{\text{Berk}, K}$.
Multiplicative seminorms (continued)

Remarks

1. We will assume throughout that our field K is complete and algebraically closed.

2. We will identify seminorms $|\cdot|_x$ with points $x \in \mathbb{A}^1_{\text{Berk}, K}$.

3. We will usually omit explicit reference to the ground field K, writing $\mathbb{A}^1_{\text{Berk}}$.
Topology on $\mathbb{A}^1_{\text{Berk}}$

Definition

The topology on $\mathbb{A}^1_{\text{Berk},K}$ is defined to be the weakest one for which $x \mapsto |f|_x$ is continuous for every $f \in K[T]$.

Matthew Baker

Lecture 1: The Berkovich Projective Line
Topology on $\mathbb{A}^1_{\text{Berk}}$

Definition

The topology on $\mathbb{A}^1_{\text{Berk}}, K$ is defined to be the weakest one for which $x \mapsto |f|_x$ is continuous for every $f \in K[T]$.

Explicitly, a fundamental system of open neighborhoods is given by open sets of the form

$$\{ x \in \mathbb{A}^1_{\text{Berk}} : \alpha_i < |f_i|_x < \beta_i \}$$

with $f_1, \ldots, f_m \in K[T]$ and $\alpha_i, \beta_i \in \mathbb{R}$ ($i = 1, \ldots, m$).
The definition of $\mathbb{A}^1_{\text{Berk}}$ can be motivated by the following observations:

Every multiplicative seminorm on $\mathbb{C}[T]$ which extends the usual absolute value on \mathbb{C} is of the form $f \mapsto |f(z)|$ for some $z \in \mathbb{C}$ (by the Gelfand-Mazur theorem), and the corresponding space $\mathbb{A}^1_{\text{Berk}}$, \mathbb{C} is homeomorphic to \mathbb{C}.

When K is non-archimedean, there are many more multiplicative seminorms on $K[T]$ than just the ones given by evaluation at a point of K.

Example
Fix a closed disk $B(a,r) = \{z \in K : |z-a| \leq r\}$ in K, and define $\| \|_{B(a,r)}$ by $\|f\|_{B(a,r)} = \sup_{z \in B(a,r)} |f(z)|$.

Then $\| \|_{B(a,r)}$ is a multiplicative seminorm on $K[T]$ (by Gauss' lemma).
Motivation for the definition of $\mathbb{A}^1_{\text{Berk}}$

The definition of $\mathbb{A}^1_{\text{Berk}}$ can be motivated by the following observations:

- Every multiplicative seminorm on $\mathbb{C}[T]$ which extends the usual absolute value on \mathbb{C} is of the form $f \mapsto |f(z)|$ for some $z \in \mathbb{C}$ (by the Gelfand-Mazur theorem), and the corresponding space $\mathbb{A}^1_{\text{Berk},\mathbb{C}}$ is homeomorphic to \mathbb{C}.
Motivation for the definition of $\mathbb{A}^1_{\text{Berk}}$

The definition of $\mathbb{A}^1_{\text{Berk}}$ can be motivated by the following observations:

- Every multiplicative seminorm on $\mathbb{C}[T]$ which extends the usual absolute value on \mathbb{C} is of the form $f \mapsto |f(z)|$ for some $z \in \mathbb{C}$ (by the Gelfand-Mazur theorem), and the corresponding space $\mathbb{A}^1_{\text{Berk},\mathbb{C}}$ is homeomorphic to \mathbb{C}.

- When K is non-archimedean, there are many more multiplicative seminorms on $K[T]$ than just the ones given by evaluation at a point of K.

Motivation for the definition of $\mathbb{A}^1_{\text{Berk}}$

The definition of $\mathbb{A}^1_{\text{Berk}}$ can be motivated by the following observations:

- Every multiplicative seminorm on $\mathbb{C}[T]$ which extends the usual absolute value on \mathbb{C} is of the form $f \mapsto |f(z)|$ for some $z \in \mathbb{C}$ (by the Gelfand-Mazur theorem), and the corresponding space $\mathbb{A}^1_{\text{Berk}, \mathbb{C}}$ is homeomorphic to \mathbb{C}.

- When K is non-archimedean, there are many more multiplicative seminorms on $K[T]$ than just the ones given by evaluation at a point of K.

Example

Fix a closed disk $B(a, r) = \{ z \in K : |z - a| \leq r \}$ in K, and define $| \cdot |_{B(a,r)}$ by

$$|f|_{B(a,r)} = \sup_{z \in B(a,r)} |f(z)|.$$

Then $| \cdot |_{B(a,r)}$ is a multiplicative seminorm on $K[T]$ (by Gauss’ lemma).
The set of all (possibly degenerate) disks $B(a, r)$ therefore embeds naturally into \mathbb{A}_Berk^1.

In particular, K embeds into \mathbb{A}_Berk^1 as the set of disks of radius zero, and is dense in the Berkovich topology.

Similarly, $P_1(K)$ can naturally be embedded as a dense subset of P_1Berk.

