Topics: The vector norm of a matrix

Let \(\| \| \) denote a norm on \(\mathbb{R}_m \) and \(\mathbb{R}_n \). Typically, we think of \(\| x \| = \| x \|_\infty = \max_i |x_i| \), but it can be any norm.

We define the vector norm of a matrix \(A \) by

\[
\| A \| = \max_{\| x \| = 1} \| Ax \|.
\]

We say that the vector norm \(\| A \| \) is “induced” by the norm \(\| \| \). It is a measure of the “size” of the operator.

It is straightforward to show that this definition yields a norm on the vector space of all \(m \times n \) matrices. Moreover, for any vector \(x \neq 0 \) we have that

\[
\| Ax \| = \left\| A \frac{x}{\| x \|} \right\| \| x \| \leq \| A \| \| x \|,
\]

and

\[
\| ABx \| \leq \| A \| \| Bx \| \leq \| A \| \| B \| \| x \|,
\]

so that

\[
\| AB \| \leq \| A \| \| B \|.
\]

Finding the actual number for the norm of a matrix may be complicated for some norms on \(\mathbb{R}_n \). However, for the infinity norm it is easy.

Terminology: Given an \(m \times n \) matrix \(A \) its maximum row sum is the number

\[
R = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|.
\]

Theorem: The vector norm of a matrix \(A \) induced by the infinity norm is equal to its maximum row sum.

Proof: Let \(\| x \|_\infty = 1 \) then by definition \(|x_i| \leq 1 \) and \(|x_k| = 1 \) for some \(k \). Then

\[
\| Ax \|_\infty = \max_i \left| \sum_{j=1}^{n} a_{ij} x_j \right| \leq \max_i \sum_{j=1}^{n} |a_{ij}| = R.
\]
Hence the maximum row sum is always greater than or equal to the infinity vector norm of A.

Conversely, suppose the maximum row sum is obtained from row k of the matrix A. Then choose the vector x defined by

$$x_j = 1 \quad \text{if } a_{kj} \geq 0$$

$$x_j = -1 \quad \text{if } a_{kj} < 0.$$

Then $\|x\|_\infty = 1$ and

$$\|A\|_\infty \geq \|Ax\|_\infty \geq \left| \sum_{j=1}^{n} a_{kj}x_j \right| = \sum_{j=1}^{n} |a_{kj}| = R.$$

Hence here we have a specific vector of length 1 for which the vector norm A dominates the maximum row sum. Therefore,

$$\|A\|_\infty = R.$$

Application: Suppose that the $n \times n$ matrix A is strictly diagonally dominant, i.e.

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \quad \text{for } i = i, \ldots, n.$$

Suppose we want to solve $Ax = b$.

First we observe that if λ is an eigenvalue of A with eigenvector x then we can scale the eigenvector so that its maximum component is equal to +1 for some component k. Then it follows from the eigenvalue equation

$$(a_{kk} - \lambda)x_k + \sum_{j=1, j \neq k}^{n} a_{kj}x_j = 0$$

and strict diagonal dominance that

$$|a_{kk} - \lambda| \leq \sum_{j=1, j \neq k}^{n} |a_{kj}x_j| \leq \sum_{j=1, j \neq k}^{n} |a_{kj}| < |a_{kk}|.$$

This strict inequality implies that $\lambda \neq 0$. Hence the null space of A contains only the zero vector so that

$$Ax = b$$
has a unique solution.

The solution can be found iteratively. We write

\[A = D - B \]

where \(D \) is the diagonal of \(A \) and \(B = A - D \). The solution \(x^* \) of \(Ax = b \) satisfies the equation

\[x = D^{-1}Bx + D^{-1}b \]

where \(D^{-1} = \text{diag}\{1/a_{11}, 1/a_{22}, \ldots, 1/a_{nn}\} \).

We shall find it from the so-called Jacobi iteration

\[x^{k+1} = D^{-1}Bx^k + D^{-1}b \]

where \(x^0 \) is an initial guess. The advantage of such iterative solution is its applicability to huge linear systems where the entries of \(A \) are mostly zero and do not enter into the actual computation. However, the iteration will not always converge. The next theorem gives insight when the iteration will work.

Theorem: For a strictly diagonally dominant matrix \(A \) the Jacobi iteration converges to the unique solution \(x^* \) of \(Ax = b \).

