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Abstract. The contact homology, rigorously defined in [7], is computed for a number of
Legendrian submanifolds in standard contact (2n+1)-space. The homology is used to detect
infinite families of pairwise non-isotopic Legendrian n-spheres, n-tori, and surfaces which are
indistinguishable using previously known invariants.
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1. Introduction

A contact manifold is a (2n + 1)-manifold N equipped with a completely non-integrable
field of hyperplanes ξ. An immersion of an n-manifold into N is Legendrian if it is everywhere
tangent to the hyperplane field ξ and the image of a Legendrian embedding is a Legendrian
submanifold. Standard contact (2n + 1)-space is Euclidean space R

2n+1 equipped with the
hyperplane field ξ = Ker(α), where α is the contact 1-form α = dz−∑n

i=1 yi dxi in Euclidean
coordinates (x1, y1, . . . , xn, yn, z).

Any closed n-manifold M embeds in R
2n+1, and it is a consequence of the h-principle for

Legendrian immersions [20] that, provided M meets certain homotopy theoretic conditions
1
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(which is the case e.g. if M is stably parallelizable), any embedding of M into R
2n+1 may be

arbitrarily well C0-approximated by Legendrian embeddings. Thus, Legendrian submanifolds
of standard contact (2n+ 1)-space exist in abundance.

Any contact manifold of dimension 2n+1 is locally contactomorphic (diffeomorphic through
a map which takes contact hyperplanes to contact hyperplanes) to standard contact (2n+1)-
space. In this paper we study local Legendrian knotting phenomena or, in other words,
the question: When are are two Legendrian submanifolds of standard contact (2n+ 1)-space
isotopic through Legendrian submanifolds?

For n = 1, the question above has been extensively studied, [5, 9, 13, 14, 15]. Here, the
classical invariants of a Legendrian knot are its topological knot type, its rotation number
(the tangential degree of the curve which arises as the projection of the knot into the xy-
plane), and its Thurston-Bennequin invariant (the linking number of the knot and a copy
of the knot shifted slightly in the z-direction). Many examples of Legendrian non-isotopic
knots with the same classical invariants are known. Also, in higher dimensions, when the
ambient contact manifold has more topology (for example Legendrian knots in 1-jet spaces
of Sn) there are interesting examples of non-trivial Legendrian knots [10].

When n > 1, we define in Section 3 two classical invariants of an oriented Legendrian sub-
manifold given by an embedding f : L→ R

2n+1. Following [32], we first define its Thurston-
Bennequin invariant (in the same way as in R

3). Second, we note that the h-principle for
Legendrian immersions implies that f is determined by certain homotopy theoretic invari-
ants, associated to its differential df , up to regular homotopy through Legendrian immersions,
see Section 3.3 for details. We define its rotation class as its Legendrian regular homotopy
class. The topological embedding invariant in the 3-dimensional case disappears in higher
dimensions since, for n ≥ 2, any two embeddings of an n-manifold into R

2n+1 are isotopic
[21].

Our results indicate that the theory of Legendrian submanifolds of standard contact (2n+
1)-space is very rich. For example we show, generalizing the 3-dimensional results mentioned
above,

Theorem 1.1. For any n > 1 there is an infinite family of Legendrian embeddings of the
n-sphere into R

2n+1 that are not Legendrian isotopic even though they have the same classical
invariants.

In Section 4, we prove Theorem 1.1 and a similar theorem for Legendrian surfaces and
n-tori. We show that for any N > 0 there exists Legendrian isotopy classes of n-spheres and
n-tori with fixed Thurston-Bennequin invariants and rotation classes which do not admit a
representative having projection into R

2n with less than N double points.
Note that Theorem 1.1 is not known to be true for n = 1 and is probably false in this case.

It is known that the number of distinct Legendrian knots with the same classical invariants
can be arbitrarily large, but in light of recent work of Colin, Giroux and Honda [6] it seems
unlikely that there can be infinitely many.

To show that Legendrian submanifolds are not Legendrian isotopic we develop the contact
homology of a Legendrian submanifold in standard contact (2n + 1)-space. This theory is
sketched in Section 2, with more analytic details appearing in [7]. It is defined using punc-
tured holomorphic disks in C

n ≈ R
2n with boundary on the projection of the Legendrian

submanifold, and which limit to double points of the projection at the punctures, see be-
low. This is analogous to the approach taken by Chekanov [5] in dimension 3; however, in
that dimension the entire theory can be reduced to combinatorics [15]. Our contact homol-
ogy, realizes in the language of Symplectic Field Theory [12], Relative Contact Homology of
standard contact (2n + 1)-space and in this framework our main technical theorem can be
summarized as
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Theorem 1.2. The contact homology of Legendrian submanifolds in R
2n+1 with the standard

contact form is well defined. (It is invariant under Legendrian isotopy.)

