CABLING AND TRANSVERSE SIMPLICITY
JOHN B. ETNYRE AND KO HONDA

ABSTRACT. We study Legendrian knots in a cabled knot type. Specifically, given a topological
knot type/C, we analyze the Legendrian knots in knot types obtained #ooy cabling, in terms of
Legendrian knots in the knot tygé. As a corollary of this analysis, we show that {l2e3)-cable of

the(2, 3)-torus knot isnot transversely simplend moreover classify the transverse knots in this knot
type. This is the first classification of transverse knots in a non-transversely-simple knot type. We
also classify Legendrian knots in this knot type and exhibit the first example of a Legendrian knot
that does not destabilize, yet its Thurston-Bennequin invariant is not maximal among Legendrian
representatives in its knot type.

1. INTRODUCTION

In this paper we continue the investigation of Legendrian knots in tight contact 3-manifolds using
3-dimensional contact-topological methods. In [EH1], the authors introduced a general framework
for analyzing Legendrian knots in tight contact 3-manifolds. There we streamlined the proof of the
classification of Legendrian unknots, originally proved by Eliashberg-Fraser in [EF], and gave a
complete classification of Legendrian torus knots and figure eight knots. In [EH2], we gave the first
structure theorem for Legendrian knots, namely the reduction of the analysis of connected sums of
Legendrian knots to that of the prime summands. This yielded a plethora of non-Legendrian-simple
knot types. (A topological knot type lsegendrian simplé Legendrian knots in this knot type are
determined by their Thurston—Bennequin invariant and rotation number.) Moreover, we exhibited
pairs of Legendrian knots in the same topological knot type with the same Thurston-Bennequin and
rotation numbers, which required arbitrarily many stabilizations before they became Legendrian
isotopic (see [EHZ2]).

The goal of the current paper is to extend the results obtained for Legendrian torus knots to
Legendrian representatives of cables of knot types we already understand. On the way to this goal,
we encounter theontact width a new knot invariant which is related to the maximal Thurston—
Bennequin invariant. It turns out that the structure theorems for cabled knots types are not as
simple as one might expect, and rely on properties associated to the contact width of a knot.
When these properties are not satisfied, a rather unexpected and surprising phenomenon occurs
for Legendrian cables. This phenomenon allows us to show, for example, th@t fecable of
the (2, 3)-torus knot is not transversely simple! (A topological knot typérésversely simple
if transverse knots in that knot type are determined by their self-linking number.) Knots which
are not transversely simple were also recently found in the work of Birman and Menasco [BM].
Using braid-theoretic techniques they showed that many three-braids are not transversely simple.
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Our technique should also provide infinite families of non-transversely-simple knots (essentially
certain cables of positive torus knots), but for simplicity we content ourselves with the above-
mentioned example. Moreover, we give a complete classification of transverse (and Legendrian)
knots for the(2, 3)-cable of the(2, 3)-torus knot. This is the first classification of transverse knots

in a non-transversely-simple knot type.

We assume that the reader has familiarity with [EH1]. In this paper, the ambient 3-manifold
is the standard tight conta¢t®, £.;4), and all knots and knot types acgiented Let K be a
topological knot type and’ (K) be the set of Legendrian isotopy classes(of For each[L]| €
L(K) (we often write to mean|L]), there are two so-calleclassical invariantsthe Thurston-
Bennequin invariantb(L) and therotation number-(L). To eachlC we may associate an oriented
knot invariant

(K) = th(L
(K) Jnax (L),

called themaximal Thurston-Bennequin number

A close cousin oftb(K) is another oriented knot invariant called tbentact widthw (K) (or
simply thewidth) defined as follows: First, an embedding S' x D? — S? is said torepresent
K if the core curve ofy(S* x D?) is isotopic tok. (For notational convenience, we will suppress
the distinction betwees! x D? and its image undep.) Next, in order to measure trgope
of homotopically nontrivial curves o(S* x D?), we make a (somewhat nonstandard) oriented
identificationd(S! x D?) ~ R?/Z?, where the meridian has slopand the longitude (well-defined
sincek is insideS?) has slopex. We will call this coordinate systek.. Finally we define

1
sup :
slop&ls(s1xp2))

where the supremum is taken ove&r x D? — S representingC with 9(S* x D?) convex
Note that there are several notions similautgC) — see [Co, Ga]. The contact width clearly
satisfies the following inequality:

th(K) < w(K) < th(K) + 1.

In general, it requires significantly more effort to determinéC) than it does to determing(KC).
Observe thatb(K) = —1 andw(K) = 0 whenK is the unknot.

w(k) =

1.1. Cablings and the uniform thickness property. Recall that &p, ¢)-cable £, ;) of a topo-
logical knot typeK is the isotopy class of a knot of sloge)n the boundary of a solid toru# x D?
which representk’, where the slope is measured with respecitodefined above. In other words,
arepresentative df, ,) windsp times around the meridian & andq times around the longitude
of K. A (p, q)-torus knotis the(p, ¢)-cable of the unknot.

One would like to classify Legendrian knots in a cabled knot type. This turns out to be somewhat
subtle and relies on the following key notion:

Uniform thickness property (UTP). Let K be a topological knot type. Thek satisfies the
uniform thickness conditioor is uniformly thickif the following hold:
(1) th(K) = w(K).
(2) Every embedded solid tord8 x D? — S3 representindC can be thickened tostandard
neighborhoodf a maximaltb Legendrian knot.
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Here, astandard neighborhood/ (L) of a Legendrian knot is an embedded solid torus with core
— _ 1
curve L and convex boundar§ N (L) so that#I'sn) = 2 andtb(L) = Slop&roay” Such a

standard neighborhoal (L) is contact isotopic to any sufficiently small tubular neighborhébd

of L with 0N convex and#l'yy = 2. (See [H1].) Note that, strictly speaking, Condition 2 implies
Condition 1; it is useful to keep in mind, however, that the verification of the UTP usually proceeds
by outlawing solid tori representing with W > tb(K) and then showing that solid tori with

sloper oplaer) < tb(K) can be thickened properly. We will often say that a solid ta¥ugwvith convex

boundary) representing does not admit a thickeningf there is no thickeningV’ > N whose

slopeT"sn.) # SlopeLoy).
The reason for introducing the UTP is due (in part) to:

Theorem 1.1.Let K be a knot type which is Legendrian simple and satisfies the UTP.Zhgn
is Legendrian simple and admits a classification in terms of the classificatikn of

Of course this theorem is of no use if we cannot find knots satisfying the UTP. The search for such
knot types has an inauspicious start as we first observe that the uGkiugs nosatisfy the UTP,
sincetb(K) = —1 andw(K) = 0. In spite of this we have the following theorems:

Theorem 1.2. Negative torus knots satisfy the UTP.

Theorem 1.3.1f aknot typelC satisfies the UTP, the(p, ¢)-cablesC, ) satisfies the UTP, provided
B <w(K).
q

We sometimes refer to a slogeas “sufficiently negative” iﬁ;’ < w(K). Moreover, if§ > w(K)
then we call the slope “sufficiently positive”.

Theorem 1.4. If two knot types; and K, satisfy the UTP, then their connected Sim#/C,
satisfies the UTP.

In Section 3 we give a more precise description and a proof of Theorem 1.1 and in Section 4 we
prove Theorems 1.2 through 1.4 (the positive results on the UTP).

1.2. New phenomena.While negative torus knots are well-behaved, positive torus knots are more
unruly:

Theorem 1.5. There are positive torus knots that do not satisfy the UTP.

It is not too surprising that positive torus knots and negative torus knots have very different
behavior — recall that we also had to treat the positive and negative cases separately in the proof
of the classification of Legendrian torus knots in [EH1]. A slight extension of Theorem 1.5 yields
the following:

Theorem 1.6. There exist a knot typk and a Legendrian knot € £(K) which does not admit
any destabilization, yet satisfiel§ L) < tb(K).

Although the phenomenon that appears in Theorem 1.6 is rather common, we will specifically
treat the case whek is a (2, 3)-cable of a(2, 3)-torus knot. The same knot typgé is also the
example in the following theorem:
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Theorem 1.7.Let K be the(2, 3)-cable of the(2, 3)-torus knot. There is a unique transverse knot
in 7 (K) for each self-linking number, wheren < 7 is an odd integer4 3, and exactly two
transverse knots iff (K) with self-linking numbeB. In particular, £ is not transversely simple.

