
THE G0-DICHOTOMY

ANTON BERNSHTEYN

Abstract. In this note, we give a simple, graph-theoretic proof of the Kechris–Solecki–Todorcevic
G0-dichotomy. We then present some consequences of the G0-dichotomy in Borel combinatorics,
including the Luzin–Novikov and Feldman–Moore theorems. We also prove the injective version of
the G0-dichotomy for locally countable Borel graphs and show that it fails in general (i.e., without
the local countability assumption).

1. The Kechris–Solecki–Todorcevic G0-dichotomy
Let G be a graph on a Polish space. Recall that G is Borel (resp. analytic) if EpGq is a Borel
(resp. analytic) subset of the space rV pGqs2. The notation x „G y indicates that x and y are adjacent
vertices ofG. A proper coloring ofG is a function f defined on V pGq such that fpxq ‰ fpyq whenever
x „G y. Equivalently, f is a proper coloring if for every color α P impfq, the set f´1pαq Ď V pGq is
G-independent. The Borel chromatic number of G, denoted by χBpGq, is the minimum cardinality
of a Polish space C such that G admits a Borel proper coloring f : V pGq Ñ C. Note that χBpGq ď ℵ0
if and only if V pGq can be covered by countably many G-independent Borel sets.

A homomorphism from a graph H to a graph G is a function f : V pHq Ñ V pGq such that if
x „H y, then fpxq „G fpyq, that is, f sends the edges of H to edges of G. Equivalently, f is a
homomorphism if the f -preimage of every G-independent set is H-independent. If H and G are
graphs on Polish spaces, then we write H Ñc G to indicate that there is a continuous homomorphism
from H to G. Note that if H Ñc G, then χBpGq ě χBpHq. In this note we shall establish the
following remarkable result of Kechris, Solecki, and Todorcevic, known as the G0-dichotomy:
Theorem 1.1 (Kechris–Solecki–Todorcevic [KST99]). There exists a Borel graph G0 such that for
every analytic graph G on a Polish space, precisely one of the following two alternatives holds:

‚ either χBpGq ď ℵ0;
‚ or G0 Ñc G.

The graph G0 satisfying the conclusion of Theorem 1.1 has a simple explicit construction. Let
2ă8 :“

Ť

nPN 2n be the set of all finite sequences of zeroes and ones (including the empty sequence)
and let C :“ 2N denote the Cantor space. A set S Ď 2ă8 is dense if for all t P 2ă8, there is s P S
extending t. Given a set S Ď 2ă8, let GS denote the Borel (more precisely, Fσ) graph on C whose
edge set comprises all pairs of the form tsaiax, sai1axu with s P S, ti, i1u “ t0, 1u, and x P C. Here
and in what follows, a denotes concatenation of sequences.
Theorem 1.2. Let G be an analytic graph on a Polish space and let S Ă 2ă8 be a set containing
exactly one sequence of each finite length (including the empty sequence). Then either χBpGq ď ℵ0
or GS Ñc G. If, in addition, S is dense, then these two possibilities are mutually exclusive.

Therefore, to obtain the conclusion of Theorem 1.1, we can set G0 :“ GS for an arbitrary dense
set S Ď 2ă8 that contains exactly one sequence of each finite length. (Such a set S exists by
Exercise 9.1.) In other words, Theorem 1.1 is an immediate consequence of Theorem 1.2.
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The original proof of Theorem 1.2 due to Kechris, Solecki, and Todorcevic [KST99] used methods
of effective descriptive set theory. A classical proof was later discovered by Miller [Mil09]. The
proof we present here follows the outline sketched by Miller in [Mil12]. A prominent feature of this
argument is its reliance on graph-theoretic intuition.

2. The Borel chromatic number of GS

The following proposition shows that the two alternatives in Theorem 1.2 are mutually exclusive
when S is dense.

Proposition 2.1. Suppose that S Ď 2ă8 is dense. Then every Baire-measurable GS-independent
subset of C is meager. In particular, χBpGSq ą ℵ0.