The set of all (possibly degenerate) disks $B(a, r)$ therefore embeds naturally into $\mathbb{A}^1_{\text{Berk}}$.

In particular, K embeds into $\mathbb{A}^1_{\text{Berk}}$ as the set of disks of radius zero, and is dense in the Berkovich topology.
The set of all (possibly degenerate) disks $B(a, r)$ therefore embeds naturally into $\mathbb{A}^1_{\text{Berk}}$. In particular, K embeds into $\mathbb{A}^1_{\text{Berk}}$ as the set of disks of radius zero, and is dense in the Berkovich topology. Similarly, $\mathbb{P}^1(K)$ can naturally be embedded as a dense subset of $\mathbb{P}^1_{\text{Berk}}$.
If a, a' are distinct points of K, one can visualize the unique path in $\mathbb{A}^1_{\text{Berk}}$ from a to a' as follows:
If a, a' are distinct points of K, one can visualize the unique path in $\mathbb{A}^1_{\text{Berk}}$ from a to a' as follows:

- Start increasing the “radius” of the degenerate disk $B(a, 0)$ until we have a disk $B(a, r)$ which also contains a'.
If a, a' are distinct points of K, one can visualize the unique path in $\mathbb{A}^1_{\text{Berk}}$ from a to a' as follows:

- Start increasing the “radius” of the degenerate disk $B(a, 0)$ until we have a disk $B(a, r)$ which also contains a'.
- This disk can also be written as $B(a', s)$ with $r = s = |a - a'|$.

Matthew Baker
Lecture 1: The Berkovich Projective Line
\(\mathbb{A}^1_{\text{Berk}} \) is uniquely path-connected

If \(a, a' \) are distinct points of \(K \), one can visualize the unique path in \(\mathbb{A}^1_{\text{Berk}} \) from \(a \) to \(a' \) as follows:

- Start increasing the “radius” of the degenerate disk \(B(a, 0) \) until we have a disk \(B(a, r) \) which also contains \(a' \).
- This disk can also be written as \(B(a', s) \) with \(r = s = |a - a'| \).
- Now decrease \(s \) until the radius reaches zero and we have the degenerate disk \(B(a', 0) \).
If a, a' are distinct points of K, one can visualize the unique path in $\mathbb{A}^1_{\text{Berk}}$ from a to a' as follows:

- Start increasing the “radius” of the degenerate disk $B(a, 0)$ until we have a disk $B(a, r)$ which also contains a'.
- This disk can also be written as $B(a', s)$ with $r = s = |a - a'|$.
- Now decrease s until the radius reaches zero and we have the degenerate disk $B(a', 0)$.
- In this way we have “connected up” the totally disconnected space K by adding points corresponding to closed disks!
Nested sequences of closed disks

In order to obtain a **compact** space from this construction, it is usually necessary to add even more points.
Nested sequences of closed disks

In order to obtain a compact space from this construction, it is usually necessary to add even more points.

- For example, the field \mathbb{C}_p is not spherically complete: this means that there are decreasing sequences of closed disks in \mathbb{C}_p having empty intersection.
Nested sequences of closed disks

In order to obtain a **compact** space from this construction, it is usually necessary to add even more points.

- For example, the field \mathbb{C}_p is not *spherically complete*: this means that there are decreasing sequences of closed disks in \mathbb{C}_p having empty intersection.
- We need to add points corresponding to such sequences in order to obtain a compact space, since if $\{B(a_n, r_n)\}$ is any decreasing nested sequence of closed disks, the map

$$f \mapsto \lim_{n \to \infty} |f|_{B(a_n, r_n)}$$

defines a multiplicative seminorm on $\mathbb{K}[T]$ extending the usual absolute value on \mathbb{K}.

Matthew Baker
Lecture 1: The Berkovich Projective Line
Nested sequences of closed disks

In order to obtain a compact space from this construction, it is usually necessary to add even more points.

- For example, the field \mathbb{C}_p is not spherically complete: this means that there are decreasing sequences of closed disks in \mathbb{C}_p having empty intersection.

- We need to add points corresponding to such sequences in order to obtain a compact space, since if $\{B(a_n, r_n)\}$ is any decreasing nested sequence of closed disks, the map

$$f \mapsto \lim_{n \to \infty} |f|_{B(a_n, r_n)}$$

defines a multiplicative seminorm on $K[T]$ extending the usual absolute value on K.