Proof: Let \(e^k \) denote the error in iteration \(k \)

\[e^k = x^k - x^*. \]

Then

\[e^{k+1} = D^{-1}Be^k = (D^{-1}B)^{k+1}e^0 \]

so that

\[\|e^k\| = \|(D^{-1}B)^ke^0\| \leq \|(D^{-1}B)^k\|\|e^0\|. \]

If \((D^{-1}B)^k \to 0 \) as \(k \to \infty \) then \(e^k \to 0 \) so that

\[\lim_{k \to \infty} x^k = x^*. \]
It follows from the vector norm properties of matrices that

\[\|(D^{-1}B)^k\| \leq \|D^{-1}B\|^k. \]

From the above theorem we know that

\[D^{-1}B = \max_i \left| \sum_{j=1}^{n} \frac{a_{ij}}{a_{ii}} \right|. \]

Strict diagonal dominance implies that

\[\|D^{-1}B\|_\infty \leq R < 1. \]

Thus

\[\|e^k\| < R^k\|e^0\| \to 0 \quad \text{as} \quad k \to \infty. \]

The condition \(\|A\| < 1 \) for a square matrix \(A \) in some vector norm insures that

\[\lim_{k \to \infty} A^k = 0 \quad \text{(the zero matrix)} \]

because

\[0 \leq \|A^k\| < \|A\|^k. \]

However, it may well be that in a particular norm

\[\|A\| > 1 \quad \text{and yet that} \quad \lim_{k \to \infty} A^k \to 0. \]

For example,

\[A = \begin{pmatrix} 0 & 10^{10} \\ 0 & 0 \end{pmatrix} \]

satisfies \(\|A\|_\infty = 10^{10} \)

but \(A^k = 0 \) for \(k \geq 2. \)

The relevant question for applications is: Given a square matrix \(A \) what is the choice of vector norm for which \(\|A\| \) is smallest?

We observe first that for any eigenvalue and eigenvector of \(A \) we have

\[\|Ax\| = |\lambda|\|x\| \]

76
regardless of the norm chosen. Moreover, if in this norm the eigenvector is scaled to have length 1 then it follows that

\[|\lambda| = \|Ax\| \leq \|A\|. \]

Hence in any vector norm chosen for \(R^n \) the associated norm of \(A \) must satisfy

\[\rho(A) = \max_i |\lambda_i| \leq \|A\|. \]

\(\rho(A) \) is known as the spectral radius of the matrix \(A \) and represents a lower bound on any vector norm of \(A \).

There are infinitely many norms which can be imposed on \(R^n \) and each induces a vector norm on the \(n \times n \) matrices. For example, if we define \(\|x\| = \|Cx\|_p \) for \(p \in [1, \infty] \) for a given non-singular matrix \(C \) then \(\| \| \) is a norm on \(R^n \). Now, if \(A \) is an \(n \times n \) matrix and we consider the vector norm induced by \(\| \| \), then we have by definition

\[\|A\| = \max_{\|x\|=1} \|Ax\| = \max_{\|x\|=1} \|CAx\|_p = \max_{\|Cx\|_p=1} \|CAx\|_p. \]

But for each such \(x \) there is a unit vector \(y \) such that \(Cx = y \). Then

\[\|A\| = \max_{\|y\|_p=1} \|CA^{-1}y\|_p \]

so that

\[\|A\| = \|CA^{-1}\|_p. \]

The transformation of \(A \) into \(CA^{-1} \) is called a similarity transformation. We have seen above if the \(n \times n \) matrix \(A \) has \(n \) linearly independent eigenvectors then it follows from the eigenvector equations

\[AX = X\Lambda \]

where the \(j \)th column of \(X \) is the eigenvector corresponding to the eigenvalue \(\lambda_j \) that in the norm

\[\|x\| = \|X^{-1}x\|_p \]

the induced matrix norm \(\|A\| \) is

\[\|A\| = \|X^{-1}AX\|_p = \|\Lambda\|_p. \]
In particular, if $p = \infty$ then $\|A\|$ is equal to the maximum row sum of A so that

$$\|A\| = \rho(A).$$

In this case the size of A is equal to its spectral radius and $A^k \to 0$ as $k \to \infty$ whenever $\rho(A) < 1$. This analysis applies to matrices with n distinct eigenvalues and to Hermitian matrices.

Not every square matrix is similar to a diagonal matrix. However, it is possible, but not easy, to prove via the Jordan canonical form that for any $\epsilon > 0$ the matrix A can be transformed with a similarity transformation into a matrix whose diagonal entries are the n eigenvalues of A, and whose entries $a_{i-1,i}$ are either 0 or ϵ. Thus, even when A is not diagonalizeable there is a norm on \mathbb{R}^n such that

$$\|A\| = \rho(A) + \epsilon.$$

This implies that if $\rho(A) < 1$ then for sufficiently small $\epsilon > 0$

$$\|A\| < 1$$

so that again $A^k \to 0$ as $k \to \infty$. The matrix C in this similarity transformation is generally not available but also not needed for the conclusion that $A^k \to 0$.

Hence the smallest possible vector norm of a matrix A is roughly equal to its spectral radius.