Proof. Let I Ď C be a Baire-measurable GS-independent set and suppose, toward a contradiction,
that I is nonmeager. By the Baire alternative, this implies that there is a nonempty open subset
U Ď C such that I is comeager in U . The topology on C is generated by the clopen sets of the form

Us :“ tx P C : s Ă xu, where s P 2ă8.
(Here “s Ă x” means that s is an initial segment of x.) Thus, we may assume that U “ Us for some
s P 2ă8. Furthermore, since S is dense, we may also assume that s P S.

Consider the mapping f : Us Ñ Us defined by
fpsaiayq :“ saīay for all i P t0, 1u and y P C,

where for i P t0, 1u, we write ī :“ 1´ i. By definition, x „GS
fpxq for all x P Us, and thus, since I

is GS-independent, we have I X fpIq “ ∅. But f is a homeomorphism of Us, which implies that
fpIq—and hence also I X fpIq—is comeager in Us. This contradiction completes the proof. �

It is easy to see that when S contains at most one sequence of each length, the graph GS is acyclic
(Exercise 9.2). Therefore, taking S to be a dense set with this property, we obtain an example of an
acyclic locally countable Borel graph whose Borel chromatic number is uncountable.

3. Proof of Theorem 1.2
Let G be an analytic graph on a Polish space and let π : E˚ Ñ rV pGqs2 be a continuous map from a
Polish space E˚ to the space rV pGqs2 such that impπq “ EpGq. For a finite graph H, a copy of H
in G is a mapping ϕ that assigns to each vertex u P V pHq a vertex ϕpuq P V pGq and to each edge
uv P EpHq an element ϕpuvq P E˚, with the following compatibility property:

πpϕpuvqq “ ϕpuqϕpvq for all uv P EpHq.
(We tacitly assume that the sets V pHq and EpHq are disjoint.) In particular, if ϕ is a copy of H in
G, then ϕæV pHq is a homomorphism from H to G; but ϕ additionally selects a specific preimage in
E˚ for every edge of the form ϕpuqϕpvq. The set of all copies of H in G is denoted by HompH,Gq.
Note that HompH,Gq is a closed subset of the product space

V pGqV pHq ˆ pE˚qEpHq.

For a subset H Ď HompH,Gq and a vertex u P V pHq, let
Hpuq :“ tϕpuq : ϕ P Hu Ď V pGq.

Note that if H is Borel, then the set Hpuq is analytic. Similarly, for uv P EpHq, let
Hpuvq :“ tϕpuvq : ϕ P Hu Ď E˚.

For each finite graph H, we define a certain σ-ideal on HompH,Gq. Call a Borel subset H Ď

HompH,Gq tiny if for some u P V pHq, the set Hpuq is G-independent. Call a subset (not necessarily
Borel) H Ď HompH,Gq small if it can be covered by countably many tiny Borel sets; call H large if
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it is not small. By definition, small sets form a σ-ideal. Note that if ‚ denotes the graph with a
single vertex and no edges, then Homp‚, Gq can be identified with V pGq in the obvious way, and a
set A Ď V pGq is small if and only if it can be covered by countably many G-independent Borel sets.
In particular, V pGq itself is small if and only if G has countable Borel chromatic number.

Let H be a finite graph and let u P V pHq. Denote by H `u H the graph with vertex set
V pHq ˆ t0, 1u and edge set given by

pv, iq „H`uH pw, jq :ðñ pi “ j and v „H wq or pi ‰ j and v “ w “ uq.

In other words, H `u H is obtained from two disjoint copies of H by adding an edge between their
corresponding copies of u. For ϕ P HompH `u H,Gq and i P t0, 1u, define ϕi P HompH,Gq by

ϕipvq :“ ϕppv, iqq for v P V pHq;
ϕipv1v2q :“ ϕppv1, iqpv2, iqq for v1v2 P EpHq.