Here7 (K) is the set of transverse isotopy classe& of

Previously, Birman and Menasco [BM] produced non-transversely-simple knot types by exploit-
ing an interesting connection between transverse knots and closed braids. It should be noted that
our theorem contradicts results of Menasco in [M1]. However, this discrepancy has led Menasco
to find subtle and interesting properties of cabled braids (see [M2]). The earlier work of Birman-
Menasco [BM] and our Theorem 1.7 both give negative answers to a long-standing question of
whether the self-linking number and the topological type of a transverse knot determine the knot
up to contact isotopy. The corresponding question for Legendrian knots, namely whether every
topological knot typeC is Legendrian simple, has been answered in the negative in the works of
Chekanov [Ch] and Eliashberg-Givental-Hofer [EGH]. Many other non-Legendrian-simple knot
types have been found since then (see for example [Ng, EH2]).

The theorem which bridges the Legendrian classification and the transverse classification is the
following theorem from [EH1]:

Theorem 1.8. Transverse simplicity is equivalentstable simplicityi.e., any twolL,, L, € L(K)
with the sameb andr become contact isotopic after some number of positive stabilizations.

The problem of finding a knot type which is not stably simple is much more difficult than the
finding a knot type which is not Legendrian simple, especially since the Chekanov-Eliashberg
contact homology invariants vanish on stabilized knots. Our technique for distinguishing stabiliza-
tions of Legendrian knots is to use the standard cut-and-paste contact topology techniques, and, in
particular, the method dftate traversal

Theorems 1.5 through 1.6 will be proven in Section 5 while Theorem 1.7 is be proven in Sec-
tion 6. More specifically, the discussion in Section 6 provides a complete classificatiprdof
cables of(2, 3)-torus knots.

Theorem 1.9.1f K’ is the (2, 3)-cable of the(2, 3)-torus knot, thenC(K') is classified as in Fig-
ure 1. This entails the following:

(1) There exist exactly two maximal Thurston-Bennequin representdtives £(K'). They
satisfytb(Ky) = 6, r(Ky) = £1.

(2) There exist exactly two non-destabilizable representativess £(K') which have non-
maximal Thurston-Bennequin invariant. They satisfy..) = 5andr(L.) = £2.

(3) EveryL € L(K') is a stabilization of one ok, , K_, L, or L_.

(4) S4(K_) = S_(K+), S_(L_) = S2(K_), andS, (Ly) = S2(K.).

(5) S%(L-)is not (Legendrian) isotopic t6% S_(K_) andS* (L. ) is notisotopic ta5* S (K ),
for all positive integers:. Also,S2(L_) is not isotopic taS% (L.).

2. PRELIMINARIES

Throughout this paper, a convex surfaces either closed or compact with Legendrian boundary,
'y, is the dividing set o2, and#Iy, is the number of connected component$'of
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FIGURE 1. Classification of Legendriaf®, 3)-cables of(2, 3)-torus knots. Con-
centric circles indicate multiplicitieg,e., the number of distinct isotopy classes
with a givenr andtb.

2.1. Framings. For convenience we relate the framing conventions that are used throughout the
paper. In what followsX \ Y will denote the metric closure of the complementoin X.

Let IC be a topological knot type arid, ,) be its(p, ¢)-cable. LetV(K) be a solid torus which
representdC. SUppose, ) € K, q Sits ondN (K). Take an oriented annulu$ with boundary
ONIN (Kp.q) SO that(ON (K,,q))) \ A consists of two disjoint annuli,, ¥, andAUY;, i = 1,2,
is isotopic tooN (K). We define the following coordinate systems,, identifications of tori with
R2/72.

(1) Cx, the coordinate system @nV(K) where the (well-defined) longitude has slageand
the meridian has slope

(2) Ci, the coordinate system ahV (K, ,)) where the meridian has slopeand slopexo is
given by AN oN (K,.q))-

We now explain how to relate the framingg andCy , , for ON (K, ). SUPPOSEX ;) € Ky

is contained i N (KC). Then the Seifert surface( K, ,)) is obtained by taking parallel copies of

the meridional disk ofV(K) (whose boundary we assume arparallel closed curves anV (K)

of slope 0) and; parallel copies of the Seifert surface for(whose boundary we assume gre
parallel closed curves oV (K) of slopeoc), and attaching a band at each intersection between
the slope 0 and slopso closed curves for a total dpg| bands. Therefore, the framing coming
from Ci. and the framing coming fror@y , = differ by pg; more precisely, ifL(, ) € L(K ()
andt(L,q), F) is thetwisting numbewith respect to the framing (or the Thurston-Bennequin
invariantwith respect taF), then:

1) t(Lpg) Cic) + 14 = t(Lpg): Cicyy.y) = t0(Lipg))-
Let us also define thenaximal twisting numbeof 1 with respect toF to be:

t = L .

tK,F) Jél&’,é)t( ,F)
2.2. Computations of tb and r. Supposel, , € L(K, ) is contained ind N (K), which we
assume to be convex. We computité€L, ,)) for two typical situations; the proof is an immediate
consequence of Equation 1.



6 JOHN B. ETNYRE AND KO HONDA

Lemma 2.1.
(1) Supposd., . is a Legendrian divide and sloféy ) = ]% Thentb(L,.q)) = pg-
(2) Suppose.,, ) is a Legendrian ruling curve and slo@&yx)) = Z— Thentb(L(,,q) =
pq = |pd’ — ap'|.
Next we explain how to compute the rotation numbgt, ,)).

Lemma 2.2. Let D be a convex meridional disk of (1) with Legendrian boundary on a contact-
isotopic copy of the convex surfadeV(K), and let>(L) be a convex Seifert surface with Leg-
endrian boundary. € £(K) which is contained in a contact-isotopic copya@¥ (K). (Here the
isotopic copies oD N (K) are copies inside aii-invariant neighborhood of N (K), obtained by
applying the Flexibility Theorem 0N (X).) Then

T(L(p,q)> =p-7(9D) + q - r(0%(K)).

Proof. Takep parallel copiesDy, ..., D, of D andq parallel copies2(K)y, ..., X(K), of X(K).

The key point is to use the Legendrian realization principle [H1] simultaneouslyian: =
1,...,p, andoX(K);, j = 1,...,q. Provided sloplsn)) # oo, the Legendrian realization
principle allows us to perturbN (K) so that (i)(U,—, ,0D;) U (U, _,0%(K);) is a Legen-

drian graph iD N (KC) and (ii) each D; andoX(K); intersectd 'y k) efficientlyi.e., in a manner
which minimizes the geometric intersection number. (The version of Legendrian realization de-
scribed in [H1] is stated only for multicurves, but the proof for nonisolating graphs is identical.)
Now, supposel, , € L(K(,4) and its Seifert surfac&(L(, ) are constructed by resolving

the mtersectlons 0¢U ,0D) U (U, 05(K);). Recalllng that the rotation number is a

----------

homological quantity (a relatlve half-Euler class) [H1], we readily compute that

r(Lipg) = p-1(0D) + ¢ r(0X(K)).
(For more details on a similar computation, see [EH1].) Finally,, is obtained fromL’(p’q)
by resolving the inefficient intersections betwekf , andI'yn (). SincedN(K) is a torus and

Lan(x) consists of two parallel essential curves, the |neff|C|ent intersections come in pairs, and
have no net effect on the rotation number computation. This proves the lemma. O

3. FROM THEUTP TO CLASSIFICATION

In this section we use Theorem 1.3 to give a complete classificatiGof, ;) ), providedL(KC)
is classified[C satisfies the UTP, ankd is Legendrian simple. In summary, we show:

Theorem 3.1.If K is Legendrian simple and satisfies the UTP, then all its cables are Legendrian
simple.

The form of classification for Legendrian knots in the cabled knot types depends on whether or not
the cabling slopé; is greater or less than(KC). The precise classification for sufficiently positive
slopes is given in Theorem 3.2, while the classification for sufficiently negative slopes is given in
Theorem 3.6.

