Math. 2403, Practice Test2, Solutions

1. Use the method of undetermined coefficients or variation of parameters to solve the initial value problem

\[y'' - y = -4xe^{-x}, \quad y(0) = 0, \quad y'(0) = 1. \]

A general solution of the homogeneous equation is \(y_h(x) = c_1e^x + c_2e^{-x} \). We now use the method of undetermined coefficients and look for a particular solution of the form \(y_p(x) = x^s(Ax + B)e^{-x} \). Since \(Be^{-x} \) is a solution of the homogeneous equation we take \(s = 1 \). Then \(y_p(x) = (Ax^2 + Bx)e^{-x} \) and substituting \(y_p \) for \(y \) in the equation we get

\[-4Axe^{-x} + (2A - 2B)e^{-x} = -4xe^{-x}\]

which gives \(A = 1, B = 1 \). Therefore the general solution is

\[y(x) = c_1e^x + c_2e^{-x} + (x^2 + x)e^{-x}. \]

We now need to find \(c_1 \) and \(c_2 \). We must have

\[0 = c_1 + c_2, \quad 1 = c_1 - c_2 + 1 \]

and so \(c_1 = c_2 = 0 \). Therefore finally

\[y(x) = (x^2 + x)e^{-x}. \]

2. An 8-kg mass is attached to a spring hanging from the ceiling, thereby causing the spring to stretch 1.96 m upon coming to rest at equilibrium. At time \(t = 0 \), an external force \(f(t) = \cos 2t \) N is applied to the system. The damping constant for the system is 3 N-sec/m. Determine the steady state solution of the system (i.e. the part of the solution that is left for big \(t \) after the transient solution has been eliminated.) Assume that \(g = 9.8 \) m/sec\(^2\).

We first calculate the spring constant \(k \). We must have \(8 \cdot 9.8 = k \cdot 1.96 \) which gives \(k = 40 \). Therefore the equation of motion is

\[8x'' + 3x' + 40x = \cos 2t. \]

The characteristic polynomial has roots

\[r_{\pm} = \frac{-3 \pm \sqrt{9 - 4 \cdot 8 \cdot 40}}{16} \]

that both have negative real parts. Therefore

\[\lim_{t \to \infty} x_h(t) = 0. \]
We now look for \(x_p(t) = A \cos 2t + B \sin 2t \). Computing the derivatives of \(x_p \) and plugging them into the equation we obtain
\[
8(-4A \cos 2t - 4B \sin 2t) + 3(-2A \cos 2t + 2B \sin 2t) + 40(A \cos 2t + B \sin 2t) = \cos 2t
\]
which produces a system
\[
8A + 6B = 1, \quad 8B - 6A = 0.
\]
Solving it we get \(A = 0.08, B = 0.06 \). Therefore a general solution is
\[
x(t) = x_h(t) + 0.08 \cos 2t + 0.06 \sin 2t
\]
and since the homogeneous part \(x_h(t) \) goes to 0 as \(t \to \infty \) (it is the transient solution) the steady state solution is equal to \(x_p(t) = 0.08 \cos 2t + 0.06 \sin 2t \). Notice that the amplitude of the steady state solution is equal to \(C = \sqrt{0.08^2 + 0.06^2} = 0.1 \) and the phase angle is equal to \(\alpha = \arctan(0.06/0.08) = \arctan(3/4) \). Therefore we can rewrite the above function as \(0.1 \cos(2t - \arctan(3/4)) \).

3.(a) Is the function
\[
f(t) = e^{t^2/2}.
\]
of exponential order \(\alpha \) for some \(\alpha \)? If yes, find the range of \(\alpha \).

Since \(t^2/(t + 1) < t \) for \(t > 0 \) we have
\[
e^{t^2/2} < e^{\alpha t}
\]
for every \(\alpha \geq 1 \). On the other hand if \(\alpha < 1 \) then
\[
\lim_{t \to +\infty} \left(\frac{t^2}{t + 1} - \alpha t \right) \to +\infty
\]
and so \(f(t) \) is not of exponential order \(\alpha \) for \(\alpha < 1 \). Therefore \(f(t) \) is of exponential order \(\alpha \) for \(\alpha \geq 1 \).

(b) Find \(L\{f(t)\} \) if
\[
f(t) = \begin{cases}
e^{2t} & \text{if } 0 < t < 3 \\
1 & \text{if } t > 3.
\end{cases}
\]
\[
L\{f\}(s) = \int_0^3 e^{-st} e^{2t} dt + \int_3^\infty e^{-st} dt = \frac{1}{2-s} e^{t(2-s)} \bigg|_0^3 + \frac{e^{-3s}}{s}
\]
\[
= \frac{1}{2-s} (e^{3(2-s)} - 1) + \frac{e^{-3s}}{s} \quad \text{for } s > 2.
\]

4. Find \(L^{-1}\{F(s)\} \) if
\[
F(s) = \frac{3s + 5}{s^2 - 2s + 5}.
\]
\[\frac{3s + 5}{s^2 - 2s + 5} = \frac{3(s - 1)}{(s - 1)^2 + 4} + \frac{8}{(s - 1)^2 + 4}. \]

Therefore

\[L^{-1}\{F(s)\} = 3e^t \cos 2t + 4e^t \sin 2t. \]

5. Use Laplace transform to solve the initial value problem

\[y''' + y'' + y' + y = 1, \quad y(0) = y'(0) = 0, y''(0) = 1. \]

Taking Laplace transform of the equation we obtain

\[s^3Y(s) - 1 + s^2Y(s) + sY(s) + Y(s) = \frac{1}{s}. \]

which gives us

\[Y(s) = \frac{1 + s}{s(s^3 + s^2 + s + 1)} = \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1}. \]

Therefore, taking inverse Laplace transform, we obtain

\[y(t) = 1 - \cos t. \]