Second Order Homogeneous Linear Differential Equations:
the method of reduction of order

Xu-Yan Chen
Second Order Homogeneous Linear Differential Equations:

\[a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0 \]

General solution structure:

\[y(t) = C_1y_1(t) + C_2y_2(t) \]

where \(y_1(t) \) and \(y_2(t) \) are two linearly independent solutions.

No general solution method.
Second Order Homogeneous Linear Differential Equations:

\[a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0 \]

General solution structure:

\[y(t) = C_1 y_1(t) + C_2 y_2(t) \]

where \(y_1(t) \) and \(y_2(t) \) are two linearly independent solutions.

No general solution method.

What is this note about?
Second Order Homogeneous Linear Differential Equations:

\[a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0 \]

General solution structure:

\[y(t) = C_1 y_1(t) + C_2 y_2(t) \]

where \(y_1(t) \) and \(y_2(t) \) are two linearly independent solutions.

No general solution method.

What is this note about? Reduction of Order.
Second Order Homogeneous Linear Differential Equations:

\[a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0 \]

General solution structure:

\[y(t) = C_1 y_1(t) + C_2 y_2(t) \]

where \(y_1(t) \) and \(y_2(t) \) are two linearly independent solutions.

No general solution method.

What is this note about? Reduction of Order.

If you can give me one, just one, nonzero solution \(y_1(t) \),
Second Order Homogeneous Linear Differential Equations:

\[a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0 \]

General solution structure:

\[y(t) = C_1 y_1(t) + C_2 y_2(t) \]

where \(y_1(t) \) and \(y_2(t) \) are two linearly independent solutions.

No general solution method.

What is this note about? Reduction of Order.

If you can give me one, just one, nonzero solution \(y_1(t) \), I will get you all solutions.
Second Order Homogeneous Linear Differential Equations:

\[(\ast)y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:
Second Order Homogeneous Linear Differential Equations:

\[(\ast)y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
Second Order Homogeneous Linear Differential Equations:

\[(*) \ y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0. \]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0 \) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t) \).

Substitute \(y(t) = y_1(t)u(t) \) in the eq \((*) \), it simplifies to

\[(*) \ u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0. \]

Set \(v(t) = u'(t) \). The eq \((*) \) becomes a 1st order linear eq:

\[(*) \ v \quad b_2(t)v''(t) + b_1(t)v'(t) = 0. \]

Solve \((*) \) \(v \) by either integrating factor or separating the variables (both work).

Get \(u(t) \) from \(v(t) \):

\[u(t) = \int v(t) \, dt. \]

Finally, get \(y(t) \) from \(u(t) \):

\[y(t) = y_1(t)u(t). \]
Second Order Homogeneous Linear Differential Equations:

\[(*)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((*)_y\). It simplifies to
 \[(*)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]
Second Order Homogeneous Linear Differential Equations:

\[(*)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((*)_y\). It simplifies to

\[(*)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]

Details of the derivation:

\[a_2(t)(y_1u)'' + a_1(t)(y_1u)' + a_0(t)y_1u = 0,\]
Second Order Homogeneous Linear Differential Equations:

\[(*)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((*)_y\). It simplifies to

\[(*)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]

Details of the derivation:

\[
\begin{align*}
 a_2(t)(y_1 u)'' + a_1(t)(y_1 u)' + a_0(t)y_1 u &= 0, \\
 a_2(y_1 u'' + 2y_1' u' + y_1'' u) + a_1(y_1 u' + y_1' u) + a_0 y_1 u &= 0,
\end{align*}
\]
Second Order Homogeneous Linear Differential Equations:

\[(*)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((*)_y\). It simplifies to

\[(*)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]