- Two such sequences of disks with empty intersection define the same seminorm if and only if the sequences are cofinal.
According to a result of Berkovich, we have now described all points of $\mathbb{A}^1_{\text{Berk}}$:

\begin{align*}
\text{Theorem (Berkovich's Classification Theorem)} \\
\text{Every point } x \in \mathbb{A}^1_{\text{Berk}} \text{ corresponds to a nested sequence } \\
B(a_1, r_1) \supseteq B(a_2, r_2) \supseteq B(a_3, r_3) \supseteq \cdots \\
\text{of closed disks, in the sense that } \\
|f|_x = \lim_{n \to \infty} |f|_{B(a_n, r_n)}. \\
\end{align*}

Two such nested sequences define the same point of $\mathbb{A}^1_{\text{Berk}}$ if and only if either:

1. each has a nonempty intersection, and their intersections are the same; or
2. both have empty intersection, and the sequences are cofinal.
According to a result of Berkovich, we have now described all points of $\mathbb{A}^1_{\text{Berk}}$:

Theorem (Berkovich’s Classification Theorem)

Every point $x \in \mathbb{A}^1_{\text{Berk}}$ corresponds to a nested sequence $B(a_1, r_1) \supseteq B(a_2, r_2) \supseteq B(a_3, r_3) \supseteq \cdots$ of closed disks, in the sense that

$$|f|_x = \lim_{n \to \infty} |f|_{B(a_n, r_n)}.$$
According to a result of Berkovich, we have now described all points of $\mathbb{A}^1_{\text{Berk}}$:

Theorem (Berkovich’s Classification Theorem)

Every point $x \in \mathbb{A}^1_{\text{Berk}}$ corresponds to a nested sequence $B(a_1, r_1) \supseteq B(a_2, r_2) \supseteq B(a_3, r_3) \supseteq \cdots$ of closed disks, in the sense that

$$|f|_x = \lim_{n \to \infty} |f|_{B(a_n, r_n)}.$$

Two such nested sequences define the same point of $\mathbb{A}^1_{\text{Berk}}$ if and only if either:

1. each has a nonempty intersection, and their intersections are the same; or
2. both have empty intersection, and the sequences are cofinal.*
According to a result of Berkovich, we have now described all points of $\mathbb{A}^1_{\text{Berk}}$:

Theorem (Berkovich’s Classification Theorem)

*Every point $x \in \mathbb{A}^1_{\text{Berk}}$ corresponds to a nested sequence $B(a_1, r_1) \supseteq B(a_2, r_2) \supseteq B(a_3, r_3) \supseteq \cdots$ of closed disks, in the sense that

$$|f|_x = \lim_{n \to \infty} |f|_{B(a_n, r_n)}.$$*

*Two such nested sequences define the same point of $\mathbb{A}^1_{\text{Berk}}$ if and only if either:

1. each has a nonempty intersection, and their intersections are the same; or*
According to a result of Berkovich, we have now described all points of $\mathbb{A}^1_{\text{Berk}}$:

Theorem (Berkovich’s Classification Theorem)

Every point $x \in \mathbb{A}^1_{\text{Berk}}$ corresponds to a nested sequence $B(a_1, r_1) \supseteq B(a_2, r_2) \supseteq B(a_3, r_3) \supseteq \cdots$ of closed disks, in the sense that\[
|f|_x = \lim_{n \to \infty} |f|_{B(a_n, r_n)}.
\]

Two such nested sequences define the same point of $\mathbb{A}^1_{\text{Berk}}$ if and only if either:

1. *each has a nonempty intersection, and their intersections are the same; or*
2. *both have empty intersection, and the sequences are cofinal.*
We can categorize the points of $\mathbb{A}^1_{\text{Berk}}$ into four types according to the nature of $B = \bigcap B(a_n, r_n)$:
We can categorize the points of $\mathbb{A}^1_{\text{Berk}}$ into four types according to the nature of $B = \bigcap B(a_n, r_n)$:

Type I: B is a point of K.

Type II: B is a closed disk with radius belonging to $|K^*|$.

Type III: B is an irrational disk with radius not belonging to $|K^*|$.

Type IV: $B = \emptyset$.

Matthew Baker
Lecture 1: The Berkovich Projective Line
We can categorize the points of A^1_{Berk} into four types according to the nature of $B = \bigcap B(a_n, r_n)$:

Type I: B is a point of K.

Type II: B is a closed disk with radius belonging to $|K^*|$.

Type III: B is an irrational disk with radius not belonging to $|K^*|$.

Type IV: $B = \emptyset$.
We can categorize the points of $\mathbb{A}^1_{\text{Berk}}$ into four types according to the nature of $B = \bigcap B(a_n, r_n)$:

Type I: B is a point of K.

Type II: B is a closed disk with radius belonging to $|K^*|$.

Type III: B is an irrational disk with radius not belonging to $|K^*|$.

Type IV: $B = \emptyset$.

Matthew Baker
Lecture 1: The Berkovich Projective Line
We can categorize the points of $\mathbb{A}^1_{\text{Berk}}$ into four types according to the nature of $B = \bigcap B(a_n, r_n)$:

Type I: B is a point of K.

Type II: B is a closed disk with radius belonging to $|K^*|$.

Type III: B is an irrational disk with radius not belonging to $|K^*|$.

Type IV: $B = \emptyset$.

We will denote by $\zeta_{a,r}$ the point of $\mathbb{A}^1_{\text{Berk}}$ of type II or III corresponding to the closed or irrational disk $B(a, r)$.
We will denote by $\zeta_{a,r}$ the point of $\mathbb{A}^1_{\text{Berk}}$ of type II or III corresponding to the closed or irrational disk $B(a, r)$.