In particular, these results yield a complete classification of Legendrian iterated torus knots,
provided each iteration is sufficiently negative (so that the UTP is preserved). We follow the
strategy for classifying Legendrian knots as outlined in [EH1].
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Suppos&C satisfies the UTP and is Legendrian simple. By the UTP, every LegendriarL knot
L(K) with tb(L) < tb(K) can be destabilized to one realizifgxC). The Bennequin inequality
[Be] gives bounds on the rotation number; hence there are only finitely many distincf (K),
say Ly, ..., L,, which havetb(L;) = tb(K),i = 0,...,n. Write r; = 7(L;), and assume, <
r < --- < r,. Bysymmetry,r, = —r,_,. (This is easiest to see in the front projection by
rotating about thec-axis, if the contact form iglz — ydxz.) Now, every time a Legendrian knot
L is stabilized by adding a zigzag, it& decreases by and itsr either increases by (positive
stabilizationS, (L)) or decreases by (negative stabilizatiots_(L)). Hence the image of (K)
under the mayr, tb) looks like a mountain range, where the peaks are all of the same hight
situated at, . .., r,. The slope to the left of the peak-sl and the slope to the rightisl1, and the
slope either continues indefinitely or hits a slope of the opposite sign descending from an adjacent
peak to create a valley. See Figure 2.

r= -10-9-8-7-6-5-4-3-2-1 012345678910
th=-36 N N

7 N/ \ VERNVERN

-37 ) ° ° °
38 NN N SN NN
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-40 o ° ° 0 ° ° ° ° ° °
) /\/\/\/\/\/\/\/\/\/\
41 ° [) ° ° ° ° ) [) °

FIGURE 2. The(r, tb)-mountain range for the—9, 4)-torus knot.

The following notation will be useful in the next few results. Given two slopes? ands’ = ;‘—
on a torusl” with r, t relatively prime and”, ¢’ relatively prime, we denote:
ses =rt —tr'.
This quantity is the minimal number of intersections between two curves of slapés’ onT.
Theorem 3.2. Suppose&C is Legendrian simple and satisfies the UTR,I§ are relatively prime
integers With§ > w(K), thenkC, ) is also Legendrian simple. Moreover,

t(Kp) = pa — ‘w(/C) . g
and the set of rotation numbers realized{ly € L£(K, ) |tb(L) = tb(K )} is
{g-r(L)|L € LK), tb(L) = w(K)}.

This theorem is established through the following three lemmas.

Y

Lemma 3.3. Under the hypotheses of Theorem 32K, ) = pg — |w(K) e £| and any Legen-
drian knotL € L£(K, ) with tb(L) < tb(K,,,) destabilizes.

Proof. We first claim that'(L,Cy) < 0 forany L € L(K,). If not, there exists a Legendrian
knotL' € L(K ) witht(L',Cy) = 0. LetS be a solid torus representiigsuch that.’ C 95 (as
a Legendrian divide) and the boundary tofusis convex. Then slof€’ss) = £ when measured

with respect ta,.. However, sincé > w(K), this contradicts the UTP.
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Sincet(L,C;.) < 0, there exists ay so that, C 95 anddS is convex. Lets be the slope of
I'ys. Then we have the following inequality:

1

L,rls 'w(,@.e ’

s q q
with equality if and only if% = w(K). To see this, use an oriented diffeomorphism of the toxtis
that sends slope to 0 and slop% = ﬁ to oo (this forces—oo < s < 0 and% > 0), and

compute determinants. (Alternatively, this follows from observing that there is an edgé fimm
ﬁ in the Farey tessellation, afde (—oo, w(K)], whereas’ € (w(K),o0).) Thust(L,Cy) <
—|w(K) o £ for all L € L(K(,,4). But now, if S is a solid torus representing of maximal
thickness, then a Legendrian ruling curve@$ easily realizes the equality. Converting frath
to Cx., we obtaintb(K, ) = pg — |w(K) e HE

Now consider a Legendrian knate £(K, ) with tb(L) < tb(K ). PlacingL on a convex
surface)s, if the intersection betweehandl s is not efficient {.e., does not realize the geometric
intersection number), then there exists a bypass which allows us to destdbil@¢herwiseL
is a Legendrian ruling curve oflS with % # w(K). Now, sinceK satisfies the UTP, there is
a solid torusS” with S C S’, wheredS’ is convex and slog&ss) = ﬁ By comparing
with a Legendrian ruling curve of slopge i.e, taking a convex annulug = L x [0,1] in S x

[0,1] = S”\ S and using the Imbalance Principle, we may easily find a bypass. féherefore, if
t(L,Ck) < —|w(K) o |, then we may destabilize. O

Lemma 3.4. Under the hypotheses of Theorem 3.2, Legendrian knots with maimat (/C(, ))
are determined by their rotation number. Moreover, the rotation numbers associated to maximal
Legendrian knots i(C, ,)) are

{g-r(D)IL € LK), th(L) = w(K)}

Proof. Given a Legendrian knat € £(IC, ) with maximaltb, there exists a solid torus with
convex boundary, where slo@gs) = ﬁ andL is a Legendrian ruling curve anS. The torus
S is a standard neighborhood of a Legendrian kisdh £(/). From Lemma 2.2 one sees that

r(L) =q-r(K).

Thus the rotation number df determines the rotation number &t

If L andL’ are two Legendrian knots ii(XC, ) with maximaltb, then we have the associated
solid tori S and.S” and Legendrian knot& and K’ as above. IfL. and L’ have the same rotation
numbers then so d& and K’. Sincek is Legendrian simplel’ and K’ are Legendrian isotopic.
Thus we may assume thaf and K’ are the same Legendrian knot and tlhaand S’ are two
standard neighborhoods af = K’. InsideS N S’ we can find another standard neighborh&dd
of K = K’ with convex boundary having dividing slogv% and ruling slopeg. The setsS' \ S”
andsS’ \ S” are both diffeomorphic t@™ x [0, 1] and have0, 1]-invariant contact structures. Thus

we can assume thdt and L' are both ruling curves oaS”. One may now use the other ruling
curves o S” to Legendrian isotop. to L. O

Lemma 3.5. Under the hypotheses of Theorem 3.2, Legendrian knaf$kh, ,)) are determined
by their Thurston-Bennequin invariant and rotation number.
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Proof. Here one simply needs to see that there is a unique Legendrian knot in the valleys of the
(r,tb)-mountain range; that is, it. and L' are maximaltb Legendrian knots inC(KC(, ) and

r(L) = r(L") + 2¢n (note the difference in their rotation numbers must be even and a multiple of
q) thenST' (L") = S (L). To this end, letx” and K’ be the Legendrian knots ifi(K) associated

to L and L’ as in the proof of the previous lemma. The knéfsand K’ have maximalkb and

r(K) = r(K') + 2n. SinceK is Legendrian simple we know” (K”) = S"(K). Using the fact
that S? (L) sits on a standard neighborhood%f(K) (and the corresponding fact fé’ and L)

it easily follows thatS?" (L") = S"(L). O

We now focus our attention on sufficiently negative cablings of a knotAype

Theorem 3.6. SupposeC is Legendrian simple and satisfies the UTR,If are relatively prime
integers withy > 0 and® < w(K), thenkC, q) is also Legendrian simple. Moreov(K,,,)) = pq

and the set of rotation numbers realized{dy € L£(K, ) |tb(L) = tb(K )} is
{£(p+q(n+r(L)) | L e LK), tb(L) = —n},
wheren is the integer that satisfies
—-n—-1< b < —n.
q
We begin with two lemmas.

Lemma 3.7. Under the hypotheses of Theorem 3.6, evety,) € L(K(,q) With tb(L, ) <
tb(K(p,q)) can be destabilized and

th(Kp.q) = p4-

Proof. By Theorem 1.3)C,, also satisfies the UTP. Therefore every, ), € L(K(,q) With

th(L(pq) < tb(K(q) can be destabilized to a Legendrian knot realizibigC, ). Moreover,
since? is sufficiently negative, there exist,, ;) € L(K(,q)) With tb(Ly, 4)) = pg, which appear as

Legendrian divides on a convex tor@8/(K). By Lemma 2.1 we havéh(K ) > pq. Equality
(the hard part) follows from Claim 4.2 below. O

Lemma 3.8. Under the hypotheses of Theorem 3.2, Legendrian knots with mastimal (K, ;)
are determined by their rotation number. Moreover, the set of rotation numbers attained by

{L(p,fI) S ﬁ(lc(p,q)) | tb(L(nq)) = pq}is
{£(p+q(n+r(L))) | L e LIK),th(L) =—n}.