For H Ď HompH,Gq and u P V pHq, let H`u H denote the set of all copies ϕ of H `u H in G such
that ϕ0, ϕ1 P H. It is clear that if H is a Borel subset of HompH,Gq, then H`uH is a Borel subset
of HompH `u H,Gq. The key insight for the proof of Theorem 1.2 is given by following lemma.

Lemma 3.1. LetH be a finite graph and let u P V pHq. Suppose that a Borel subsetH Ď HompH,Gq
is large. Then the set H `u H Ď HompH `u H,Gq is also large.

Proof. First we observe that H `u H ‰ ∅. Indeed, since H is large, hence not tiny, and Borel,
the set Hpuq is not G-independent, i.e., there exist ϕ0, ϕ1 P H with ϕ0puq „G ϕ1puq, so we can pick
e P E˚ with πpeq “ ϕ0puqϕ1puq. Then the map ϕ P HompH `u H,Gq with ϕ0 “ ϕ0, ϕ1 “ ϕ1, and
ϕppu, 0qpu, 1qq “ e belongs to H `u H.

Now assume, toward a contradiction, that H `u H is small and hence it can be expressed as

H `u H “

8
ď

n“0
Fn, (3.2)

where each Fn is a tiny Borel subset of HompH `u H,Gq. For every n P N, fix some vn P V pHq and
in P t0, 1u so that the set Fnppvn, inqq is G-independent. By Exercise 9.4, there are G-independent
Borel sets In Ě Fnppvn, inqq. Let

Hn :“ tϕ P H : ϕpvnq P Inu.
By definition, the (Borel) sets Hn are tiny. Therefore, the set H1 :“ Hz

Ť8
n“0 Hn is large. Since H1 is

Borel, we obtain H1`uH
1 ‰ ∅. But H1`uH

1 is disjoint from
Ť8
n“0 Fn, which contradicts (3.2). �

For the next lemma, we fix compatible complete metrics d on V pGq and δ on E˚.

Lemma 3.3. Let H be a finite graph. Suppose that a Borel subset H Ď HompH,Gq is large. Then
for any ε ą 0, there is a large Borel subset H1 Ď H such that:

‚ for all u P V pHq, diamdpH1puqq ă ε;
‚ for all pu, vq P EpHq, diamδpH1puvqq ă ε.

Proof. The desired conclusion follows since V pGq and E˚ can be covered by countably many
closed sets of diameter less than ε and small sets form a σ-ideal. �

Now we are ready to prove Theorem 1.2. Assume that χBpGq ą ℵ0 (i.e., that V pGq is large) and
fix a set S Ă 2ă8 that contains a unique sequence of each finite length. Our goal is to show that
GS Ñc G. We shall obtain a desired continuous homomorphism from GS to G as a “limit” of copies
in G of certain finite graphs. Specifically, for each n P N, let Tn be the tree on t0, 1un whose edges are
of the form tsaiat, sai1atu with s P S, ti, i1u “ t0, 1u, t P 2ă8, and lengthpsq` lengthptq “ n´1. For
n P N, let sn denote the unique element of S of length n. Then we have T0 “ ‚ and Tn`1 “ Tn`sn Tn
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for all n P N. Using Lemmas 3.1 and 3.3 and the fact that V pGq is large, we recursively construct a
sequence of large Borel subsets Tn Ď HompTn, Gq with the following properties:

‚ Tn`1 Ď Tn `sn Tn;
‚ for all u P t0, 1un, diamdpTnpuqq ă 2´n;
‚ for all uv P EpTnq, diamδpTnpuvqq ă 2´n.

The first property implies that for all i P t0, 1u,
Tn`1pu

aiq Ď Tnpuq for all u P t0, 1un and Tn`1pu
ai, vaiq Ď Tnpu, vq for all uv P EpTnq.

