Convergence in Mean (L^2 Convergence) of Fourier Series

Xu-Yan Chen
Contents

- What is L^2 distance? What is error in mean?
- Example: L^2 approximations by truncated Fourier series.
- Theorem: Best L^2 Approximation.
- Theorem: L^2 convergence (Convergence in mean).
Euclidean Distance Between Discrete Signals

Given two sequences \[\{u_1, \ u_2, \ \cdots, \ u_n; \ \text{and} \ \ v_1, \ v_2, \ \cdots, \ v_n, \] the Euclidean distance between them is \[\{(u_1 - v_1)^2 + \cdots + (u_n - v_n)^2\}^{1/2}. \]
• **Euclidean Distance Between Discrete Signals**

Given two sequences \(\{u_1, u_2, \ldots, u_n\}; \) and \(\{v_1, v_2, \ldots, v_n\}; \) the Euclidean distance between them is

\[
\left\{ (u_1 - v_1)^2 + \cdots + (u_n - v_n)^2 \right\}^{1/2}.
\]

• **\(L^2 \) Distance Between Functions**

Given two functions \(u(x) \) and \(v(x) \) on \([-a, a]\), the \(L^2 \) distance between them is

\[
\left\{ \int_{-a}^{a} [u(x) - v(x)]^2 \, dx \right\}^{1/2}.
\]
• **Euclidean Distance Between Discrete Signals**

Given two sequences \(\{u_1, u_2, \ldots, u_n\} \) and \(\{v_1, v_2, \ldots, v_n\} \), the Euclidean distance between them is

\[
\left\{ (u_1 - v_1)^2 + \cdots + (u_n - v_n)^2 \right\}^{1/2}.
\]

• **\(L^2 \) Distance Between Functions**

Given two functions \(u(x) \) and \(v(x) \) on \([-a, a]\), the \(L^2 \) distance between them is

\[
\left\{ \int_{-a}^{a} [u(x) - v(x)]^2 \, dx \right\}^{1/2}.
\]

• **Error in Mean**

When a function \(u(x) \) is approximated by \(v(x) \),

\[
\text{(Error in Mean)} = (L^2 \text{ distance})^2.
\]

In other words,

\[
\text{(Error in Mean)} = \int_{-a}^{a} [u(x) - v(x)]^2 \, dx.
\]
Example. $f(x)$ is 2π periodic, $f(x) = 1 + x/\pi$ ($-\pi \leq x < 0$), and $f(x) = -1$ ($0 \leq x < \pi$). The Fourier series of $f(x)$ is

$$
-\frac{1}{4} + \sum_{n=1}^{\infty} \left[\frac{1-(-1)^n}{n^2\pi^2} \cos(nx) + \frac{-2+(-1)^n}{n\pi} \sin(nx) \right].
$$

Approximate $f(x)$ by truncating the F-series at $N = 3$:

$$
S_3(x) = -\frac{1}{4} + \sum_{n=1}^{3} \left[\frac{1-(-1)^n}{n^2\pi^2} \cos(nx) + \frac{-2+(-1)^n}{n\pi} \sin(nx) \right].
$$

(Error in Mean) $= \int_{-\pi}^{\pi} [f(x) - S_3(x)]^2 \approx 0.4028159855$

- Error in Mean decreases with N.
- Error in Mean $\to 0$, as $N \to \infty$.

(Error in Mean) ≈ 0.1572187764

(Error in Mean) ≈ 0.07913602023
Can we choose other coefficients, to get better approximation?

For $N = 10$, approximate $f(x)$ by $S_{10}(x)$:

$$S_{10}(x) = -\frac{1}{4} + \sum_{n=1}^{10} \left[\frac{1 - (-1)^n}{n^2\pi^2} \cos(nx) + \frac{-2 + (-1)^n}{n\pi} \sin(nx) \right].$$

(The Error in Mean of S_{10}) ≈ 0.1572187764

If we replace some Fourier coefficients by, say,

$$a_3 = \frac{1}{50}, b_5 = -\frac{1}{4}, a_9 = \frac{1}{100},$$

(just my random choices)

to form a new trig polynomial $T_{10}(x)$,

(the Error in Mean of T_{10}) ≈ 0.1683563939.

- Whatever coefficients you try, you can never beat S_{10}.
- Fourier coefficients are our best choices, in minimizing the error in mean.
- $S_{10}(x)$ is the best L^2 approx of $f(x)$, among all trig polynomials of degree 10.
Assumptions: \(f(x) \) is \(2a \) periodic and \(\int_{-a}^{a} f(x)^2 dx < \infty \).

Let \(a_0, a_n, b_n \) be the Fourier coefficients of \(f(x) \).

Let \(S_N(x) = a_0 + \sum_{n=1}^{N} \left[a_n \cos \left(\frac{n\pi x}{a} \right) + b_n \sin \left(\frac{n\pi x}{a} \right) \right] \) (the truncated Fourier series of degree \(N \)).

Theorem (Best \(L^2 \) approximation)

\(S_N(x) \) is the best \(L^2 \) approx of \(f(x) \), among all trig polynomials of degree \(N \).

More precisely, for any trig polynomial \(T_N(x) \) of degree \(N \),

\[(\text{the error in mean of } S_N) \leq (\text{the error in mean of } T_N).\]

Theorem (Convergence in mean. \(L^2 \) convergence.)

The error in mean of \(S_N \) decays to 0, as \(N \to \infty \).

In other words, \(S_N(x) \) converges to \(f(x) \) in mean, as \(N \to \infty \).

Formula (Parseval’s equality)

\[\int_{-a}^{a} f(x)^2 dx = a \left[2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]. \]

Formula (Error in mean of \(S_N \))

\[(\text{The error in mean of } S_N) = \int_{-a}^{a} f(x)^2 dx - a \left[2a_0^2 + \sum_{n=1}^{N} (a_n^2 + b_n^2) \right] \]
\[= a \left[\sum_{n=N+1}^{\infty} (a_n^2 + b_n^2) \right]. \]