Another way of stating the range of rotation numbers (and seeing where they come from) in
Lemma 3.8 is as follows: To eadhe £(K), there correspond two elemerts € £(K,,,)) with
th(L*) = pg andr(L*) = q-r(L) + s, wheres is the remaindes = —p — gn > 0. L* is obtained
by removing a standard neighborhood/®tS.. (L)) from N(L), and considering a Legendrian
divide on a torus with slogé’) = £ insideT? x [1,2] = N(L) \ N(S+(L)).

Proof. The proof that Legendrian knots with maxintaiin £(C(, ,)) are determined by their rota-
tion numbers is similar to the proof of Lemma 3.4 (also see [EH1]).

The range of rotation numbers follows from Lemma 2.2 as well as some considerations of tight
contact structures on thickened tori. Firstlgt = 0N (K) which containg., ) with tb( L, q)) =
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pq. We will use the coordinate systefix. Then there exists a thickened torfi$ x [1, 2] with
convex boundary, wheré? x [1,1.5] € N(K), slop&l'y,) = —n%l, slopel'r, ;) = £, and
slopel'y,) = —2. Here we write]; = 72 x {i}. Observe thaf™ x [1, 2] is abasic slicein the
sense of [H1], since the shortest integral vecters, 1) and(—(n + 1), 1) form an integral basis
for Z2. This means that the tight contact structure must be one of two possibilities, distinguished by
therelative half-Euler clasg(¢). (Itis called the “relative Euler class” in [H1], but “relative half-
Euler class” is more appropriate.) Their Poireauals are given by D(e(§)) = £((—n, 1) —
(—(n +1),1)) = £(1,0). Now, by the universal tightness @* x [1,2], it follows from the
classification of [Gi2, H1] that:
(1) either PD(e(€),T? x [1,1.5]) = (p,q) — (—n — 1,1) and PD(e(¢),T? x [1.5,2]) =
(=n,1) = (p, q),
(2) or PD(e(€),T? x [1,1.5]) = —(p,q) + (—n — 1,1) and PD(e(§),T* x [1.5,2]) =
—(=n,1) + (p,9).

In view of Lemma 2.2, we want to compute (i)0D), whereD is a convex meridional disk for
N(K) with Legendrian boundary of, 5 = ON(K), and (ii) »(0X), whereX is a convex Seifert
surface for a Legendrian ruling curege on7; 5. Write D = D’U A, whereD’ is a meridional disk
with efficientLegendrian boundary faW (K) \ (7?2 x [1, 1.5]), andA C T? x [1,1.5]. (An efficient
closed curve on a convex surface intersects the dividing sanimally.) Also write> = ' U B,
whereB C T? x [1.5,2] andX’ C S*\ (T? x [1,2]) has efficient Legendrian boundakyon Ts.

By additivity,

r(0%) = r(L) + x(By) = x(B-) = r(L) + (e(§), B).
Here S, (resp.S_) denotes the positive (resp. negative) region of a convex suffad&ided by
['s. Similarly,
r(0D) = r(0D") + (e(§), A) = (e(£), A).
Therefore, either(0X) = r(L) + p + n andr(0D) = —¢+ 1, orr(0X) = r(L) — p — n and
r(0D) = ¢ — 1. In the former case,

r(Lpg) =p(=q+1) +q(r(L) + p+n) =p+q(r(L) +n).

In the latter case, we haveL,, ) = —p + ¢(r(L) — n) and we use the fact thqt (L) | L €
L(K),tb(L) = —n} is invariant under the map— —r. O

Proof of Theorem 3.6By Lemma 3.7, every;, , € L(K(,,) can be written as’' S (L, )
for someL, ;) with maximaltb. To complete the classification, we need to show that eﬂ{aﬂ)
which is a “valley” of the image ofr, tb) (i.e., L{, ,, forwhich (r(L{, ) +1,tb(L{, ,)+1) isinthe
image of(r, tb) but (r(Ly, ), tb(L{, ) +2) is not) destabilizes to two maxmeﬂ representatlves

L?;J’q) andL(‘qu) (the “peaks”) Observe that there are two types of valleys: type (i) has a depth of

s = —p — qn and type (ii) has adepth éfj — s, k € Z™.

We start with valleys of type (i). Such valleys occur whei.~) = ¢ - (L) — s, r(LT) =
q-r(L)+s,andtb(L~) = tb(L') = pq. Itis clear that the valley betwedn andL* corresponds to
a Legendrian ruling curve of slor?eon the boundary of the standard neighborhﬁdd;) of L with
tb(L) = —n. By stabilizingL in two ways, we see that any eleméiff , with r(L{, ) = ¢-r(L)

andtb(L, ) = pq — s satisfiesL(, , = S (L") = S3(L7).
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Next we explain the valleys of type (ii) which have depih— s, k € Z*. The peakd.” and
L* correspond to “adjacent’, L' € £(K) which havetb(L) = tb(L’') = —n andr(L) < r(L'),
and such that there is no Legendriah € £(K) with tb(L") = —n andr(L) < r(L") < r(L’).
Hencer(L™) = q-r(L) + sandr(L") = ¢ - r(L') — s. Thek in the expressiolkq — s above
satisfiesr(L) — r(L) = 2k. The valleyL(, , with tb(L{, ) = pq — (kg — s) andr(Lj, ) =
q-r(L)+kq=q-r(L')—kqoccurs as a Legendrian ruling curve of sldpen the standard tubular
neighborhood of% (L) = S*(L/). Therefore,l;, , = S3**(L~) = SX~*(L*). This proves the
Legendrian simplicity ofL(KC(,.q))- O

4. VERIFICATION OF UNIFORM THICKNESS

In this section we prove that many knot types satisfy the UTP. Let us begin with negative torus
knots.

Theorem 1.2.Negative torus knots satisfy the UTP.

Proof. Let KC be the unknot and’, , be its(p, ¢)-cable,i.e., the (p, ¢)-torus knot, withpg < 0.

It was shown in [EH1] thatb(K(, ) = pg. Unless indicated otherwise, we measure the slopes of
tori isotopic todN (K(,.,)) with respect taCy.. Thentb(K, ) = pq is equivalent taf(K, ) =
t(Kp,q:C) = 0. In other words, the standard neighborhood.of £(KC(, ) satisfyingtb(L) =

pq has boundary slops> with respect t&y..

We wiill first verify Condition 1 of the UTP, arguing by contradiction. (In fact, the argument that
follows can be used to prove thiiC, ,)) = 0.) Suppose there exists a solid tots= N (K ,,,))
which has convex boundary with = slopel'yy) > 0 and#['yy = 2. After shrinking Vv if
necessary, we may assume tkas a large positive integer. Next, using the Giroux Flexibility
TheoremgN can be isotoped intstandard formwith Legendrian rulings of slops>. Now let A
be a convex annulus with Legendrian boundarydhand A x [—e, €] its invariant neighborhood.
HereA is chosen so tha® = NU(A x [—¢, ¢]) is a thickened torus whose bound@# = 7, UT5
is parallel toON(K). Here, the relative positions @f, and 75, are that if7, = JN(K), then
T C N(’C)

Let us now analyze the possible dividing sets forFirst, 9-parallel dividing curves are easily
eliminated. Indeed, if there is@&parallel arc, then we may attach the corresponding bypass onto
ON and increase to oo,after isotopy. This would imply excessive twisting inside and the
contact structure would be overtwisted. Hence we may assumelttsain standard form, with
two parallel nonseparating arcs. Now choose a suitable identificafitilC) ~ R?/Z? so that the
ruling curves ofA have slopex, slopél',) = —s and slopél'r,) = 1. (This is possible since
a holonomy computation shows that, is obtained froml'z, by performings + 1 right-handed
Dehn twists.)