Following the terminology introduced by Chambert-Loir, the distinguished point $\zeta_{\text{Gauss}} = \zeta_{0,1}$ in $\mathbb{A}^1_{\text{Berk}}$ corresponding to the Gauss norm

$$\left| \sum_{i=0}^n a_i T^i \right|_{\text{Gauss}} = \max |a_i|$$

on $K[T]$ will be called the Gauss point.
A visual representation of $\mathbb{P}^1_{\text{Berk}}$
Alternate representation of \mathbb{P}^1_{Berk}
Note that:

- There is branching **only** at the points of type II, not those of type III.
Note that:

- There is branching **only** at the points of type II, not those of type III.
- Some of the branches extend all the way to the bottom (terminating in points of type I), while others are “cauterized off” earlier and terminate at points of type IV. In any case, every branch terminates either at a point of type I or type IV.
Tangent directions

Definition

Let $x \in \mathbb{P}_\text{Berk}^1$. The space T_x of tangent directions at x is the set of equivalence classes of paths $\ell_{x,y}$ emanating from x, where y is any point of \mathbb{P}_Berk^1 not equal to x. Two paths $\ell_{x,y_1}, \ell_{x,y_2}$ are equivalent if they share a common initial segment.
Definition

Let $x \in \mathbb{P}^1_{\text{Berk}}$. The space T_x of tangent directions at x is the set of equivalence classes of paths $\ell_{x,y}$ emanating from x, where y is any point of $\mathbb{P}^1_{\text{Berk}}$ not equal to x. Two paths $\ell_{x,y_1}, \ell_{x,y_2}$ are equivalent if they share a common initial initial segment.

There is a natural bijection between elements $\vec{v} \in T_x$ and connected components of $\mathbb{P}^1_{\text{Berk}} \setminus \{x\}$.
Let \(x \in \mathbb{P}^1_{\text{Berk}} \). The space \(T_x \) of tangent directions at \(x \) is the set of equivalence classes of paths \(\ell_{x,y} \) emanating from \(x \), where \(y \) is any point of \(\mathbb{P}^1_{\text{Berk}} \) not equal to \(x \). Two paths \(\ell_{x,y_1}, \ell_{x,y_2} \) are equivalent if they share a common initial segment.

- There is a natural bijection between elements \(\vec{v} \in T_x \) and connected components of \(\mathbb{P}^1_{\text{Berk}} \setminus \{x\} \).
- We denote by \(U(x; \vec{v}) \) the connected component of \(\mathbb{P}^1_{\text{Berk}} \setminus \{x\} \) corresponding to \(\vec{v} \in T_x \).
Tangent directions

Definition

Let \(x \in \mathbb{P}^1_{\text{Berk}} \). The space \(T_x \) of tangent directions at \(x \) is the set of equivalence classes of paths \(\ell_{x,y} \) emanating from \(x \), where \(y \) is any point of \(\mathbb{P}^1_{\text{Berk}} \) not equal to \(x \). Two paths \(\ell_{x,y_1}, \ell_{x,y_2} \) are equivalent if they share a common initial segment.

- There is a natural bijection between elements \(\vec{v} \in T_x \) and connected components of \(\mathbb{P}^1_{\text{Berk}} \setminus \{x\} \).
- We denote by \(U(x; \vec{v}) \) the connected component of \(\mathbb{P}^1_{\text{Berk}} \setminus \{x\} \) corresponding to \(\vec{v} \in T_x \).
- The open sets \(U(x; \vec{v}) \) for \(x \in \mathbb{P}^1_{\text{Berk}} \) and \(\vec{v} \in T_x \) generate the topology on \(\mathbb{P}^1_{\text{Berk}} \).
For $a \in K$ and $r > 0$, write

$$\mathcal{B}(a, r)^{-} = \{ x \in \mathbb{A}_{\text{Berk}}^1 : |T - a|_x < r \} ,$$

$$\mathcal{B}(a, r) = \{ x \in \mathbb{A}_{\text{Berk}}^1 : |T - a|_x \leq r \} .$$
Berkovich disks

For \(a \in K \) and \(r > 0 \), write

\[
\mathcal{B}(a, r)^- = \left\{ x \in \mathbb{A}^1_{\text{Berk}} : |T - a|_x < r \right\}, \\
\mathcal{B}(a, r) = \left\{ x \in \mathbb{A}^1_{\text{Berk}} : |T - a|_x \leq r \right\}.
\]

We call a set of the form \(\mathcal{B}(a, r)^- \) an open Berkovich disk in \(\mathbb{A}^1_{\text{Berk}} \), and a set of the form \(\mathcal{B}(a, r) \) a closed Berkovich disk in \(\mathbb{A}^1_{\text{Berk}} \).
Berkovich disks