For x P C, let fpxq be the unique point in
Ş8
n“0 Tnpxænq, where xæn denotes the initial segment of x

of length n (which exists due to the completeness of the metric d). The map f : CÑ V pGq is clearly
continuous. It remains to check that it is a homomorphism from GS to G. Take any edge xy P EpGSq.
Then there is unique n0 P N with xpn0q ‰ ypn0q, and for all n ą n0, we have xæn „Tn yæn. Let
e P E˚ be the unique point in

Ş8
n“n0`1 Tnpxæn, yænq (which exists by the completeness of δ). Since

π is continuous, we get πpeq “ fpxqfpyq, i.e., fpxq „G fpyq, as desired.

4. The Luzin–Novikov theorem
Miller [Mil09; Mil12] observed that Theorem 1.1 can be used to derive a number of important results
in descriptive set theory. In this section, we give one such example: a simple combinatorial proof of
the Luzin–Novikov theorem. Let X and Y be sets and let A Ď X ˆ Y . For x P X, the fiber of A
over x is the set Ax :“ ty P Y : px, yq P Au.

Theorem 4.1 (Luzin–Novikov). Let X and Y be Polish spaces and let A Ď X ˆ Y be a Borel
subset. Suppose that for each x P X, the fiber Ax is countable. Then there exists a countable
sequence of partial Borel functions fn : X á Y , n P N, such that for all x P X and y P Y ,

px, yq P A ðñ y “ fnpxq for some n P N. (4.2)

Proof. To construct the functions fn, we shall apply the G0-dichotomy to an auxiliary graph.
For each x P X, let Gx be the graph with vertex set Y such that y1 „Gx y2 if and only if y1 ‰ y2
and y1, y2 P Ax. In other words, Ax is a clique in Gx, while the vertices in Y zAx are isolated in Gx.
Since Ax is countable, χBpGxq ď ℵ0. Indeed, the following is a countable Borel coloring of Gx:

y ÞÑ

#

y if y P Ax;
˚ if y R Ax.

(Here ˚ is an arbitrary value.) Now define a graph G with vertex set XˆY by putting edges between
the pairs of vertices of the form px, y1q and px, y2q, where y1 „Gx y2. Combinatorially, G is a disjoint
union of the graphs Gx taken over all x P X. Since A is Borel, G is Borel as well.

Claim 4.1.1. χBpGq ď ℵ0.

� Suppose not. Then, by Theorem 1.2, there is a continuous homomorphism h : C Ñ X ˆ Y
from GS to G, where S Ă 2ă8 is any dense set containing exactly one sequence of each finite
length. Let h1 : CÑ X and h2 : CÑ Y denote the first and the second coordinates of h, respectively.
Every connected component of G is contained in a set of the form txu ˆ Y for some x P X, which
implies that the function h1 is constant on the connected components of GS . But every connected
component of GS is dense in C (Exercise 9.3), so, since h1 is continuous, it must be constant on all
of C. If x P X is the unique value taken by h1, then h2 is a continuous homomorphism from GS to
Gx. This is impossible as χBpGxq ď ℵ0. �

Let c : X ˆ Y Ñ N be a Borel proper coloring of G. Then, for each n P N, we can define a Borel
partial function fn : X á Y by making fnpxq “ y if and only if y P Ax and cpx, yq “ n. Property
(4.2) is immediate from the construction, so the proof is complete. �
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Corollary 4.3. If f : X Ñ Y is a countable-to-one Borel function between Polish spaces X and Y ,
then the set fpXq is Borel.

Proof. Applying Theorem 4.1 to the set tpy, xq P Y ˆX : fpxq “ yu yields a countable sequence
of partial Borel functions gn : Y á X, n P N, such that for all x P X and y P Y ,

fpxq “ y ðñ x “ gnpyq for some n P N.
Then fpXq “

Ť8
n“0 dompgnq is Borel, as desired. �

5. Locally finite graphs
The following is a nice graph-theoretic consequence of the Luzin–Novikov Theorem 4.1:

Theorem 5.1. If G is a locally finite Borel graph on a Polish space, then χBpGq ď ℵ0.

Proof. Fix a countable base pUiq8i“0 for the topology on V pGq. For each x P X, let
cpxq :“ minti P N : x P UizNGpUiqu.