We briefly explain the classification of tight contact structuregomith the boundary condition
slopel's,) = —s, slopél'y,) = 1, #I'r, = #I'r, = 2. For more details, see [H1]. Corresponding
to the slopes-s, 1, are the shortest integer vectorsl, s) and(1, 1). Any tight contact structure on
R can naturally be layered intmsic sliceg7? x [1,1.5])U(T? x [1.5, 2]), where slopf'r, .) = oo
(corresponding to the shortest integer vedtorl)) and#I'r, . = 2. There are two possibilities
for each basic slice — the Poinéaduals of the relative half-Euler classes are giventbthe
difference of the shortest integer vectors corresponding to the dividing sets on the boundary. For
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T? x [1,1.5], the possiblePD(e(¢)) are+ of (0,1) — (—1,s) = (1,1 — s); for T? x [1.5,2], the
possibilities aret of (1,1) — (0,1) = (1,0). Sinces >> 1, the 4 possible tight contact structures
on R are given by+(1,0) £ (1,1 — s). Of the 4 possibilities, 2 of them are universally tight and
2 of them are virtually overtwisted. The contact structgiie universally tight when there iso
mixing of signi.e, PD(e(§)) = +(1,0) + (1,1 —s) or —(1,0) — (1,1 — s); when there is mixing
of sign+(1,0) — (1,1 —s) or —(1,0) + (1,1 — s), the contact structure is virtually overtwisted.

To determine the half-Euler class, consider= v x [—¢,e] € A x [—¢,¢|, where~ is a
Legendrian ruling curve of slop®. SinceX is [—¢, e]-invariant,(e(£), X) = x(X4) —x(X-) =0,
wherey is the Euler characteristic and, (resp.X_) is the positive (resp. negative) partXfi I's..
Therefore,PD(e(£)) must bet(0, s — 1), implying amixture of sign

Let us now recast the slopes Bf. in terms of coordinateS,, wherek is the unknot. With
respect taCx, slopdl'r, ) = 2 whereq is neither a negative integer nor the reciprocal of one.
One of the consequences of the classmcatlon of tight contact structures on solid tori in [Gi2, H1] is
the following: if S is a convex torus in the standard tight cont@tt, £,;;) which bounds solid tori
on both sides, then the only slopes fgrat which there can be a sign change are negative integers
or reciprocals of negative integers. Therefore, we have a contradiction, proving Condition 1.

Next we prove Condition 2, keeping the same notation as in the proof of Condition 1. Suppose
that N = N(K,) now has boundary slopg where—oo < s < 0 and slopes are measured
with respect toC;.. If 'y has ao-parallel arc, thers approaches-oo (in terms of the Farey
tessellation) when we attach a corresponding bypass/@ntbherefore, as usual, we may take
to be in standard form and, to consist of parallel nonseparating dividing arcs. Now observe that
1 cannot lie between slopEr, ) and slopél'r, ), where the slopes are measured with respeCi to
ThIS implies that there are no convex tori ihwhich are isotopic td; and have slopé In the
complementS? \ R, there is a convex torus isotopic Towith slope?. Using this, we readlly find
a thickening ofN to have slopex, measured with respect &)..

Once we thickenV to have boundary slopso, there is one last thing to ensure, namely that
#I'sn = 2; in other words, we wandv to be the standard neighborhood of a Legendrian curve
with twisting numbe with respect tc;..

Claim 4.1. Any solid toruslV with convex boundary, slop;y) = oo, and# gy = 2n, n > 1,
extends to a solid torud’” with convex boundary, slop®, and#1I ;5 = 2.

Proof. There exists a thickened toréswith OR = T, — 11, whereN C R, theT;,i = 1,2, bound
solid tori on both sides, and slofg,) = % with respect t&y.. By shrinking/N somewhat, we may

take R\ N to be a pair-of-pant¥, timesS'. Since there is twisting on both sides of the exterior of

R, we may also arrange th#T';, = 2. Moreover, ad’y(r\ v) is parallel to theS*-fibers, the tight

contact structure oR \ N is necessarilyertical, i.e., isotopic to anS*-invariant contact structure,

after appropriately modifying the boundary to be Legendrian-ruled. (See [H2] for a proof.)
The data for this tight contact structure are encodetl;in (Here we are assuming without

loss of generality thakt, is convex with Legendrian boundary.) L&E, = ~ LI v; Ll 2, where

vi = 2oNT; andy = ON N3,. There ar&n endpoints of'y,, on~, and2 for each ofy,. If there is

an arc between; and~,, then an imbalance occurs and there is necessafitparallel arc along

~. This would allow a thickening oN to one whose boundary has fewer dividing curves.
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The situation from which we have no immediate escape is when all the arcs/figmio~, and
the extra endpoints alongconnect up without creating-parallel arcs. We need to look externally
(i.e. outside ofR) to obtain the desired bypass. The key features we take advantage of are:

(1) There is twisting on both sides of the exteriorfaf
(2) There is no mixing of sign abou.

One of the (nontrivial) bypasses found aldfigandT; therefore can be extended inkbto give a
bypass to reducgIyy. O

This completes the proof of Theorem 1.2. O

Recall a fractiorv;Z is sufficiently negativéd

§< w(K).

(Observe thag is the reciprocal of the slope of a cur@#@’ corresponding tdp, q).)

Theorem 1.3.1f a knot type/C satisfies the UTP, thefp, ¢)-cablesk, , satisfies the UTP, pro-
vided§ is sufficiently negative.

Let I be a knot type that satisfies the UTP. We wiife= N (K) and N, .y = N(K(p,q)). The
coordinates fol® N and 9N, 4 will be Cc andCy., respectively. The proof of Theorem 1.3 is
virtually identical to that of Theorem 1.2.

Proof. We prove that the contact width(KC,, ), Cic), measured with respect®y., andt(C, ), Cx.)
both equab, and that anyV, ,) with convex boundary can be thickened to a standard neighbor-
hood of a Legendrian knot with{ L, 4, Cy.) = 0.

Itis easy to see tha{L, ), Cy) = 0 can be attained: Sinc&%is sufficiently negative, inside any
N (with convex boundary) of maximal thickness there exists a Legendrian represefhtgtiye
L(Kp.q) of twisting numbet (L, ,) = 0, which appears as a Legendrian divide on a convex torus
parallel tooN.

SupposeV, ) has convex boundary and sIoﬁﬁgN(pyq)) = s. As before, arrange the characteris-
tic foliation ond N, ;) to be in standard form with Legendrian rulings of slepgand consider the
convex annulusi with Legendrian boundary oV, ,), where the thickeningdg of N, ,, U Ais a
thickened torus whose bounda?y® = 77 U Ts is isotopic too N. We assume thdt, consists of
parallel nonseparating arcs, since otherwise we can further thigkep by attaching the bypass
corresponding to &-parallel arc.

Now let N be a maximally thickened solid torus which contails where the thickness is
measured in terms of theontact width

Claim 4.2. w(K,.q),Cx) = t(K(pg): Cc) = 0.

Proof. If s > 0, then by shrinking the solid toru¥, ,,, we may takes to be a large positive
integer and#I'yy,, , = 2. Then, as in the proof of Theorem 1.2, (i) insilethere exists a convex
torus parallel tdl; with slope]% (with respect tay), (ii) the tight contact structure oR must have
mixing of sign, and (iii) this mixing of sign cannot happen inside the maximally thickened torus
N. This contradicts slog€sy,, ) = s > 0. O
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Claim 4.3. Every N, ;) can be thickened to a standard neighborhood of a Legendrian kpgf
with Zf(L(p’q)) = 0.

Proof. If —oco < s < 0, then there cannot be any convex torifnisotopic to7; and with slope
o0o. Hence there is a convex torus parallelfowith slopeocc and#I" = 2 outside ofR. By

an application of the Imbalance Principle, we can thickémo have slopex. The proof of the
reduction to#I'sy = 2 is identical to the proof of Claim 4.1 — the key point is that there is
twisting on both sides oV \ R. O

This completes the proof of Theorem 1.3. O

We now demonstrate that the UTP is well-behaved under connected sums.

Theorem 1.4. If two knot typeskC; and KC, satisfy the UTP, then their connected slm#/C,
satisfies the UTP.

Proof. The following is the key claim:

Claim 4.4. Every solid torusV with convex boundary which represeiis#/C, can be thickened
to a standard neighborhood’ of a Legendrian curve it (JC; #/Cs).