Details of the derivation:

\[a_2(t)(y_1u)'' + a_1(t)(y_1u)'+ a_0(t)y_1 u = 0,\]
\[a_2(y_1u'' + 2y_1' u' + y_1''u) + a_1(y_1u' + y_1' u) + a_0y_1 u = 0,\]
\[a_2y_1u'' + (2a_2y_1' + a_1y_1)u' + (a_2y_1'' + a_1y_1' + a_0y_1)u = 0.\]
Second Order Homogeneous Linear Differential Equations:

\[(*)_y\quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((*)_y\). It simplifies to

\[(*)_u\quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]
Second Order Homogeneous Linear Differential Equations:

\[(*)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((*)_y\). It simplifies to
 \[(*)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]
- Set \(v(t) = u'(t)\). The eq \((*)_u\) becomes a 1st order linear eq:
 \[(*)_v \quad b_2(t)v'(t) + b_1(t)v(t) = 0.\]
Second Order Homogeneous Linear Differential Equations:

\[(*)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0. \]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0 \) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t) \).
- Substitute \(y(t) = y_1(t)u(t) \) in the eq \((*)_y \). It simplifies to
 \[(*)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0. \]
- Set \(v(t) = u'(t) \). The eq \((*)_u \) becomes a 1st order linear eq:
 \[(*)_v \quad b_2(t)v'(t) + b_1(t)v(t) = 0. \]
- Solve \((*)_v \) by either *integrating factor* or *separating the variables* (both work).
Second Order Homogeneous Linear Differential Equations:

\[(*)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((*)_y\). It simplifies to

 \[(*)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]

- Set \(v(t) = u'(t)\). The eq \((*)_u\) becomes a 1st order linear eq:

 \[(*)_v \quad b_2(t)v'(t) + b_1(t)v(t) = 0.\]

- Solve \((*)_v\) by either integrating factor or separating the variables (both work).
- Get \(u\) from \(v\): \(u(t) = \int v(t)dt\).
Second Order Homogeneous Linear Differential Equations:

\[(\ast)_y \quad a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.\]

The Method of Reduction of Order:

- To start, a solution \(y_1(t) \neq 0\) needs to be provided/prepared.
- Set \(y(t) = y_1(t)u(t)\).
- Substitute \(y(t) = y_1(t)u(t)\) in the eq \((\ast)_y\). It simplifies to
 \[(\ast)_u \quad b_2(t)u''(t) + b_1(t)u'(t) = 0.\]
- Set \(v(t) = u'(t)\). The eq \((\ast)_u\) becomes a 1st order linear eq:
 \[(\ast)_v \quad b_2(t)v'(t) + b_1(t)v(t) = 0.\]
- Solve \((\ast)_v\) by either integrating factor or separating the variables (both work).
- Get \(u\) from \(v\): \(u(t) = \int v(t)dt\).
- Finally, get \(y\) from \(u\): \(y(t) = y_1(t)u(t)\).
Example 1: Find general solutions of

\[(*)_y \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.
Example 1: Find general solutions of

\[(*)_t \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \((*)_t\):

\[t^2(1 + 2t)(tu)'' - 2t(1 + t)(tu)' + 2(1 + t)tu = 0,\]
Example 1: Find general solutions of

\[(*)_{y} \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \((*)_{y}:\)

\[
t^2(1 + 2t)(tu)'' - 2t(1 + t)(tu)' + 2(1 + t)tu = 0,
\]

\[
t^2(1 + 2t)(tu'' + 2u') - 2t(1 + t)(tu' + u) + 2(1 + t)tu = 0,
\]
Example 1: Find general solutions of

\[(*)_y \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t \) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t) \) and substitute \(y(t) = tu(t) \) in \((*)_y\):

\[
\begin{align*}
&\ t^2(1 + 2t)(tu)'' - 2t(1 + t)(tu)' + 2(1 + t)tu = 0, \\
&\ t^2(1 + 2t)(tu'' + 2u') - 2t(1 + t)(tu' + u) + 2(1 + t)tu = 0, \\
&\ t^3(1 + 2t)u'' + 2t^3u' = 0,
\end{align*}
\]
Example 1: Find general solutions of

