1. Consider the Hermite problem
 \[p^{(r)}(x_i) = y_i^{(r)}, \quad i=1,2; \quad r=0,1,2 \]
 With \(p(x) \) a polynomial of degree \(\leq 5 \).
 (a) Give a Lagrange type of formula for \(p(x) \). *(Hint: For the basis functions sat. \(l(x_0) = l'(x_2) = l''(x_2) = 0 \), use \(l(x) = (x-x_2)^3 g(x) \), with \(g(x) \) of degree \(\leq 2 \). Find \(g(x) \).*
 (b) Give a Newton divided difference formula.
 (c) Derive an error formula.

2. Consider calculating a cubic interpolating spline with the additional boundary conditions \(S''(x_0) = 0 \) and \(S''(x_n) = 0 \). Show that
 \[\int_{x_0}^{x_n} [S''(x)]^2 \, dx \leq \int_{x_0}^{x_n} [g''(x)]^2 \, dx \]
 for any \(g \in C^2[x_0, x_n] \) that sat. the interpolating conditions \(g(x_i) = y_i \), \(i = 0,1,\ldots,n \). Explain why this smooth natural cubic interpolating spline converges slowly near the endpoints.

3. Derive a formula for calculating a cubic interpolating spline with the "not-a-knot" condition.