Proof. Applying the Giroux Flexibility Theorem) N can be put irstandard formwith meridional
Legendrian rulings. Le$ be the separating sphere 6y #X, — we arrange5 so it (1) is convex,
(2) intersectsV along two disks, and (3) interse@$/ in a union of Legendrian rulings. Moreover,
on the annular portion of \ (C;#K,), we may assume that (4) there arechparallel arcs, since
otherwiseN can be thickened further by attaching the corresponding bypasses. Now, &itting
along S and gluing in copies of the standard contact 3-Bflwith convex boundary, we obtain
solid tori N;, i = 1,2, (with convex boundary) which represegt.

Since K; satisfies the UTP, there exists a thickening/\gfto N/, where N/ is the standard
neighborhood of a Legendrian knédt € L£(K;). Also arrangingd N/ so that it admits merid-
ional Legendrian rulings, we take an annulus from a Legendrian rgfiog O N/ to a Legendrian
ruling v; on ON; N ON. If tb(v;) < —1, then the Imbalance Principle, together with the fact
thattb(v;) = —1, yields enough bypasses which can be attached @Ntdo thickenN; into the
standard neighborhood of a Legendrian knot.

However, upon closer inspection, it is evident that the bypasses produced can be attached onto
N inside the originals®. This produces a thickening of to N’, which has boundary slopnlg (i.e.,
is the standard neighborhood of a Legendrian kndl(ik')) measured with respect @, x,. O

Condition 1 of the UTP follows immediately from the claim. To prove Condition 2, we need
to show that a standard neighborhodd of a Legendrian knot inC(/C;#K ;) can be thickened
to N” which is the standard neighborhood of a maxiniatepresentative of (KC;#K5). This
is equivalent to showing any Legendrian krddtin £(/C;#/C;) can be destabilized to a maximal
tb representative. Gived' € L(K;#K,), thenL’ can be written ad|# L), with L} € L(K,),
i = 1,2. EachL] can be destabilized to a maximalrepresentativd! by the UTP for eacliC;.
Since

th(IC1#K2) = th(KCy) + tb(KCa) + 1,

by [EH2], we simply takel.” = L{#L7. This proves Theorem 1.4. O
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5. NON-UNIFORMLY-THICK KNOTS AND NON-DESTABILIZABILITY

We prove the following more precise version of Theorem 1.5.
Theorem 1.5.The(2, 3)-torus knot does not satisfy the UTP.

Although our considerations will work for any, ¢)-torus knot withg > p > 0, we assume for
simplicity that/C is a(2, 3)-torus knot, in order to keep the arguments simpler in a few places.

Proof. The goal is to exhibit solid torN representingC, which cannot be thickened to the maximal
thickness. The overall strategy is not much different from the strategy used in [EH3] and [EH4] to
classify and analyze tight contact structures on Seifert fibered space$-owath three singular
fibers. The plan is as follows: we work backwards by starting with an arbitrary solid dwsich
representdC and attempting to thicken it. This gives us a Ii$} of potential non-thickenable
candidates, as well as tight contact structures on their complemiéntsV, (Lemma 5.1). In
Lemma 5.2 we prove that the decomposition ifpoandS*\ N, actually exists inside the standard
tight (S3, £,:4) and in Lemma 5.3 we prove th€, indeed resist thickening.

Let T be an oriented standardly embedded torusdrwhich bounds solid torl; andV; on
opposite sides and which containg2a3)-torus knot/C. Supposd” = 9V; andT = —0V;. Also
let F;, i = 1,2, be the core curve fov;. In [EH1] it was shown thatb(K) = pq —p — ¢ = 1.
Measured with respect to the coordinate systénfor eitheri, £(C,Cr, ) = —p — ¢ = —5, which
corresponds to a slope ef%.

Lemma 5.1. Suppose the solid toru§ representinglC resists thickening. Then slofigy) =

—6’%15, wherek is a nonpositive integer and the slope is measured with respégt to

Proof. Let L;, © = 1,2, be a Legendrian representativelofwith Thurston-Bennequin invariant
—m,;, wherem; > 0. If N(L;) is the standard neighborhood bf, then slop€lyn(.,)) = —%
with respect to the coordinate syst€m. We recast these slopes with respect to a new coordinate
systemC which identifiesT” = R?/Z?, wherek (viewed as sitting of") corresponds t¢0, 1).

First we change coordinates froffy, to C. Consider the oriented basi§2, 3), (1,2)) with
respect toCr,; we map it to((0,1),(—1,0)) with respect toC. This corresponds to the map
Al = g :% . (Here we are viewing the vectors as column vectors and multiplying bgn
the left.) ThenA; maps(—my,1) — (=3m; — 2,—2m; — 1). Since we are only interested in
slopes, let us write it instead &&m; + 2,2m; + 1).

Similarly, we change fronS, to C. The only thing we need to know here is thiatm,, 1) with
respect t&r, maps to(2ms + 3, my + 2) with respect tc.

Given a solid torusV which resists thickening, let;, i = 1,2, be a Legendrian representative
of F; which maximizesb(L;) in the complement ofV (subject to the condition thdt; U L, is
isotopic toF LI F; in the complement oN). View S3\ (N(L;) UN(L,) U N) as a Seifert fibered
space over the thrice-punctured sphere, where the annuli which connect anéng N (L),
and N admit fibrations by the Seifert fibers. Now supp@se, + 2 # 2ms + 3. Then we apply
the Imbalance Principle to a convex annulisbetweenN (L,) and N (L) to find a bypass along
N(L;). This bypass in turn gives rise to a thickeningofL;), allowing the increase ab(L;) by
one. Eventually we arrive &tn; + 2 = 2my + 3 and a convex annulud’ which has na-parallel
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arcs (hence we may assuméis in standard form. Moreover, the denominator of slofg )
must also equadm; + 2 = 2my + 3, since otherwiseV admits a thickening. Sincer; > 0, the
smallest solution t8m; +2 = 2my+ 3 ism; = 1, my = 1. All the other positive integer solutions
are therefore obtained by takimg, = 2k + 1, my = 3k + 1, with £ a nonnegative integer.

We now compute the slope of the dividing curvesi®w (L) UN (Ly) UN(A’)), measured with
respectt’;, = Cr,, after edge-rounding. Her¥(A’) stands for thd -invariant neighborhood of
the convex annulud’. We have:

omy+1  my + 2 1 4k:+3+3k+3 1 k+1
3m;+2 2me+3 6k+5  6k+5 6k+5 6k+5  6k+5
Forsmallk we get—1 < —2 < -3 < — L < ... < =1, O

Let IV, be a tight solid torus representiiig so that the boundary slope 456%15 with respect
to Ci, and#I'y, = 2. (There are exactly two tight contact structures gnwhich satisfy the
given boundary conditions, and they are both universally tight.) Mgt= S* \ N,. From the
above discussion, iV, is to resist thickening, then we know th&f, must be contactomorphic

to the manifold obtained fronV(L,) U N(Lz) by adding a standard neighborhood of a convex
annulusA’. M, is a Seifert fibered space and has a degree 6 d@eiiffeomorphic toS! times a
punctured torusof. [EH1]). One may easily check that the pullback of the tight contact structure to
% admits an isotopy where th# fibers become Legendrian and have twisting numb@i + 5)

with respect to the product framing.

Lemma 5.2. The standard tight contact structure ¥ splits into a (universally) tight contact

structure onV, with boundary s.IopeLﬁ%l5 and the tight contact structure oW, described above.

Proof. Let N, be a (universally) tight solid torus described above andilée a convex annulus
in standard form fromV, to itself, such that the complement & = N, U N(A) in S consist
of standard neighborhood$(Z;), i = 1,2. Here N(A) is the I-invariant neighborhood ofi.
(Observe thaf? is also contact isotopic t&/;, U N (A").)

For either choice of contact structure of, the contact structure oR can be isotoped to be
transverse to the fibers & (where the fibers are parallel 10), while preserving the dividing set
on dR. Such ahorizontalcontact structure is universally tight. (For more details of this standard
argument, see for example [H2].)

