The Thurston norm and a baby version: The Intersection norm

Abdoul Karim SANE, School of Maths, Georgia Tech Visiting Assistant Professor

Tech Topology Conference, GaTech, Atlanta, USA 12/10/2022

OVERVIEW

- ► Thurston norms
- ► Foliations and Thurston norms
- Intersection norms
- Geography of Thurston balls and Intersection balls

Goal

Understand the relation between Thurston norms and Intersection norms

TO START WITH

Theorem (Poincaré-Hopf) If X is a nonsingular vector field on Σ_g , then g = 0.

Question
Which 3-manifolds admit "nice foliation"?

Definition:

M: Compact orientable 3-manifolds (with torus boundary components),

Fact:

Let $a \in H_2(M, \mathbb{Z})$. Then, a can be represented by embedded surfaces:

$$a = [\cup S_i].$$

Complexity: If $a = [\cup S_i]$, we set:

$$\chi_{-}(\cup S_i) = \sum_{i=1}^{m} \max\{0, -\chi(S_i)\}$$

and

$$T(a) = \inf_{|S|=a} \{ \chi_{-}(S) \} \in \mathbb{N}.$$

We get a map:

$$T: H_2(M, \mathbb{Z}) \simeq \mathbb{Z}^k \longrightarrow \mathbb{N}$$

$$a \longmapsto \inf_{[S]=a} \{\chi_-(S)\}$$

Theorem (Thurston)

- ▶ *T* extends to a semi-norm $T: H_2(M, \mathbb{R}) \simeq \mathbb{R}^k \to \mathbb{R}_+$
- ▶ If *M* is aspherical and atoroidal, then *T* is a norm.

Question

What is shape of the (dual) unit ball of *T*?

Theorem (W. Thurston)

The unit dual ball of *T* is an integer polytope:

$$B_{T^*}^1 = \text{ConvHull}\{w_1, ..., w_n\};$$

where $w_i \in H^2(M, \mathbb{Z}) \simeq \mathbb{Z}^k$ are integer cohomology classes.

Example (W. Thurston)

Figure: Borromean rings *L* and the unit dual ball of $\mathbb{S}^3 - L$

Definition (Foliation)

A co-dimension 1 foliation \mathcal{F} in M is a *locally trivial partition* of M by surfaces.

Figure: locally trivial foliation

Figure: Reeb component: foliation on $\mathbb{D} \times \mathbb{S}^1$

Theorem (Lickorish-Novikov-Zieschang)

Every closed compact orientable 3-manifold admit a foliation (up to adding finitely many Reeb components).

Quote: (Foliations, A. Candel and L. Conlon) "The principal moral to be drawn from this chapter is that since foliations with Reeb components are ubiquitous, they carry absolutely no information about the topology of 3-manifolds."

Moral

Foliations without Reeb components are the most interesting for 3-manifolds.

Question

Which 3-manifolds admit transversally oriented foliation without Reeb components (nice foliation)?

THE ANSWER...

Theorems (W. Thurston)

▶ If \mathcal{F} is a nice foliation on M then,

Euler(
$$\mathcal{F}$$
) $\in B^1_{T^*}$.

▶ If *S* is a compact leaf of \mathcal{F} , then *S* is minimizing; *i.e*

$$T([S]) = \chi_{-}(S).$$

Theorem (D. Gabai)

If *S* is minimizing and $[S] \neq 0$, then *S* is a leaf of a nice foliation on *M*.

Corollary (D. Gabai)

If $b_2(M) > 0$, then M admit a nice foliation.

Realization problem for Thurston norms

Question

Given an integer polytopes

$$P := ConvHull\{v_1, ..., v_n\}$$

in \mathbb{R}^k , is P a Thurston ball?

Definition

 Σ_g : closed oriented surface of genus g, $\gamma := \{c_1, ..., c_k\}$: collection of closed curves on Σ_g .

Fact:

If $a \in H_1(\Sigma_g, \mathbb{Z})$, then there is an oriented multicurve α such that $a = [\alpha]$.