Note that cpxq is well-defined since x has only finitely many neighbors. It is clear that c : V pGq Ñ N
is a proper coloring of G. It remains to argue that the function c is Borel. To this end, we apply
Theorem 4.1 to the set tpx, yq P V pGq ˆ V pGq : x „G yu and get a countable sequence of partial
Borel functions fn : V pGq á V pGq, n P N, such that for all x, y P V pGq,

x „G y ðñ y “ fnpxq for some n P N.
Then NGpUiq “

Ť8
n“0 f

´1
n pUiq is Borel, and thus c is Borel as well. �

6. Edge-colorings and the Feldman–Moore theorem
A proper edge-coloring of a graph G is a function f defined on EpGq such that fpeq ‰ fphq
whenever distinct edges e and h share an endpoint. The Borel chromatic index of a graph G on
a Polish space, denoted by χ1BpGq, is the minimum cardinality of a Polish space C such that G
admits a Borel proper edge-coloring f : EpGq Ñ C. Note that in a proper edge-coloring, all the
edges incident to a given vertex must receive different colors. In particular, if χ1BpGq ď ℵ0, then G
must be locally countable. Another useful and perhaps surprising consequence of the Luzin–Novikov
Theorem 4.1 is a converse to this observation for Borel graphs.

Theorem 6.1 (Feldman–Moore). If G is Borel graph on a Polish space, then χ1BpGq ď ℵ0 if and
only if G is locally countable.

Proof. We only need to argue that χ1BpGq ď ℵ0 for locally countable G. If G is locally countable,
then Theorem 4.1 applied to the set tpx, yq P V pGq ˆ V pGq : x „G yu yields a countable sequence
of partial Borel functions fn : V pGq á V pGq, n P N, such that for all x, y P V pGq,

x „G y ðñ y “ fnpxq for some n P N.
For a pair of adjacent vertices x, y, let `px, yq :“ mintn P N : y “ fnpxqu and define c : EpGq Ñ rNsď2

by cpxyq :“ t`px, yq, `py, xqu. Let H be the graph with vertex set EpGq in which two distinct edges
e, h of G are adjacent if and only if they share an endpoint and cpeq “ cphq.

Claim 6.1.1. The graph H is locally finite. In fact, every vertex in H has at most 2 neighbors.

� Let xy be an edge of G with `px, yq “ n and `py, xq “ m. Suppose xz P EpGq is another edge
such that cpxzq “ cpxyq “ tn,mu. Since fnpxq “ y ‰ z, we have `px, zq ‰ n, so it must be that
`px, zq “ m, i.e., z “ fmpxq. Similarly, if yz is an edge with cpyzq “ cpxyq “ tn,mu, then z “ fnpyq.
Thus, the only possible neighbors of xy in H are xfmpxq and yfnpyq. �

By Theorem 5.1, H has a Borel proper coloring c1 : EpGq Ñ N. Then the function EpGq Ñ
rNsď2 ˆ N : e ÞÑ pcpeq, c1peqq is a countable Borel edge-coloring of G, as desired. �
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7. Injective homomorphisms from G0 for locally countable graphs
Let G be a Borel graph on a Polish space with χBpGq ą ℵ0. Theorem 1.1 then yields a continuous
homomorphism from G0 to G. It turns out that for locally countable graphs G, this homomorphism
can be made injective—so G has a subgraph isomorphic to G0!

Theorem 7.1 (Kechris–Solecki–Todorcevic). Let G be a locally countable Borel graph on a Polish
space and let S Ă 2ă8 be a set containing exactly one sequence of each finite length. If χBpGq ą ℵ0,
then there is an injective continuous homomorphism from GS to G.

In the rest of this section, we prove Theorem 7.1. Fix a locally countable Borel graph G on a Polish
space. We shall use the notation and terminology from §3. In particular, we let π : E˚ Ñ rV pGqs2

be a continuous map from some Polish space E˚ to rV pGqs2 such that impπq “ EpGq. (Since G is
Borel, the map π may be assumed to be injective, but we will not make use of this fact.) We also fix
compatible complete metrics d on V pGq and δ on E˚.