Once we know that the contact structure ®ns tight, we just need to apply the classification
of tight contact structures on solid tori and thickened tori. In fact, any tight contact structure

on R = T? x [1,2] with boundary conditiong#I'y, = #I'p, = 2 and slopél's,) = _m%’
slopgl'r,) = —my (herem,; are positive integers) glues together witt{L,) and N(L,) to give
the tight contact structure of¥. O

Lemma 5.3. The tight solid torusV, does not admit a thickening to a solid tor§., whose
boundary slope is—ﬁ’jﬂ',ﬂjrg, wherek’ < k. More generally,N, does not admit any nontrivial
thickeningsj.e., no thickenings with a boundary slope different frerﬁ%.

Proof. If IV, can be thickened tdV;/, then there exists a Legendrian curve isotopic to the regular
fiber of the Seifert fibered spadd;, = S®\ N, with twisting number> —(6k +5), measured with
respect to the Seifert fibration. (Take a ruling curveddvy,, C M,.) Pulling back to the sixfold
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cover My, we have a Legendrian knot which is topologially isotopic to a fiber but has twisting
number> —(6k + 5). However, we claim that the maximal twisting number for a fibefip is

—(6k + 5). One way to see this is to add a solid torus\fp to obtain7™ and extend the contact
structure so that all the* fibers inT* are Legendrian with twisting- (6% + 5). We can now apply
the classification of tight contact structures Bhdue to Giroux and Kanda (see [K]) to conclude
that the maximal twisting number for a fiber4g6k + 5).

Next, supposéV, admits a nontrivial thickeningy’ (not necessarily of typ&/,,). Then we use
the argument in Lemma 5.1 to find Legendrian curzes S* \ N’ which maximize the twisting
number amongst Legendrian curves isotopié¢ian 53 \ N’, and a convex annulus froti(L,)
to N (L), so thato(N(L;) U N(Ls) U N(A")) has some slope 6’“,;,%, k" < k. This puts us in the
case treated in the previous paragraph. O

This completes the proof of Theorem 1.5. O
As a corollary of the above investigation we have:

Theorem 1.6.Let K’ be the(2, 3)-cable of theg(2, 3)-torus knotkC. Then there exists a Legendrian
knot L € £(K') which does not admit any destabilization, yet satisfiét) < tb(K').

Proof. Let N, be a solid torus which resists thickening; ¢ay= 1. Then the boundary slope 6f;

is —Z, measured with respect &.. We choose a slope§ < —=Z whose corresponding simple

closed curve, denoted-b, a), has fewer intersections with the simple closed cyrvél, 2) than

with any other simple closed curve whose corresponding sk-)g)esatisfies—% < =5 < 0.

To verify that—7 = —1—36 works, consider the standard Farey tessellation of the hyperbolic unit
2

disk. Since there mutually are edges ameng < —3 < —=, —% = —2 is shielded from
any—< > —2Z by the edge from-1 to —2. Therefore, to get from--2 to —< we need at least
two steps, implying that—16, 3) and(—11, 2) have fewer intersections than 16, 3) and(—d, ¢).
Now, by changing coordinates froff}, to Cic, we see that the slope; = —% corresponds to the
(2, 3)-cable of theg(2, 3)-torus knot.

First observe that there is a Legendrian kinote £(KX') which sits inside the solid torud,
with slopelyy,) = —é (with respect ta’;.,), as a Legendrian divide on a convex torus which is
isotopic to (but not contact isotopic t)V, and which has slopef’—6. By the classification of tight
contact structures on solid tori, such a convex torus exists bec&%se —%. This proves that
t(K',Cy) > 0.

Next we exhibitL € L£(K’) which cannot be destabilized to twisting numbewith respect to
Cr,. Let L be a Legendrian ruling curve @hV,, where the ruling is of slopel%. By construction,

the twisting numbet(L, C).) = —1, computed by intersecting-11, 2) and(—16, 3).
Lemma 5.4. L cannot be destabilized.

Proof. The proof is an application of the state transition technique [H3]. Supposé thdinits
a destabilization. Then there exists a convex tatusotopic todN; which containsl as well as
a bypass td.. More conveniently, instead of isotoping bathand the torus, we fix and isotop
the torus fromoN; to ¥. Then the annulu®, = (0N,) \ L is isotoped toB = X \ L relative
to the boundary. Observe thBj, consists of two parallel nonseparating arcs. To geBtave
perform isotopy discretizatiomg., a sequence of bypass moves (which may well be trivial bypass
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attachments). There can be no nontrivial bypasses attachedgifiitom the exterior ofVy, since
N; has maximal thickness.

We claim there are no nontrivial bypasses from the interior as well. First of all, since there are
no Legendrian knots isotopic tb with twisting number zero insidé/;, no 9-parallel dividing
curves (onB) can be created by attaching bypasses from the interior. On the other hand, the slope
(or hoIonomy) of the two separating arcs By cannot be changed since the only slepgwith

-S> -1 wrth an edge (in the Farey tessellatlon)—tcf— is —==. This proves that all the state
transitions forB, are trivial state transitions. We are unable to reBch O
This completes the proof of Theorem 1.6. O

6. NON-TRANSVERSESIMPLICITY

Theorem 1.7. Let K’ be the(2, 3)-cable of the(2, 3)-torus knotC. ThenK' is not transversely
simple.

We first gather some preliminary lemmas.
Lemma 6.1. th(K') = w(K') = 6.
The proof of this lemma is identical to that of Theorem 1.2.

Lemma 6.2. There are precisely two maximal Thurston-Bennequin representativg#&in, which
we call K+ and which haveb(K.) =6, r(Ky) = £1.

Proof. Any K € L(K') with tb(K) = 6 can be realized as a Legendrian divide on the boundary
of a solid torusV representingC By Lemma 5.1,N can be thickened to a solid torié' with
slopelyy/) = , measured with respect .. This means that there are two possible tight
contact structures ofY, both universally tight, and the extensiontd is determined by the tight
contact structure oiV. OnceN’ is determined, the tight contact structure®h\ N’ is unique up

to isotopy, sinceV’ is the standard tubular neighborhood of the unique maximadpresentative

of IC. This proves that there are at most two maxindakepresentatives aof (XC).

We now show that there are indeed two representatives by computing their rotation numbers to
ber(K) = +1 (and hence showing they are distinct). To use Lemma 2.2, we need to know the
rotation number of a ruling curve isotopic tokC on 9N and the rotation number of a meridional
ruling curver, ondN. A ruling curve isotopic tdC ond N’ has rotation number O (by the Bennequin
inequality). The regioR betweerd N andoN’ (in Cx coordinates) has relative half-Euler class

PD(e(§),R) = +((1,1) — (2,3)) = (-1, -2).
Sor(A) = F1. One similarly sees that(;.) = +2. Thus
r(K) =2(£2) + 3(F1) = £1.
U

Lemma 6.3. The only non-destabilizable representatives(gk’) besides those which attain
tb(K') are L. which havetb(L.) = 5 andr(L.) = +2. They are realized as Legendrian rul-
ing curves on a convex torus isotopicXawith dividing curves of slope & (with respect ta’}, ),
and which does not admit a thickening.
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Proof. Let K be a non-destabilizable representativeC0k’). Sincetb(K') = 6, we can always
placeK on the (convex) bounday = 0N of a solid torusV representingC. If K is a Legendrian
divide onX, then we are in the case of Lemma 6.2Klfis not a Legendrian divide, theld must
intersectl’y, efficiently, and we may assume thitis a Legendrian ruling curve on. Slopes of
Y will usually be measured with respect(to

We now show that it = slopgT's) # —2&, thenK can be destabilized (contradicting our as-
sumption). Note that must be in—: 1 0)ands = -2 corresponds to the situation in Lemma 6.2.
In the following cases, we find a convex tori]Srsotoplc to and disjoint front so that a simple
closed curve of sIope has smaller geometric intersection WHE] than withI's.. The destabi-
lization is then a consequence of the Imbalance Principleclf —1, —-%), then there i’ ¢ N
with slopgT's/) = — 2. If s € (—=, —2&), then there exist8' of slope—— outsideN (sinceN
can be thickened to maxrmal width by Lemma 5.1). Srmrlarly d (—5,0), then there exists &’
with slopgI's,) = —3, by using Lemma 5.1. Next, f € (—=, —2), there exists &’ of slope—¢
inside N (it is not drfflcult to see that thi¥’ works by referring to the Farey tessellation). There-
fore we are left withs = —=. But then we use the classification 6{K) to deduce thaiv can be
thickened toN’ with boundary slope— corresponding to a representativefC) of maximal
Thurston-Bennequin invariant. We can now compareith ' of slope—-. to destabilize. This
proves that the only two places where we get stuck and cannot destablllze%aaed—l—?’ﬁ.