We set,

$$i_{\gamma}(\alpha) := \operatorname{card}\{\alpha \cap \gamma\}, \quad N_{\gamma}(a) := \inf_{|\alpha| = a} \{\#(\alpha \cap \gamma)\} \in \mathbb{N}.$$

So, we get a map

$$N_{\gamma}: H_1(\Sigma_g, \mathbb{Z}) \simeq \mathbb{Z}^{2g} \to \mathbb{N}$$

Theorem (M. Cossarini and P. Dehornoy)

- ▶ If γ is filling, N_{γ} extends to a norm $N_{\gamma}: H_1(\Sigma_g, \mathbb{R}) \to \mathbb{R}_+$.
- ▶ Unit dual ball of N_{γ} is an integer polytope

$$B_{N_{\gamma}^*}^1 = \text{ConvHull}\{\sigma_1, ..., \sigma_n\}$$

where $\sigma_i \in H^1(\Sigma_g, \mathbb{Z})$ satisfy the parity condition

$$\sigma_i = [\gamma] \mod 2$$
.

Theorem (M. Cossarini and P. Dehornoy) Unit dual balls of intersection norms classify open book decomposition of $T^1\Sigma_g$.

Realization problem for intersection norms

Question

Given an integer polytopes

$$P := \text{ConvHull}\{v_1, ..., v_n\}$$

in \mathbb{R}^{2g} , is P an intersection ball on Σ_g ?

GEOGRAPHY OF THURSTON BALLS AND

INTERSECTION BALLS

Theorem (W. Thurston)

▶ Parity condition: If $P := \text{ConvHull}\{w_1, ..., w_n\}$ is a Thurston ball, then

$$w_i = w_i \mod 2$$
.

▶ The parity condition is sufficient for symmetric integer polygon P in \mathbb{R}^2 .

Theorem (S.)

- ► Every intersection ball is a Thurston ball.
- ▶ There are some integer polytopes in \mathbb{R}^4 satisfying the parity condition which are not intersection balls.

Question

Are there Thurston balls which are not intersection norms balls?

Figure: Geography of Thurston balls in even dimension

Thurston proof of the realization problem

Let *P* be an integer polygon that satisfies the parity condition.

To construct M,...?

$$\widetilde{M} := \mathbb{T}^3$$
; $\pi : \mathbb{T}^3 \to \mathbb{T}^2$ is a circle bundle.

Modification on \widetilde{M}

- ► Eliminate the horizontal surface with a Dehn surgery along a fiber,
- ▶ "Choose" an oriented closed curve γ on \mathbb{T}^2 such $[\gamma] \neq 0$
- ► Take a lift $\widetilde{\gamma}$ of γ in M and set $M = M \widetilde{\gamma}$

- 1. $\dim H_2(M) = 2$,
- 2. if α minimally intersects γ , $S_{\alpha} := \pi^{-1}(\alpha)$ is minimizing and $T([S]) = \operatorname{card}\{\alpha \cap \gamma.\}$
- 3. B_{T*}^1 is determined by the topology of γ .

Our proof

Theorem (S.)

Every intersection ball is a Thurston ball.

Key Idea

1. What Thurston showed is essentially that for every $a \in H_2(M, \mathbb{Z})$,

$$T(a) = N_{\gamma}(\pi_*(a)) \tag{1};$$

$$\pi_*(a) \in H_1(\mathbb{T}^2)$$

2. Equation (1) holds for $g \ge 2$ with slight modifications on Thurston construction.

OUR CONSTRUCTION

 γ = filling closed curves on Σ_g . M= the 3-manifold obtained following Thurston's construction.

Bad thing for $g \ge 2$

► Attaching handle can reduce the complexity of vertical surfaces

How to lift γ when $g \ge 2$?

How to avoid the situation where vertical surfaces are not minimizing?

Figure: Braiding along fibers of double point of γ

... Vertical surface S_{α} are minimizing provided that α intersects γ minimally.

Question

- Are there Thurston balls which are not intersection balls?
- ▶ Let $v_1 := (1, 1, 1, 1)$, $v_2 := (1, -1, 1, 1)$, $v_3 := (-1, 1, 1, 1)$, $v_4 := (1, 1, -1, 1)$ and

$$P := \text{ConvHull}\{\pm v_i, i = 1, ..., 4\}.$$

Is *P* a Thurston ball?

► What is the "topology" of 3-manifolds with smallest possible balls?

Thank you!