1)(a) These graphs are **not** isomorphic.

The first graph has 9 vertices, but the second only has 8.
So, there isn't a bijection between the vertices.

(b) These graphs are isomorphic. Calling the left graph $G_1 = (V, E)$ and the right graph $G_2 = (V_2, E_2)$ we have an isomorphism $\phi : V \rightarrow V_2$ defined by:

\[
\begin{align*}
\phi(1) &= 1 \\
\phi(2) &= 2 \\
\phi(3) &= 5 \\
\phi(4) &= 6 \\
\phi(5) &= 7 \\
\phi(6) &= 4 \\
\phi(7) &= 3
\end{align*}
\]

Visually, we can unwind G_1:

\begin{align*}
5 &\rightarrow 4 \\
6 &\rightarrow 3 \\
7 &\rightarrow 2
\end{align*}

G_1 & G_2 are both $\cong C_7$, a 7-cycle.

(c) No isomorphism exists.

In the first graph, the degree 4 vertices aren't adjacent, but in the second they are.

2.) Exercise 5.9 #7

Claim: $A \cong C$, and no other pair is isomorphic.

Proof: D has a vertex of degree 1, unlike any other graph. Thus, D isn't isomorphic to the others.

- $A \cong C$: There is an isomorphism ϕ defined by:

\[
\begin{align*}
\phi(v_1) &= w_1 \\
\phi(v_2) &= w_2 \\
\phi(v_3) &= w_3 \\
\phi(v_4) &= w_4 \\
\phi(v_5) &= w_5
\end{align*}
\]

Corresponding to A:

\[
\begin{align*}
v_1 &\rightarrow v_2 \\
v_3 &\rightarrow v_4 \\
v_5 &\rightarrow v_6
\end{align*}
\]
Next, because isomorphisms preserve neighbors, they must also preserve paths & cycles.

(if \(x_1 \equiv x_2 \equiv x_3 \), then \(\phi(x_1) \equiv \phi(x_2) \equiv \phi(x_3) \))

B has no cycle of length 3, but A & C do. Thus, B \# A, B \# C.

\[(y_2, y_3, y_6) \quad (\overline{w}_3, \overline{w}_4, \overline{w}_5)\]

This proves our claim.

3) Exercise 5.9 #8

Let's use the old Eulerian circuit algorithm.

\[C=(4)\]

Loop 1: \[C=(1, 4, 8, 3, 2, 7, 12, 2, 9, 3, 5, 6, 7)\]

(marked in red.)

Loop 2: The first vx with unused edges in \(C\) is 4.

New path:

\[(4, 9, 10, 2, 11, 4)\] (marked in green)

Store this into \(C\) where \(H\) was before:

\[(1, 4, 9, 10, 2, 11, 4, 8, 3, 2, 7, 12, 2, 9, 3, 5, 6, 7)\] (Ans)

(All edges used now)

4) Exercise 5.9 #10

Vertices 12 & 5 have odd degree, but all other vx's have even degree. Adding one edge between 12 & 5 makes all vx's have even degree, resulting in the graph becoming Eulerian.

5) This statement is true.

Proof:

\[\rightarrow\] If an Eulerian trail exists, we must enter & leave any particular vx the same number of times -- except for perhaps the first and last vx's -- meaning that all but at most 2 vx's have even degree, so at most 2 have odd degree.

\[\rightarrow\] On the flip side, consider a graph \(G\) with at most 2 vx's of odd degree. Because the #vx's of odd degree in any graph is even, \(G\) has either 2 or 0 vx's of odd degree.
If G has 0 odd degree vxs, it has an Euler circuit, which is an Eulerian trail.

If G has 2 odd degree vxs, form a graph G' by adding an edge between these vxs. G' has no odd degree vxs, and so it has an Eulerian circuit. Cut out the edge we just added, and we're left with an Eulerian trail in G.

(Math notation wise, if $(x_1, x_2, ..., x_k, x_{k+1}, ..., x_n)$ is a circuit in G', and x_k and x_{k+1} in G, then $(x_{k+1}, ..., x_n, x_1, x_2, ..., x_k)$ is an Eulerian trail in G.)

6) Exercise 5.9 #12

How many edges are possible in a graph with 17 vxs?

$$\binom{17}{2} = \frac{17 	imes 16}{2} = 136$$

Thus, the graph in question has all but 7 possible edges.

Even if all 7 missing edges were touching 1 vx, it would still have

$$17 - 1 - 7 = 9$$

neighbors. Thus, every vx has at least 9 neighbors, and

$$9 = \left\lceil \frac{17}{2} \right\rceil.$$ Thus, by Theorem 5.5 (Dirac), the graph must be Hamiltonian.

7) Exercise 5.9 #14

The vxs in red form a 4-clique, showing we need at least 4 colors. I found a 4-coloring (as shown), so the graph's chromatic number is 4.
8.) a) 2 (no triangles) b) 3 (a triangle, no) c) 4 - all vs connected,

9) There's only one way to color the top up to switching 1, 2, & 3.

Needs a 4th color.

So, \(\chi(G) = 4 \), \(w(G) = 3 \) because it contains \(\Delta \)'s but no 4 vs are all attached.

10.) Exercise 5.9#28

It is planar, with a few small adjustments.

j & i were pushed down, and edge gb was relocated.