1. Prove that

\[1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1. \]

Solution: We give a proof by induction. For \(n = 0 \) the left hand side equals 1, and the right hand side equals \(2^1 - 1 = 1 \), which proves the base case. Now suppose the equality holds for \(k \geq 1 \), and we show that it holds for \(k + 1 \). We have

\[
1 + 2 + 2^2 + \cdots + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1} \\
= 2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1,
\]

which means that the equality holds when \(n = k + 1 \). \(\square \)

2. Prove or disprove:

\[2 + 4 + 6 + 8 + \cdots + 2n = (n - 1)(n + 2). \]

Solution: This is false, it should be \(n(n + 1) \) on the right hand side since the left hand side equals \(2(1 + 2 + 3 + \cdots + n) = 2 \cdot \frac{n(n+1)}{2} \).

\(\square \)

3. Valid? Prove or disprove.

\[
\begin{align*}
(a) & \quad p \rightarrow q \\
 & \quad q \vee r \\
 & \quad r \rightarrow (\neg q) \\
(b) & \quad p \rightarrow q \\
 & \quad (\neg r) \vee (\neg q) \\
 & \quad r \\
 & \quad (\neg p)
\end{align*}
\]

Solution: Part (a) is invalid. When \(p, q, r \) are all true the assumptions are true but the conclusion is false. Part (b) is valid. We give a simple proof by contradiction. Suppose, seeking a contradiction, that the argument is invalid. Then, for some assignment the conclusion is false and the assumptions are all true. If the conclusion is false then \(p \) is true. By the first assumption and the fact that \(p \) is true we get that \(q \) is true. By the second assumption and the fact that \(q \) is true we get that \(r \) is false, but \(r \) is true by the third assumption, which is a contradiction.

\(\square \)
4. Valid? Prove or disprove.

If I work hard, then I earn lots of money.
If I don’t pay high taxes, then I don’t work hard.
If I work hard, then I pay high taxes.

Solution: The second assumption is the contrapositive of the conclusion, so the argument is clearly valid.

5. True or False questions.

(i) If $p \land q$ is true, then $p \lor q$ is true. TRUE
(ii) If $p \rightarrow q$ is true and $q \rightarrow p$ is true, then p is logically equivalent to q. TRUE
(iii) If \mathcal{A} is a tautology and \mathcal{B} is a contradiction, then $\mathcal{A} \land (\neg \mathcal{B})$ is a tautology. TRUE
(iv) If $\mathcal{A} \iff \mathcal{B}$ and \mathcal{C} is any statement, then $(\mathcal{A} \rightarrow \mathcal{C}) \iff (\mathcal{B} \rightarrow \mathcal{C})$. TRUE
(v) If the premises of an argument are all contradictions, then the argument is valid. TRUE
(vi) The statement $(p \rightarrow q) \iff (q \land (r \rightarrow s))$ evaluates to TRUE when all the atomic statements p, q, r, s are true. TRUE

6. In the math department there are 30 personal computers (PCs).

- 20 have A drives,
- 8 have 19-inch monitors,
- 25 are running Windows XP,
- 20 have at least two of these properties,
- 6 have all three properties.

(a) How many PCs have at least one property?
(b) How many have none of these properties?
(c) How many have exactly one?

SOLUTION: The number of PCs that have at least one property can be calculated as follows. Let A, B, C denote the sets of computers having A drives, 19-inch monitors, and those that are running Windows XP, respectively. Then the number PCs with at least one property is
the number of elements in the set $A \cup B \cup C$. Note that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. We have

$$|A \cup B \cup C| = |A| + |B \cup C| - |A \cap (B \cup C)|$$
$$= |A| + (|B| + |C| - |B \cap C|) - |(A \cap B) \cup (A \cap C)|$$
$$= |A| + |B| + |C| - |B \cap C| - (|A \cap B| + |A \cap C| - |(A \cap B) \cap (A \cap C)|)$$
$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

We already have $|A|, |B|, |C|$, and $|A \cap B \cap C|$. So, we just need to compute the number

$$|A \cap B| + |A \cap C| + |B \cap C|.$$

Note that this number is the number of elements in exactly 2 sets plus three times the number of elements in all 3 sets (draw a Venn diagram if you don’t see this immediately, or read the simple proof below), which can also be said to be the number of elements in at least 2 sets plus two times the number of elements in all 3 sets. Hence, this number is $20 + 2 \times 6 = 32$. So, the number of elements in at least one set is $20 + 8 + 25 - (32) + 6 = 27$.

Next, the number with none of the properties is the total number of computers minus the number that have at least one property, so $30 - 27 = 3$.

Finally the number with exactly one property is the number that have at least one property minus the number that have exactly two properties, so $27 - 20 = 7$.

Claim: For any finite sets A, B, C contained in some universal finite set U, the number $|A \cap B| + |A \cap C| + |B \cap C|$ equals the number of elements that are in at least 2 of the sets plus two times the number of elements that are in all three sets. Proof: Denote by S the elements of U that are in at least 2 sets. We are asked to show that

$$|A \cap B| + |A \cap C| + |B \cap C| = |S| + 2|A \cap B \cap C|.$$
7. How many ways can you get a total of 6 when rolling two dice?

Solution: The possible ways to get 6 are if the die say (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), so there are 5 possibilities.

8. How many three digit numbers contain the digits 2 and 5 but not 0, 3, or 7?

Solution: I will consider 3 digit numbers in the range 000-999. In this case, 2 of the digits must be 2 and 5, and the last digit can be one of 1,2,4,5,6,8, or 9. There are 7 choices for the unknown digit, and there are several ways to permute the three digits once all are chosen. If the chosen digit is 2 or 5, then there are 3 permutations, and if the chosen digit is 1,4,6,8, or 9, there are 6 permutations. So, there are a total of $2 \times 3 + 5 \times 6 = 36$ possible numbers.

9. In a group of 29 people, how many people must there be whose birthdays are in the same month?

Solution: There are 12 months, so in a group of 29 people, by the Strong Pigeon Hole Principle, there are $\lceil \frac{29}{12} \rceil = \lceil 2.4167 \rceil = 3$ people who have birthdays in the same month.