For $a \in K$ and $r > 0$, write

$$B(a, r)^- = \{ x \in \mathbb{A}^1_{Berk} : |T - a|_x < r \},$$
$$B(a, r) = \{ x \in \mathbb{A}^1_{Berk} : |T - a|_x \leq r \}.$$

- We call a set of the form $B(a, r)^-$ an open Berkovich disk in \mathbb{A}^1_{Berk}, and a set of the form $B(a, r)$ a closed Berkovich disk in \mathbb{A}^1_{Berk}.
- Similarly, we can define open and closed Berkovich disks in \mathbb{P}^1_{Berk}.
For $a \in K$ and $r > 0$, write

\[
\mathcal{B}(a, r)^{-} = \{ x \in \mathbb{A}^1_{\text{Berk}} : |T - a|_x < r \},
\]

\[
\mathcal{B}(a, r) = \{ x \in \mathbb{A}^1_{\text{Berk}} : |T - a|_x \leq r \}.
\]

- We call a set of the form $\mathcal{B}(a, r)^{-}$ an \textit{open Berkovich disk} in $\mathbb{A}^1_{\text{Berk}}$, and a set of the form $\mathcal{B}(a, r)$ a \textit{closed Berkovich disk} in $\mathbb{A}^1_{\text{Berk}}$.

- Similarly, we can define open and closed Berkovich disks in $\mathbb{P}^1_{\text{Berk}}$.

- The intersection of a Berkovich open disk with $\mathbb{P}^1(K)$ is a (classical) open disk (and similarly for closed disks).
A Berkovich open disk
Lemma

Every open set $U(x; \vec{v})$ with x of type II or III and $\vec{v} \in T_x$ is a Berkovich open disk, and conversely.
Simple domains

Lemma

Every open set $U(x; \vec{v})$ with x of type II or III and $\vec{v} \in T_x$ is a Berkovich open disk, and conversely.

Finite intersections of Berkovich open disks in $\mathbb{P}^1_{\text{Berk}}$ are called simple domains, and they form a fundamental system of open neighborhoods for the topology on $\mathbb{P}^1_{\text{Berk}}$.
A simple domain V in $\mathbb{P}^1_{\text{Berk}}$ has a finite set x_1, \ldots, x_n of boundary points, and a corresponding finite set $\vec{v}_1, \ldots, \vec{v}_n$ of ends, which are the inward-pointing tangent directions:
A simple domain V in \mathbb{P}^1_{Berk} has a finite set x_1, \ldots, x_n of boundary points, and a corresponding finite set $\vec{v}_1, \ldots, \vec{v}_n$ of ends, which are the inward-pointing tangent directions:
The tangent directions $\vec{v} \in T_{\zeta_{\text{Gauss}}}$ correspond bijectively to elements of $\mathbb{P}^1(\tilde{K})$, the projective line over the residue field of K.
The tangent directions \(\vec{v} \in T_{\zeta_{\text{Gauss}}} \) correspond bijectively to elements of \(\mathbb{P}^1(\tilde{K}) \), the projective line over the residue field of \(K \).

Equivalently, elements of \(T_{\zeta_{\text{Gauss}}} \) correspond to the open disks of radius 1 contained in the closed unit disk \(B(0,1) \), together with the open disk

\[
B(\infty,1) := \mathbb{P}^1(K) \setminus B(0,1).
\]
The tangent directions \(\vec{v} \in T_{\zeta_{\text{Gauss}}} \) correspond bijectively to elements of \(\mathbb{P}^1(\tilde{K}) \), the projective line over the residue field of \(K \).

Equivalently, elements of \(T_{\zeta_{\text{Gauss}}} \) correspond to the open disks of radius 1 contained in the closed unit disk \(B(0,1) \), together with the open disk

\[
B(\infty, 1)^- := \mathbb{P}^1(K) \setminus B(0,1).
\]

The correspondence between elements of \(T_{\zeta_{\text{Gauss}}} \) and open disks is given explicitly by \(\vec{v} \mapsto U(\zeta_{\text{Gauss}}; \vec{v}) \).
More generally, for each point $x = \zeta_{a,r}$ of type II, the set T_x of tangent directions at x is (non-canonically) isomorphic to $\mathbb{P}^1(\tilde{K})$: there is one tangent direction going “up” to infinity, and the other tangent directions correspond to open disks $B(a', r)^-$ of radius r contained in $B(a, r)$.
More generally, for each point $x = \zeta_{a,r}$ of type II, the set T_x of tangent directions at x is (non-canonically) isomorphic to $\mathbb{P}^1(\tilde{K})$: there is one tangent direction going “up” to infinity, and the other tangent directions correspond to open disks $B(a', r)^-$ of radius r contained in $B(a, r)$.

For $x \in \mathbb{P}^1_{\text{Berk}}$, we have:

$$\left| T_x \right| = \begin{cases} \left| \mathbb{P}^1(\tilde{K}) \right| & \text{if } x \text{ of type II} \\ 2 & \text{if } x \text{ of type III} \\ 1 & \text{if } x \text{ of type I or type IV} \end{cases}$$
More generally, for each point $x = \zeta_{a,r}$ of type II, the set T_x of tangent directions at x is (non-canonically) isomorphic to $\mathbb{P}^1(\tilde{K})$: there is one tangent direction going “up” to infinity, and the other tangent directions correspond to open disks $B(a', r)^-$ of radius r contained in $B(a, r)$.