\[(\ast)_y \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

\[\quad \begin{align*}
\text{Set } y(t) &= y_1(t)u(t) = tu(t) \text{ and substitute } y(t) = tu(t) \text{ in } (\ast)_y:
\quad t^2(1 + 2t)(tu)'' - 2t(1 + t)(tu)' + 2(1 + t)tu &= 0, \\
\quad t^2(1 + 2t)(tu'' + 2u') - 2t(1 + t)(tu' + u) + 2(1 + t)tu &= 0, \\
\quad t^3(1 + 2t)u'' + 2t^3u' &= 0, \\
\quad (\ast)_u \quad (1 + 2t)u'' + 2u' &= 0.
\end{align*}\]
Example 1: Find general solutions of

\[(*)_y \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \((*)_y:\)

\[\text{\(\quad(*)_u \quad (1 + 2t)u'' + 2u' = 0.\)} \]
Example 1: Find general solutions of

\[(\ast)_y \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \((\ast)_y:\)

\[(\ast)_u \quad (1 + 2t)u'' + 2u' = 0.\]

- Set \(v(t) = u'(t).\) The eq \((\ast)_u\) becomes a 1st order linear eq:

\[(\ast)_v \quad (1 + 2t)v' + 2v = 0.\]
Example 1: Find general solutions of

\[(\ast)_y \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \((\ast)_y:\)
 \[(\ast)_u \quad (1 + 2t)u'' + 2u' = 0.\]

- Set \(v(t) = u'(t)\). The eq \((\ast)_u\) becomes a 1st order linear eq:
 \[(\ast)_v \quad (1 + 2t)v' + 2v = 0.\]

- Eq \((\ast)_v\) can be solved by either integrating factor or separating variables (both work). Solve \((\ast)_v \Rightarrow v(t) = \frac{C_1}{1 + 2t}.\)

Or, equivalently, \(y(t) = C_1 t^2 \ln(1 + 2t) + C_2 t\).
Example 1: Find general solutions of

\[(*)_y \quad t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \(\text{(*)}_y\):
 \[\text{(*)}_u \quad (1+2t)u'' + 2u' = 0.\]
- Set \(v(t) = u'(t)\). The eq \(\text{(*)}_u\) becomes a 1st order linear eq:
 \[\text{(*)}_v \quad (1+2t)v' + 2v = 0.\]
- Eq \(\text{(*)}_v\) can be solved by either integrating factor or separating variables (both work). Solve \(\text{(*)}_v \Rightarrow v(t) = \frac{C_1}{1 + 2t}\).
- Get \(u\) from \(v\):
 \[u' = v \quad \Rightarrow \quad u(t) = \int v(t)dt = \int \frac{C_1}{1 + 2t}dt = C_1 \frac{1}{2} \ln(1 + 2t) + C_2\]
Example 1: Find general solutions of

\((\ast)_y\) \quad \quad \quad t^2(1 + 2t)y'' - 2t(1 + t)y' + 2(1 + t)y = 0,

by using the fact that \(y_1(t) = t\) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \((\ast)_y\):
 \((\ast)_u\) \quad \quad \quad (1 + 2t)u'' + 2u' = 0.

- Set \(v(t) = u'(t)\). The eq \((\ast)_u\) becomes a 1st order linear eq:
 \((\ast)_v\) \quad \quad \quad (1 + 2t)v' + 2v = 0.

- Eq \((\ast)_v\) can be solved by either integrating factor or separating variables (both work). Solve \((\ast)_v\) \(\Rightarrow v(t) = \frac{C_1}{1 + 2t}\).

- Get \(u\) from \(v\):
 \[u' = v \quad \Rightarrow u(t) = \int v(t)dt = \int \frac{C_1}{1 + 2t}dt = C_1 \frac{1}{2} \ln(1 + 2t) + C_2\]

- Finally, get \(y\) from \(u\):
 \[y(t) = y_1(t)u(t) = tu(t) = t \left[C_1 \frac{1}{2} \ln(1 + 2t) + C_2 \right].\]
Example 1: Find general solutions of

\[(*)_y \quad t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,\]

by using the fact that \(y_1(t) = t\) is a particular solution.