By Theorem 6.1, we can fix a Borel proper edge-coloring c : EpGq Ñ N. Given a finite graph H
and a proper edge-coloring ξ : EpHq Ñ N, we say that a set H Ď HompH,Gq is ξ-consistent if

cpπpϕpeqqq “ ξpeq for all ϕ P H and e P EpHq.
We say that H Ď HompH,Gq is consistent if it is ξ-consistent for some ξ : EpHq Ñ N. We also
say that H Ď HompH,Gq is injective if the sets Hpuq, u P V pHq, are pairwise disjoint. The main
ingredient in the proof of Theorem 7.1 is the following modification of Lemma 3.1:

Lemma 7.2. Let H be a connected finite graph and let H Ď HompH,Gq be a large Borel consistent
injective set. Then for each u P V pHq, there is a large Borel consistent injective subset H1 Ď H`uH.

Proof. We already know by Lemma 3.1 that the set H`uH is large. For each m P N, let Hm be
the set of all ϕ P H`uH such that the color assigned by c to the edge joining ϕppu, 0qq and ϕppu, 1qq
is m. Since small sets from a σ-ideal, there is some m P N such that Hm is large. By construction,
Hm is consistent, so it remains to argue that there is a large Borel subset H1 Ď Hm that is injective.

Claim 7.2.1. If ϕ P Hm, then ϕæV pHq is an injective function.

� Suppose ϕæV pHq is not injective. Since H is injective, this implies that there must be a vertex
v P V pHq with ϕppv, 0qq “ ϕppv, 1qq. Take such a vertex v whose distance to u in H is minimum
and let x :“ ϕppv, 0qq “ ϕppv, 1qq. Let u “ v0, v1, . . . , vk “ v be a shortest uv-path in H. Note that
k ě 1, since the vertices ϕppu, 0qq and ϕppu, 1qq are adjacent in G and hence distinct. By the choice
of v, the vertices y0 :“ ϕppvk´1, 0qq and y1 :“ ϕppvk´1, 1qq are distinct. But x is adjacent to both y0
and y1, and cpxy0q “ cpxy1q “ ξpvkvk´1q, where ξ : EpHq Ñ N is an edge-coloring such that H is
ξ-consistent. This is impossible since c is a proper edge-coloring. �

Now let U be a countable base for the topology on V pGq. By the above claim, for each ϕ P Hm,
it is possible to choose from U a neighborhood for every vertex of H `u H so that the closures of
these neighborhoods are disjoint. Since small sets from a σ-ideal, it follows that there is a way to
assign to each vertex v P V pH `u Hq a neighborhood Uv P U so that the closures Uv are pairwise
disjoint and the set

H1 :“ tϕ P Hm : ϕpvq P Uv for all v P V pH `u Hqu
is large. This set H1 is as desired. �

Now we proceed exactly as we did in §3, but with Lemma 7.2 replacing Lemma 3.1. Namely,
assuming χBpGq ą ℵ0, we can use Lemmas 7.2 and 3.3 to recursively construct a sequence of large
Borel subsets Tn Ď HompTn, Gq with the following properties:

‚ Tn`1 Ď Tn `sn Tn;
‚ for all u P t0, 1un, diamdpTnpuqq ă 2´n;
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‚ for all uv P EpTnq, diamδpTnpuvqq ă 2´n;
‚ each Tn is consistent and injective.

As in §3, we define a function f : CÑ V pGq by letting fpxq be the unique point in
Ş8
n“0 Tnpxænq.

Then f is a continuous homomorphism from GS to G. Moreover, since each Tn is injective, it is
straightforward to check that f is injective.

