Scalar Separable Equations: \(\frac{dy}{dx} = f(x)g(y) \)

Solution Method: Rewrite the given equation (symbolically):
\[
\frac{dy}{g(y)} = f(x)dx.
\]

Now integrate both sides:
\[
\int \frac{dy}{g(y)} = \int f(x)dx.
\]
This gives a relation between \(x \) and \(y \). If you can solve this equation for \(y \) in terms of \(x \), go ahead.

Example: Solve the initial value problem \(\frac{dy}{dx} = e^{2y} \cos x, y(0) = -\frac{1}{3} \).

Solution: Rewrite the diff. eq. into \(e^{-2y}dy = \cos xdx \) and then integrate:
\[
\int e^{-2y}dy = \int \cos xdx.
\]
This gives
\[
-\frac{1}{2}e^{-2y} = \sin x + C,
\]
where \(C \) is an arbitrary constant. Solve the last equation for \(y \) in terms of \(x \):
\[
y = -\frac{1}{2} \ln(-2 \sin x - 2C).
\]
This is the general solutions to the given ODE. Now examine the initial condition:
\[
y(0) = -\frac{1}{3} \quad \Rightarrow \quad -\frac{1}{3} = -\frac{1}{2} \ln(-2C) \quad \Rightarrow \quad C = -\frac{1}{2}e^{2/3}.
\]
Thus, the answer to the problem is
\[
y = -\frac{1}{2} \ln(-2 \sin x + e^{2/3}).
\]
Exercises

Solve the following ODEs and initial value problems of ODEs.

[1] \(y'(t) + (2t - \sin 2t)y(t) = 0 \)

[2] \(tx'(t) + 4x(t) = 0 \) \((t > 0) \), \(x(3) = 2 \)

[3] \(y'(x) = x^2 e^x y(x)^2 \)

[4] \(\frac{dy}{dx} = (1 + 6x)y(1 - y) \), \(y(0) = 1/3 \)

Answers

[1] \(y = Ce^{-t^2 - 0.5 \cos 2t} \)

[2] \(x(t) = 162t^{-4} \)

[3] \(y = -1/(C + x^2 e^x - 2xe^x + 2e^x) \)

[4] \(y = \frac{e^{x+3x^2}}{2 + e^{x+3x^2}} \)