1. Define what it means for X to be a continuous random variable. How is the probability density function $f(x)$ used to calculate $P(X \leq x)$? What does the distribution function $F(x)$ measure?

Solution: A random variable X is a continuous random variable if it takes values in \mathbb{R}, not just values in some discrete set such as \mathbb{N} or \mathbb{Z}. The p.d.f. $f(x)$ is used to calculate $P(X \leq x)$ via integration, $P(X \leq x) = \int_a^x f(t) \, dt$, where the space of X is (a, b) and $a, b \in \mathbb{R} \cup \{\pm \infty\}$. The distribution function $F(x) = P(X \leq x)$ measures the probability that X is less than x (or equal to x, since integrating over a single point yields zero).

2. Cars arrive randomly at a 200 second stoplight (i.e., a stoplight which is red for 200 seconds). Let X be the amount of time a randomly selected car has to wait at the light before it turns green. If X is $U(0, 200)$, meaning that it is uniformly distributed on the interval $[0, 200]$, find the p.d.f. of X, and find the probability that the car must wait longer than 2 minutes. What is the probability that the car has to wait between 1 and 2 minutes at the light?

Solution: If X is $U(0, 200)$ distributed continuously and uniformly on $[0, 200]$ then $f(x) = \frac{1}{200}$, since $f(x)$ must be constant and with this p.d.f. $\int_0^{200} \frac{1}{200} \, dt = 1$. Note that a simple calculation shows that the mean is $\mu = \frac{a+b}{2} = \frac{0+200}{2} = 100$ the midpoint of the interval $[0, 200]$, and the variance of X is $\sigma^2 = \frac{(b-a)^2}{2} = 20,000$.

The probability that the car has to wait longer than 2 minutes is $P(X > 120) = P(120 < X < 200) = \int_{120}^{200} \frac{1}{200} \, dt = (200 - 120)/200 = 40\%$.

The probability that the car has to wait between 1 and 2 minutes is $P(60 < X < 120) = \int_{60}^{120} \frac{1}{200} \, dt = (120 - 60)/200 = 30\%$.
3. Suppose the lifespan of a certain type of electrical component follows an exponential distribution with a mean life of 50 days. If \(X \) denotes the life of this component (in days) then find \(P(X > x) \), which is a function of \(x \) the number of days before failure. Find \(P(X > 20) \) and also find the conditional probability \(P(X > 40 | X > 20) \), the probability that the component lasts 40 days given that it lasts 20 days. Are these probabilities equal? Is an exponential a good model for the lifespan of a component?

Solution: We have that the p.d.f. of the lifespan \(X \) in days is \(f(x) = \frac{1}{50}e^{-x/50} \), and hence

\[
P(X > x) = 1 - P(X \leq x) = 1 - \int_{0}^{x} \frac{1}{50}e^{-t/50} \, dt = e^{-x/50}.
\]

Hence \(P(X > 20) = e^{-20/50} \approx .6703 \). We have

\[
P(X > 40 | X > 20) = \frac{P(X > 40)}{P(X > 20)} = \frac{e^{-40/50}}{e^{-20/50}} = e^{-20/50} \approx .6703.
\]

It seems that the exponential distribution is not a good model for the lifespan of a component since you should expect each span of 20 days to have a greater likelihood of failure than the previous span.

\[\square\]

4. If 10 observations are taken independently from a chi-square distribution with 19 degrees of freedom, find the probability that exactly 2 of the 10 sample items exceed 30.14.

Solution: Let \(X \) be the value of the observation. From Table IV we have that \(P(X > 30.14) = .05 \). So, the probability that 2 of the 10 sample items exceed 30.14 is exactly

\[
\binom{10}{2} (.05)^2 (.95)^8 = .0746.
\]

\[\square\]
5. Cars arrive at a toll booth at a mean rate of three cars every 4 minutes according to a Poisson process. What is the probability that there are fewer than two cars in a 4 minute period? Find the probability that the toll booth collector has to wait longer than 10 minutes to collect the 9th toll.

Solution: There are several ways to solve this problem, either by thinking of the waiting time or the number of occurrences in an interval (I'll do one of each). Let \(X \) be the waiting time until the 2nd car enters the toll booth. Then \(X \) follows a gamma distribution with \(\alpha = 2 \), has p.d.f.

\[
f(x) = \frac{16}{9} x e^{-4x/3}, \quad 0 \leq x < \infty, \quad \theta = \frac{3}{4}, \quad \mu = \frac{3}{2}.
\]

We have that the probability that less than 2 cars enter the toll booth in the first 4 minutes is

\[
P(X > 4) = 1 - \int_0^4 \frac{16}{9} x e^{-4x/3} \, dx.
\]

We solve this integral using integration by parts.

\[
\int_0^4 \frac{16}{9} x e^{-4x/3} \, dx = \left[-\frac{4x}{3} e^{-4x/3} \right]_0^4 - \int_0^4 \frac{4}{3} e^{-4x/3} \, dx
\]

\[
= -\frac{16}{3} e^{-16/3} - e^{-4x/3} \bigg|_0^4
\]

\[
= -\frac{16}{3} e^{-16/3} - e^{-16/3} + 1.
\]

Hence, \(P(X > 4) = 1 - \left(-\frac{16}{3} e^{-16/3} - e^{-16/3} + 1 \right) \approx .031 \).

Now let \(Y \) be the number of occurrences (cars at the toll booth) in a 10 minute span of time. Then \(Y \) follows the Poisson distribution with mean \(\mu = \frac{3}{4} \cdot 10 = 7.5 \), and hence the p.d.f. of \(Y \) is \(g(y) = \frac{(7.5)^y e^{-7.5}}{y!} \). We are asked to find the probability that the 9th toll takes longer than 10 minutes to collect, which is \(P(Y \leq 9) \approx .776 \) using Table III.