8. No injective homomorphisms from G0 in general
In their original paper [KST99], Kechris, Solecki, and Todorcevic asked whether there is an injective
continuous homomorphism from GS to G for every (not necessarily locally countable) Borel graph
G with χBpGq ą ℵ0, and conjectured that the answer is positive. This conjecture was refuted by
Lecomte [Lec07]. Here we describe an explicit counterexample. Say that a graph is K8-free is it
does not contain an infinite clique. We will construct a graph G satisfying the following:

Theorem 8.1. There exists a Borel graphG on a Polish space such that χBpGq ą ℵ0 but χBpG
1q ď ℵ0

for every Borel K8-free subgraph G1 of G.

Since G0 is K8-free (in fact, it is acyclic—see Exercise 9.2), there is no injective Borel homomor-
phism from G0 to the graph G from Theorem 8.1, even though χBpGq ą ℵ0.

For a Polish space X and a sequence fn : X Ñ X, n P N, of Borel functions, let Gppfnq8n“0q
denote the graph induced by pfnq8n“0, i.e., the graph on X given by

x „Gppfnq
8
n“0q

y :ðñ x ‰ y and Dn P N py “ fnpxq or x “ fnpyqq.

Lemma 8.2. Let X be a Polish space. Suppose that a sequence fn : X Ñ X, n P N, of continuous
open functions satisfies the following conditions:

(1) the set tx P X : @n P N Dm ě n pfmpxq ‰ xqu is dense;
(2) for each x P X, we have limnÑ8 fnpxq “ x.

Let G :“ Gppfnq
8
n“0q. Then every Baire-measurable G-independent set is meager, hence χBpGq ą ℵ0.

Proof. Let A Ď X be a nonmeager Baire-measurable set. By the Baire alternative, A is comeager
in some nonempty open set U . Choose any x P U such that for all n P N, there is m ě n with
fmpxq ‰ x. Since limnÑ8 fnpxq “ x, there is n P N such that x ‰ fnpxq P U , so we can pick an
open subset U0 Ă U containing x such that fnpU0q Ă U and U0 X fnpU0q “ ∅. Note that for all
y P U0, we have y „G fnpyq. Since fn is continuous and open and AXU0 is nonmeager, fnpAXU0q
is also nonmeager. Since A is comeager in U , we have AX fnpAXU0q ‰ ∅, i.e., for some y P AXU0,
fnpyq P A. This implies that A is not G-independent, as desired. �

Lemma 8.3. Let X be a Polish space. Suppose that a sequence fn : X Ñ X, n P N, of Borel
functions satisfies the following condition:

(3) for all n P N and x P X with fnpxq ‰ x, if m ě n, then fnpfmpxqq “ fnpxq.
Let G :“ Gppfnq

8
n“0q. Then χBpG

1q ď ℵ0 for every Borel K8-free subgraph G1 of G.

Proof. By refining the topology on X if necessary, we can make the functions pfnq8n“0 continuous.
For a subgraph G1 Ď G, define a map cG1 : X Ñ NY t8u by

cG1pxq :“ inftn P N : x „G1 fnpxqu.
By construction, c´1

G1 p8q is a G1-independent set.

Claim 8.3.1. Let G1 be a subgraph of G and let c :“ cG1 . Suppose that x, y P X with x „G1 y satisfy
cpxq “ cpyq “: n. Then n is finite and fnpxq “ fnpyq.

� Assume that, say, y “ fmpxq for some m P N. By the definition of cpxq, m ě n. Moreover,
x „G1 fnpxq, which implies fnpxq ‰ x. Therefore, fnpyq “ fnpfmpxqq “ fnpxq. �
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Claim 8.3.2. Let G1 be an analytic subgraph of G with χBpG
1q ą ℵ0. Then there exist a Borel subset

Y Ă X and a point x P X such that χBpG
1rY sq ą ℵ0 and x „G1 y for all y P Y .