- Set \(y(t) = y_1(t)u(t) = tu(t)\) and substitute \(y(t) = tu(t)\) in \((*)_y:\n
\[(*)_u \quad (1+2t)u'' + 2u' = 0.\]

- Set \(v(t) = u'(t)\). The eq \((*)_u\) becomes a 1st order linear eq:

\[(*)_v \quad (1+2t)v' + 2v = 0.\]

- Eq \((*)_v\) can be solved by either integrating factor or separating variables (both work). Solve \((*)_v \Rightarrow v(t) = \frac{C_1}{1+2t}\).

- Get \(u\) from \(v\):

\[u' = v \quad \Rightarrow \quad u(t) = \int v(t)dt = \int \frac{C_1}{1+2t}dt = C_1 \frac{1}{2} \ln(1+2t) + C_2\]

- Finally, get \(y\) from \(u\):

\[y(t) = y_1(t)u(t) = tu(t) = t \left[C_1 \frac{1}{2} \ln(1+2t) + C_2 \right].\]

Or, equivalently, \(y(t) = C_1 \frac{t}{2} \ln(1+2t) + C_2t\).
Example 2: Find general solutions of

\[(*)_y \quad 4y'' - 12y' + 9y = 0.\]
Example 2: Find general solutions of

\[(*) \quad 4y'' - 12y' + 9y = 0.\]

- Characteristic polynomial $4\lambda^2 - 12\lambda + 9 = 0$
 \Rightarrow Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$
 \Rightarrow A particular solution $y_1(t) = e^{3/2 t}$.
Example 2: Find general solutions of

\[(*)_y \quad 4y'' - 12y' + 9y = 0. \]

- Characteristic polynomial \(4\lambda^2 - 12\lambda + 9 = 0 \)
 \(\Rightarrow \) Repeated Characteristic roots: \(\lambda_1 = \lambda_2 = 3/2 \)
 \(\Rightarrow \) A particular solution \(y_1(t) = e^{3t/2} \).

- Set \(y(t) = y_1(t)u(t) = e^{3t/2}u(t) \) and substitute this in \((*)_y \):
 \[4(e^{3t/2}u)'' - 12(e^{3t/2}u)' + 9e^{3t/2}u = 0, \]
Example 2: Find general solutions of

\[(*) \quad 4y'' - 12y' + 9y = 0.\]

- Characteristic polynomial \(4\lambda^2 - 12\lambda + 9 = 0\)
 \[\Rightarrow\] Repeated Characteristic roots: \(\lambda_1 = \lambda_2 = 3/2\)
 \[\Rightarrow\] A particular solution \(y_1(t) = e^{\frac{3}{2}t}\).

- Set \(y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)\) and substitute this in \((*)_y\):

 \[4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,\]

 \[4(e^{\frac{3}{2}t}u'' + 3e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,\]
Example 2: Find general solutions of

\[(*)_y \quad 4y'' - 12y' + 9y = 0.\]

- Characteristic polynomial \(4\lambda^2 - 12\lambda + 9 = 0\)
 ⇒ Repeated Characteristic roots: \(\lambda_1 = \lambda_2 = 3/2\)
 ⇒ A particular solution \(y_1(t) = e^{3t/2}\).

- Set \(y(t) = y_1(t)u(t) = e^{3t/2}u(t)\) and substitute this in \((*)_y\):

 \[
 4(e^{3t/2}u)''' - 12(e^{3t/2}u)' + 9e^{3t/2}u = 0,

 4(e^{3t/2}u'') + 3e^{3t/2}u' + \frac{9}{4}e^{3t/2}u - 12(e^{3t/2}u' + \frac{3}{2}e^{3t/2}u) + 9e^{3t/2}u = 0,

 4e^{3t/2}u'' = 0,

 \]
Example 2: Find general solutions of

\((*)_y\) \quad 4y'' - 12y' + 9y = 0.

- Characteristic polynomial \(4\lambda^2 - 12\lambda + 9 = 0\)
 \(\Rightarrow\) Repeated Characteristic roots: \(\lambda_1 = \lambda_2 = 3/2\)
 \(\Rightarrow\) A particular solution \(y_1(t) = e^{3/2t}\).