For $x \in \mathbb{P}^1_{\text{Berk}}$, we have:

$$|T_x| = \begin{cases}
|\mathbb{P}^1(\tilde{K})| & x \text{ of type II}
\end{cases}$$
More generally, for each point $x = \zeta_{a,r}$ of type II, the set T_x of tangent directions at x is (non-canonically) isomorphic to $\mathbb{P}^1(\tilde{K})$: there is one tangent direction going “up” to infinity, and the other tangent directions correspond to open disks $B(a', r)^-$ of radius r contained in $B(a, r)$.

For $x \in \mathbb{P}^1_{\text{Berk}}$, we have:

$$|T_x| = \begin{cases}
|\mathbb{P}^1(\tilde{K})| & \text{x of type II} \\
2 & \text{x of type III}
\end{cases}$$
More generally, for each point $x = \zeta_{a,r}$ of type II, the set T_x of tangent directions at x is (non-canonically) isomorphic to $\mathbb{P}^1(\tilde{K})$: there is one tangent direction going “up” to infinity, and the other tangent directions correspond to open disks $B(a', r)^-$ of radius r contained in $B(a, r)$.

For $x \in \mathbb{P}^1_{\text{Berk}}$, we have:

$$|T_x| = \begin{cases}
|\mathbb{P}^1(\tilde{K})| & x \text{ of type II} \\
2 & x \text{ of type III} \\
1 & x \text{ of type I or type IV.}
\end{cases}$$
Following notation introduced by Juan Rivera-Letelier, we write H_{Berk} for the subset of \mathbb{P}^1_{Berk} consisting of all points of type II, III, or IV.

- We refer to H_{Berk} as “Berkovich hyperbolic space”.
Following notation introduced by Juan Rivera-Letelier, we write H_{Berk} for the subset of $\mathbb{P}^1_{\text{Berk}}$ consisting of all points of type II, III, or IV.

- We refer to H_{Berk} as “Berkovich hyperbolic space”.
- We write H^Q_{Berk} for the set of type II points, and H^R_{Berk} for the set of points of type II or III.
Following notation introduced by Juan Rivera-Letelier, we write H_{Berk} for the subset of $\mathbb{P}^1_{\text{Berk}}$ consisting of all points of type II, III, or IV.

- We refer to H_{Berk} as “Berkovich hyperbolic space”.
- We write H^Q_{Berk} for the set of type II points, and H^R_{Berk} for the set of points of type II or III.
- The subset H^Q_{Berk} is dense in $\mathbb{P}^1_{\text{Berk}}$.
Define the **diameter function** \(\text{diam} : \mathbb{A}^1_{\text{Berk}} \to \mathbb{R}_{\geq 0} \) by setting \(\text{diam}(x) = \lim r_i \) if \(x \) corresponds to the nested sequence \(\{B(a_i, r_i)\} \).

- If \(x \in H^R_{\text{Berk}} \), then \(\text{diam}(x) \) is just the diameter (= radius) of the corresponding closed disk.
Define the **diameter function** $\text{diam} : \mathbb{A}^1_{\text{Berk}} \to \mathbb{R}_{\geq 0}$ by setting $\text{diam}(x) = \lim r_i$ if x corresponds to the nested sequence $\{B(a_i, r_i)\}$.

- If $x \in \mathbb{H}^\mathbb{R}_{\text{Berk}}$, then $\text{diam}(x)$ is just the diameter (= radius) of the corresponding closed disk.
- In terms of multiplicative seminorms, we have

$$\text{diam}(x) = \inf_{a \in K} |T - a|_x.$$
Define the **diameter function** $\text{diam} : \mathbb{A}^1_{\text{Berk}} \rightarrow \mathbb{R}_{\geq 0}$ by setting $\text{diam}(x) = \lim r_i$ if x corresponds to the nested sequence $\{B(a_i, r_i)\}$.

- If $x \in H^\mathbb{R}_{\text{Berk}}$, then $\text{diam}(x)$ is just the diameter (= radius) of the corresponding closed disk.
- In terms of multiplicative seminorms, we have
 \[
 \text{diam}(x) = \inf_{a \in K} |T - a|_x.
 \]