Now let L € £(K’) be non-destabilizable representatives witi.) = 5. Then they are Leg-
endrian ruling curves on the boundary of a solid takjs where slop&yy,) = —12—1 with respect
to C.. There are two possible tight contact structures\gnand they are both universally tight.
Since the tight contact structures on their complemghts N, are always contact isotopic, there
are at most two non-destabilizable, non-maximal representatives. Using Lemma 2.2, we obtain:

r(L) = 2(%1) 4+ 3(0) = £+2.
(Sincey intersectd s, in four points,r(x) = +1. It is also not hard to computg\) = 0 by

using the fact that there are veparallel arcs on the Seifert surface fa) Thereforel., andL_
are distinguished by the contact structures on the solid tSfus O

Lemma6.4. S_(L_) = S?(K_)andS;(Ly) = S3(K}).

Proof. SinceL_ is a Legendrian ruling curve aN; with slopgToy, ) = —&, S_(L_) is a Legen-
drian ruling curve odN{ C Ny, whereNV; is a solid torus representirig and slopél’y ;) = —3.
Similarly, sinceK _ is a Legendrian divide oV with slopgTyy) = —, S2(K_) is a Legendrian

ruling curve ondN’ C N, whereN' is a solid torus representirig and slopélyy:) = —%. Now

N’ and N are neighborhoods of Legendrian knotsifiC) with tb = 0. If the associated rotation
numbers are the same, then they are contact isotopic (by the Legendrian simplicity( 2f3he

torus knot). One may easily check that the rotation numbers are indeed the same. Therefore, there
is an ambient contact isotopy takidg to N7, and it simply remains to Legendrian isotSp(L_)

to S? (K _) through ruling curves. O

We are now ready to proceed with the proof of Theorem 1.7.

Proof of Theorem 1.7In view of Theorem 1.8, it suffices to show th&f (L_) is never equal to
S*S_(K_) for all positive integerg (and likewiseS* (L. ) is never equal tcSﬁS+(K+)).
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Throughout this proof we use coordinat@g, unless otherwise stated. As above,gtbe a
solid torus which represents, does not admit a thickening, and has boundayy= 0N;, where
#I's, = 2 and slopél's,,) = —=. Assuming we have already chosen the corréc{there were
two choices), place the kndt = S*(L_) on X, as follows: if 4, = ¥ \ L, then there aré
negatived-parallel arcs on the left-hand edgeof A, andk positive0-parallel arcs on the right-
hand edgd., of A,. Here A, is oriented so tha® A, = L, — L;, whereL, and L; are oriented
copies ofL. (The sign of a)-parallel arc is the sign of the region it cuts off.) See Figure 3 for a
possiblel’ 4,. When we draw annuli, we will usually present rectangles, with the understanding
that the top and the bottom are identified.

FIGURE 3. The “initial configurationT"4,. The left-hand boundary i5;, and the
right-hand boundary i§,.. They glue to give:,.

The key claim is the following:
Claim 6.5. Every convex torus which contaiisand is isotopic td2, has slope-.

This would immediately show that? (L_) is never equal t&* S_(K_). To prove this fact, we

use the state traversal techniqueXlalso containd. and is isotopic t&, (not necessarily relative

to L), then we can use the standard properties of incompressible surfaces in Seifert fibered spaces
to conclude that must be isotopic t&, relative toL. Therefore, it suffices to show that the slope

of the dividing set does not change under any isotopyofelative toL. Although we would like

to say that the isotopy leaves the dividing seEgfinvariant, this is not quite true. It is not difficult

to see (see Figure 4) that the number of dividing curves can increase, although the slope should
always remain the same according to Claim 6.5. Starting With >3, we inductively assume the
following:

Inductive Hypothesis
(1) X is a convex torus which contairsand satisfie® < #I's < 2k + 2 and slopél'y) =
2
11
(2) ¥ is “sandwiched” in g0, 1]-invariantT? x [0, 1] with slopgl'y,) = slopel'r,) = —&
and#T'r, = #I'1, = 2. (More preciselyy: C T2 x (0,1) and is parallel td™ x {i}.)
(3) There is a contact diffeomorphism: S* = 5% which takesT™? x [0,1] to a standard
I-invariant neighborhood of, and matches up their complements.



CABLING AND TRANSVERSE SIMPLICITY 21

FIGURE 4. A potentialX in the inductive step.

Suppose we isotop relative toL into another convex torus’. Then the standard state traversal
machinery [H3] implies that we may assume that the isotopy is performed in discrete steps, where
each step is given by the attachment of a bypadsounds a solid torud’ on one side, and we say
that the bypass is attached “from the inside” or “from the back” if the bypass is in the interor of
and the bypass is attached “from the outside” or “from the front” if the bypass is in the exterior of
N. (Also for convenience assume thatis insideN andT; is outsideN.) We prove the inductive
hypothesis still holds after all existing bypass attachments.

Lemma 6.6. The Legendrian knat cannot sit on a convex torus in N; that is isotopic ta) N,
and satisfiestI's; = 2 and slopél's) = —3.
Proof. The convex torug bounds the standard neighborhood of a Legendrian kn6tAg) with

tb = 0andr = —1 (i.e, S_ of the maximaltb representative ofZ(K)). Computing as in
Lemma 6.3, we find that a Legendrian ruling curve of slepg on X must beS_(L_). There-
fore, if L C ¥, thenL must be a stabilization of_(L_). However, this contradicts the fact that
L = S*(L_) by a simple(r, tb)-count. O

Lemma 6.7. Given a torus® satisfying the inductive hypothesis, any bypass attachdd+o>\ L
will not change the slope of the dividing set.

Proof. If the bypass is attached from the outside, then the slope cannot change or this would give
a thickening of our non-thickenable solid torus. If the bypass is attached from the inside, then let
Y be the torus obtained after the bypass is attached. By examining the Farey tessellation, we see
thats = slopel's,) must lie in[—Z, —#]. Since Lemma 6.6 disallows = —¢, suppose that

s € (—&,—3)- LetY” be a convex torus of slopeg and#I" = 2 in the interior of the solid torus
bounded by>Y. Take a Legendrian curvE’ on X which is parallel to and disjoint fronk, and
intersectd sy minimally. Similarly, considel.” on>”. Using the Farey tessellation, it is clear that

sy N L'| > |T's» N L”|. Thus the Imbalance Principle gives bypasse&fdahat are disjoint from

L. After successive attachments of such bypasses, we eventually El’Ytai‘rBIope—% containing

L, contradicting Lemma 6.6. O

Therefore we see that Condition (1) is preserved.
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Lemma 6.8. Given a torusX: satisfying the inductive hypothesis, any bypass attacheti wall
preserve Conditions (2) and (3).

Proof. Suppose’’, is obtained fronkt by a single bypass move. We already know that Slbpe =
slopeT'y), and, assuming the bypass move was not trivfdl,is either increased or decreased by
2. Suppose first that’ C N, where)N is the solid torus bounded By. For convenience, suppose
¥ = Ty5 insideT? x [0, 1] satisfying Conditions (2) and (3) of the inductive hypothesis. Then we
form the newZ™ x [0.5, 1] by taking the oldl™ x [0.5, 1] and adjoining the thickened torus between
Y>> andX’. Now, ¥’ bounds a solid torud/’, and, by the classification of tight contact structures on
solid tori, we can factor a nonrotative outer layer which is the @#&w [0, 0.5].

On the other hand, supposé C (S* \ V). We prove that there exists a nonrotative outer layer
T? x [0.5,1] for S® \ N’, where#I';, = 2. This follows from repeating the procedure in the
proof of Theorem 1.5, where Legendrian representativel, aind F, were thickened and then
connected by a vertical annulus — this time the same procedure is carried out with the provision
that the representatives 8f andF;, lie in S3\ N’. Once the maximal thickness for representatives
of I} and F;, is obtained, after rounding we get a convex torusn\, N’ parallel toX but with
#TI" = 2. Therefore we obtain a nonrotative outer la§&rx [0.5, 1]. O

This completes the proof of Theorem 1.7. O
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