- Set \(y(t) = y_1(t)u(t) = e^{3/2t}u(t)\) and substitute this in \((*)_y\):
 \[4(e^{3/2t}u)'' - 12(e^{3/2t}u)' + 9e^{3/2t}u = 0,\]
 \[4(e^{3/2t}u'' + 3e^{3/2t}u' + \frac{9}{4}e^{3/2t}u) - 12(e^{3/2t}u' + \frac{3}{2}e^{3/2t}u) + 9e^{3/2t}u = 0,\]
 \[4e^{3/2t}u'' = 0,\]
 \((*)_u\) \quad \(u'' = 0\).
Example 2: Find general solutions of

\[(\ast)_y \quad 4y'' - 12y' + 9y = 0. \]

- Characteristic polynomial \(4\lambda^2 - 12\lambda + 9 = 0\)
 ⇒ Repeated Characteristic roots: \(\lambda_1 = \lambda_2 = 3/2\)
 ⇒ A particular solution \(y_1(t) = e^{3/2t}\).

- Set \(y(t) = y_1(t)u(t) = e^{3/2t}u(t)\) and substitute this in \((\ast)_y\):

 \[
 4(e^{3/2}u)'' - 12(e^{3/2}u)' + 9e^{3/2}u = 0, \\
 4(e^{3/2}u)' + 3e^{3/2}u' + \frac{9}{4}e^{3/2}u - 12(e^{3/2}u' + \frac{3}{2}e^{3/2}u) + 9e^{3/2}u = 0, \\
 4e^{3/2}u'' = 0, \\
 (\ast)_u \quad u'' = 0.
 \]

- Integrate once: \(u' = C_1\)
Example 2: Find general solutions of

\((*)_y \quad 4y'' - 12y' + 9y = 0.\)

- Characteristic polynomial \(4\lambda^2 - 12\lambda + 9 = 0\)
 \(\Rightarrow\) Repeated Characteristic roots: \(\lambda_1 = \lambda_2 = 3/2\)
 \(\Rightarrow\) A particular solution \(y_1(t) = e^{3/2t}.\)

- Set \(y(t) = y_1(t)u(t) = e^{3/2t}u(t)\) and substitute this in \((*)_y:\)
 \[4(e^{3/2t}u)'' - 12(e^{3/2t}u)' + 9e^{3/2t}u = 0,\]
 \[4(e^{3/2t}u'' + 3e^{3/2t}u' + \frac{9}{4}e^{3/2t}u) - 12(e^{3/2t}u' + \frac{3}{2}e^{3/2t}u) + 9e^{3/2t}u = 0,\]
 \[4e^{3/2t}u'' = 0,\]
 \((*)_u \quad u'' = 0.\)

- Integrate once: \(u' = C_1\)

- Integrate again: \(u(t) = C_1t + C_2\)
Example 2: Find general solutions of

\[(\ast) y \quad 4y'' - 12y' + 9y = 0.\]

- Characteristic polynomial \(4\lambda^2 - 12\lambda + 9 = 0\)
 \(\Rightarrow\) Repeated Characteristic roots: \(\lambda_1 = \lambda_2 = \frac{3}{2}\)
 \(\Rightarrow\) A particular solution \(y_1(t) = e^{\frac{3}{2}t}\).

- Set \(y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)\) and substitute this in \((\ast)y\):
 \[4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,\]
 \[4(e^{\frac{3}{2}t}u'' + \frac{3}{2}e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,\]
 \[4e^{\frac{3}{2}t}u'' = 0,\]
 \[(\ast)u \quad u'' = 0.\]

- Integrate once: \(u' = C_1\)

- Integrate again: \(u(t) = C_1t + C_2\)

- Finally, get \(y\) from \(u\): \(y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)\).
 \[y(t) = C_1 te^{\frac{3}{2}t} + C_2 e^{\frac{3}{2}t}.\]