Because K is complete, if x is of type IV, then necessarily $\text{diam}(x) > 0$. Thus $\text{diam}(x) = 0$ for $x \in \mathbb{A}^1_{\text{Berk}}$ of type I, and $\text{diam}(x) > 0$ for $x \in H_{\text{Berk}}$.
The space $\mathbb{A}^1_{\text{Berk}}$ is endowed with a natural partial order, defined by saying that

$$x \leq y \iff |f|_x \leq |f|_y \forall f \in K[T].$$
The space $\mathbb{A}^1_{\text{Berk}}$ is endowed with a natural partial order, defined by saying that

$$x \leq y \iff |f|_x \leq |f|_y \forall f \in K[T].$$

In terms of (possibly degenerate) disks, if $x, y \in \mathbb{A}^1_{\text{Berk}}$ are points of type I, II, or III, we have $x \leq y$ if and only if the disk corresponding to x is contained in the disk corresponding to y.
The space $\mathbb{A}^1_{\text{Berk}}$ is endowed with a natural partial order, defined by saying that

$$x \leq y \iff |f|_x \leq |f|_y \ \forall \ f \in K[T].$$

In terms of (possibly degenerate) disks, if $x, y \in \mathbb{A}^1_{\text{Berk}}$ are points of type I, II, or III, we have $x \leq y$ if and only if the disk corresponding to x is contained in the disk corresponding to y.

For each pair of points $x, y \in \mathbb{A}^1_{\text{Berk}}$, there is a unique least upper bound $x \lor y$ in $\mathbb{A}^1_{\text{Berk}}$ with respect to this partial order.
The space $\mathbb{A}^1_{\text{Berk}}$ is endowed with a natural partial order, defined by saying that

$$x \leq y \iff |f|_x \leq |f|_y \forall f \in K[T].$$

In terms of (possibly degenerate) disks, if $x, y \in \mathbb{A}^1_{\text{Berk}}$ are points of type I, II, or III, we have $x \leq y$ if and only if the disk corresponding to x is contained in the disk corresponding to y.

For each pair of points $x, y \in \mathbb{A}^1_{\text{Berk}}$, there is a unique least upper bound $x \lor y$ in $\mathbb{A}^1_{\text{Berk}}$ with respect to this partial order.

Concretely, if $x = \zeta_{a,r}$ and $y = \zeta_{b,s}$ are points of type I, II or III, then $x \lor y$ is the point of $\mathbb{A}^1_{\text{Berk}}$ corresponding to the smallest disk containing both $B(a, r)$ and $B(b, s)$.

Matthew Baker
Lecture 1: The Berkovich Projective Line
If $x, y \in H_{\text{Berk}}$ with $x \leq y$, define the **path metric**

$$\rho(x, y) = \log_v \frac{\text{diam}(y)}{\text{diam}(x)},$$

where \log_v denotes the logarithm to the base q_v, with $q_v > 1$ a suitable constant.
If \(x, y \in \mathcal{H}_{Berk} \) with \(x \leq y \), define the path metric

\[
\rho(x, y) = \log_v \frac{\text{diam}(y)}{\text{diam}(x)},
\]

where \(\log_v \) denotes the logarithm to the base \(q_v \), with \(q_v > 1 \) a suitable constant.

For example, if \(K = \mathbb{C}_p \) and \(|p|_p = 1/p \), we would set \(q_v = p \) in order to have \(\{ \log_v |x|_p : x \in \mathbb{C}_p^* \} = \mathbb{Q} \).
If \(x, y \in \mathcal{H}_{\text{Berk}} \) with \(x \leq y \), define the **path metric**

\[
\rho(x, y) = \log_v \frac{\text{diam}(y)}{\text{diam}(x)},
\]

where \(\log_v \) denotes the logarithm to the base \(q_v \), with \(q_v > 1 \) a suitable constant.

For example, if \(K = \mathbb{C}_p \) and \(|p|_p = 1/p \), we would set \(q_v = p \) in order to have \(\{ \log_v |x|_p : x \in \mathbb{C}_p^* \} = \mathbb{Q} \).

More generally, for \(x, y \in \mathcal{H}_{\text{Berk}} \) arbitrary, we define

\[
\rho(x, y) = \rho(x, x \lor y) + \rho(y, x \lor y).
\]

This gives an **metric** on \(\mathcal{H}_{\text{Berk}} \).
Remarks on the path metric on \mathbb{H}_{Berk}

- For closed disks $B(a, r) \subseteq B(a, R)$, we have

 $$\rho(\zeta_{a, r}, \zeta_{a, R}) = \log_{v} R - \log_{v} r.$$
Remarks on the path metric on H_{Berk}

- For closed disks $B(a, r) \subseteq B(a, R)$, we have
 \[\rho(\zeta_a, r, \zeta_a, R) = \log_v R - \log_v r. \]
- The points of type I should be thought of as infinitely far away from the points of H_{Berk}.
Remarks on the path metric on H_{Berk}

- For closed disks $B(a, r) \subseteq B(a, R)$, we have
 \[\rho(\zeta_a, r, \zeta_a, R) = \log_v R - \log_v r. \]

- The points of type I should be thought of as infinitely far away from the points of H_{Berk}.

- The topology on H_{Berk} defined by the metric ρ is not the subspace topology induced from the Berkovich topology on $\mathbb{P}^1_{\text{Berk}}$. However, the inclusion map $H_{\text{Berk}} \hookrightarrow \mathbb{P}^1_{\text{Berk}}$ is continuous with respect to these topologies.
Remarks on the path metric on H_{Berk}

- For closed disks $B(a, r) \subseteq B(a, R)$, we have
 $$\rho(\zeta, r, \zeta, R) = \log v R - \log v r.$$

- The points of type I should be thought of as infinitely far away from the points of H_{Berk}.