� Curiously, the proof of this claim relies on the G0-dichotomy. Let c :“ cG1 . For each n P NYt8u,
let Xn :“ c´1pnq. Then X “

Ů

Xn is a partition of X into countably many Borel sets, and hence
there exists some n with χBpG1rXnsq ą ℵ0. Note that n is finite since X8 is G1-independent. By
Theorem 1.2, there is a continuous homomorphism h : CÑ Xn from GS to G1rXns, where S Ă 2ă8
is any dense set containing exactly one sequence of each finite length. By Claim 8.3.1, the function
fn is constant on connected components of G1rXns. Therefore, fn ˝ ϕ is constant on connected
components of GS . Since every connected component of GS is dense (Exercise 9.3) and fn ˝ ϕ is
continuous, fn ˝ϕ is constant on C. In other words, there is x P X such that GS Ñc G

1rXnXf
´1
n pxqs.

Setting Y :“ Xn X f
´1
n pxq completes the proof of the claim. �

Suppose now that G1 is a Borel subgraph of G with χBpG
1q ą ℵ0. Repeated applications of

Claim 8.3.2 yield a sequence of points xn, n P N, such that xi „G1 xj for all i ă j. In other words,
G1 contains an infinite complete subgraph, as desired. �

To prove Theorem 8.1, it remains to exhibit a Polish space X and a collection of continuous open
functions fn : X Ñ X that satisfy conditions (1)–(3) of Lemmas 8.2 and 8.3. A set-theoretic binary
tree is a nonempty set T Ď 2ă8 closed under taking initial segments. We identify a set-theoretic
binary tree T with the (graph-theoretic) rooted tree in which the vertices are the sequences in T,
the empty sequence ∅ is the root, and the parent of a sequence a0 . . . ak is a0 . . . ak´1. Note that
each vertex s P T has at most two children, namely sa0 and sa1. When sa0 (resp. sa1) is in T , we
call it the left (resp. right) child of s. We say that T is left-growing if every s P T has a left child
in T. Let X denote the space of all left-growing binary trees, equipped with the relative topology
inherited from 22ă8 . It is easy to see that X is closed in 22ă8 , hence it is a Polish space. For a
binary tree T, let snpTq :“ max pt0, 1un X Tq, where the maximum is taken with respect to the usual
lexicographic ordering on finite binary sequences. Finally, for n P N, let fn : X Ñ X be given by

fnpTq :“ tt P T : snpTqa1 Ę tu.

In other words, fnpTq is obtained from T by removing the right child of snpTq and all its descendants
(if snpTq has no right child in T, then fnpTq “ T). It is straightforward to verify that the functions
fn are as desired (Exercise 9.6).

9. Exercises
Exercise 9.1.

(a) Show that there is a dense set S Ă 2ă8 that contains exactly one sequence of each length.
(b) Let X be the space of sequences of the form psnq

8
n“0, where sn P t0, 1un for all n P N. Then

X “
ś8
n“0t0, 1un carries a product topology that turns it into a compact Polish space (homeomorphic

to the Cantor space). Let D be the set of all sequences psnq8n“0 P X such that tsn : n P Nu is dense.
Show that D is comeager in X (hence, in particular, D ‰ ∅).
Exercise 9.2. Show that if S Ă 2ă8 contains at most one sequence of each length, then the graph
GS is acyclic.
Exercise 9.3.

(a) Suppose S Ă 2ă8 contains at least one sequence of each length. Show that vertices x, y P C
are joined by a path in GS is and only if the set ti P N : xi ‰ yiu is finite.

(b) Conclude that if S Ă 2ă8 contains at least one sequence of each length, then every connected
component of GS is dense in C.
Exercise 9.4. Let G be an analytic graph on a Polish space. Suppose that I Ď V pGq is an analytic
G-independent set. Show that there is a Borel G-independent set J Ď V pGq such that J Ě I.
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Exercise 9.5. Let G be a locally countable Borel graph on a Polish space. Show that the function
degG : V pGq Ñ NY t8u is Borel.

Exercise 9.6. Verify that the functions fn : X Ñ X, n P N, constructed in §8 are continuous and
open and satisfy conditions (1)–(3) of Lemmas 8.2 and 8.3.
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