- The topology on H_{Berk} defined by the metric ρ is not the subspace topology induced from the Berkovich topology on $\mathbb{P}_1^{\text{Berk}}$. However, the inclusion map $H_{\text{Berk}} \hookrightarrow \mathbb{P}_1^{\text{Berk}}$ is continuous with respect to these topologies.

- The group $\text{PGL}(2, K)$ of Möbius transformations acts continuously on $\mathbb{P}_1^{\text{Berk}}$ in a natural way compatible with the usual action on $\mathbb{P}_1(K)$, and this action preserves H_{Berk}. One can show that $\text{PGL}(2, K)$ acts via isometries on H_{Berk}, i.e.,
 $$\rho(M(x), M(y)) = \rho(x, y)$$
 for all $x, y \in H_{\text{Berk}}$ and all $M \in \text{PGL}(2, K)$. (This shows that the metric ρ is canonical).
The canonical distance on $\mathbb{A}^1_{\text{Berk}}$

- The diameter function can be used to **extend the usual distance function** $|x - y|$ on K to $\mathbb{A}^1_{\text{Berk}}$ in a natural way by setting

 $$[x, y]_{\infty} = \text{diam}(x \vee y)$$

for $x, y \in \mathbb{A}^1_{\text{Berk}}$.
The canonical distance on $\mathbb{A}^1_{\text{Berk}}$

- The diameter function can be used to extend the usual distance function $|x - y|$ on K to $\mathbb{A}^1_{\text{Berk}}$ in a natural way by setting
 \[[x, y]_{\infty} = \text{diam}(x \vee y) \]
 for $x, y \in \mathbb{A}^1_{\text{Berk}}$.
- We call this extension the canonical distance (or Hsia kernel) on $\mathbb{A}^1_{\text{Berk}}$ (relative to infinity).
The canonical distance on $\mathbb{A}^1_{\text{Berk}}$

- The diameter function can be used to extend the usual distance function $|x - y|$ on K to $\mathbb{A}^1_{\text{Berk}}$ in a natural way by setting
 $$[x, y]_\infty = \text{diam}(x \lor y)$$
 for $x, y \in \mathbb{A}^1_{\text{Berk}}$.
- We call this extension the canonical distance (or Hsia kernel) on $\mathbb{A}^1_{\text{Berk}}$ (relative to infinity).
- If $x, y \in K$, then $[x, y]_\infty = |x - y|$.
The canonical distance on $\mathbb{A}^1_{\text{Berk}}$

- The diameter function can be used to extend the usual distance function $|x - y|$ on K to $\mathbb{A}^1_{\text{Berk}}$ in a natural way by setting

 $$[x, y]_\infty = \text{diam}(x \vee y)$$

 for $x, y \in \mathbb{A}^1_{\text{Berk}}$.

- We call this extension the canonical distance (or Hsia kernel) on $\mathbb{A}^1_{\text{Berk}}$ (relative to infinity).

- If $x, y \in K$, then $[x, y]_\infty = |x - y|$.

More generally:

If $x = \zeta_{a,r}$ and $y = \zeta_{b,s}$ are points of Type I, II, or III, then

$$[x, y]_\infty = \sup_{x_0 \in B(a,r)} \sup_{y_0 \in B(b,s)} |x_0 - y_0|.$$
Properties of $[x, y]_\infty$

1. For y fixed, $[x, y]_\infty$ is continuous in x.
Properties of $[x, y]_\infty$

1. For y fixed, $[x, y]_\infty$ is continuous in x.
2. As a function of two variables, $[x, y]_\infty$ is merely upper semicontinuous.
For y fixed, $[x, y]_{\infty}$ is continuous in x.

2. As a function of two variables, $[x, y]_{\infty}$ is merely upper semicontinuous.

3. For all $x, y, z \in \mathbb{A}^1_{\text{Berk}}$, we have the ultrametric inequality

$$[x, y]_{\infty} \leq \max([x, z]_{\infty}, [y, z]_{\infty}),$$

with equality if $[x, z]_{\infty} \neq [y, z]_{\infty}$.
Properties of $[x, y]_\infty$

1. For y fixed, $[x, y]_\infty$ is continuous in x.
2. As a function of two variables, $[x, y]_\infty$ is merely upper semicontinuous.
3. For all $x, y, z \in \mathbb{A}_\text{Berk}^1$, we have the ultrametric inequality

$$[x, y]_\infty \leq \max([x, z]_\infty, [y, z]_\infty),$$

with equality if $[x, z]_\infty \neq [y, z]_\infty$.
4. $[x, y]_\infty$ satisfies all of the axioms for an ultrametric except we have $[x, x]_\infty > 0$ for $x \in \mathbb{H}_{\text{Berk}}$.