More concretely, if L ⊂ R
2n+1 is a Legendrian submanifold we associate to L a differential

graded algebra (A, ∂), freely generated by the double points of the projection of L into C
n.

The differential ∂ is defined by counting rigid holomorphic disks with properties as described
above. Thus, contact homology is similar to Floer homology of Lagrangian intersections and
our proof of its invariance is similar in spirit to Floer’s original approach [16, 17] in the follow-
ing way. We analyze bifurcations of moduli spaces of rigid holomorphic disks under variations
of the Legendrian submanifold in a generic 1-parameter family of Legendrian submanifolds
and how these bifurcations affect the differential graded algebra. Similar bifurcation analysis
is also done in [22, 24, 30, 31]. Our set-up does not seem well suited to the more popular
proof of Floer theory invariance which uses an elegant “homotopy of homotopies” argument
(see, for example, [18, 29]).
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for Advanced Study, ETH in Zurich, and the University of Michigan for hosting him while
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2. Contact Homology and Differential Graded Algebras

In this section we describe how to associate to a Legendrian submanifold L in standard
contact (2n+1)-space a differential graded algebra (DGA) (A, ∂). Up to a certain equivalence
relation this DGA is an invariant of the Legendrian isotopy class of L. In Section 2.1 we recall
the notion of Lagrangian projection and define the algebra A. The grading on A is described
in Section 2.3 after a review of the Maslov index in Section 2.2.

Sections 2.4 and 2.5 are devoted to the definition of ∂ and Section 2.6 proves the invariance
of the homology of (A, ∂), which we call the contact homology. The main proofs of these
three subsections rely on several analytical results which we prove in [7]. Finally, in Section
2.7, we compare contact homology as defined here with the contact homology sketched in
[12].

2.1. The algebra A. Throughout this paper we consider the standard contact structure ξ
on R

2n+1 = C
n × R which is the hyperplane field given as the kernel of the contact 1-form

(2.1) α = dz −
n∑

j=1

yjdxj ,

where x1, y1, . . . , xn, yn, z are Euclidean coordinates on R
2n+1. A Legendrian submanifold of

R
2n+1 is an n dimensional submanifold L ⊂ R

2n+1 everywhere tangent to ξ. We also recall
that the standard symplectic structure on C

n is given by

ω =
n∑

j=1

dxj ∧ dyj ,

and that an immersion f : L→ C
n of an n-dimensional manifold is Lagrangian if f∗ω = 0.
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The Lagrangian projection projects out the z coordinate:

(2.2) ΠC : R
2n+1 → C

n; (x1, y1, . . . , xn, yn, z) 7→ (x1, y1, . . . , xn, yn).

If L ⊂ C
n × R is a Legendrian submanifold then ΠC : L → C

n is a Lagrangian immersion.
Moreover, for L in an open dense subset of all Legendrian submanifolds (with C∞ topology),
the self intersection of ΠC(L) consists of a finite number of transverse double points. We call
Legendrian submanifolds with this property chord generic.

The Reeb vector field X of a contact form α is uniquely defined by the two equations
α(X) = 1 and dα(X, ·) = 0. The Reeb chords of a Legendrian submanifold L are segments of
flow lines of X starting and ending at points of L. We see from (2.1) that in R

2n+1, X = ∂
∂z

and thus ΠC defines a bijection between Reeb chords of L and double points of ΠC(L). If c
is a Reeb chord we write c∗ = ΠC(c).

Let C = {c1, . . . , cm} be the set of Reeb chords of a chord generic Legendrian submanifold
L ⊂ R

2n+1. To such an L we associate an algebra A = A(L) which is the free associative
unital algebra over the group ring Z2[H1(L)] generated by C. We write elements in A as

(2.3)
∑

i

t
n1,i

1 . . . t
nk,i

k ci,

where the tj’s are formal variables corresponding to a basis for H1(L) thought of multi-
plicatively and ci = ci1 . . . cir is a word in the generators. It is also useful to consider the
corresponding algebra AZ2

over Z2. The natural map Z2[H1(L)] → Z2 induces a reduction
of A to AZ2

(set tj = 1, for all j).

2.2. The Maslov index. Let Λn be the Grassman manifold of Lagrangian subspaces in the
symplectic vector space (Cn, ω) and recall that H1(Λn) = π1(Λn) ∼= Z. There is a standard
isomorphism

µ : H1(Λn) → Z,

given by intersecting a loop in Λn with the Maslov cycle Σ. To describe µ more fully we follow
[25] and refer the reader to this paper for proofs of the statements below.

Fix a Lagrangian subspace Λ in C
n and let Σk(Λ) ⊂ Λn be the subset of Lagrangian spaces

that intersects Λ in a subspace of k dimensions. The Maslov cycle is

Σ = Σ1(Λ) = Σ1(Λ) ∪ Σ2(Λ) ∪ · · · ∪ Σn(Λ).

This in an algebraic variety of codimension one in Λn. If Γ : [0, 1] → Λn is a loop then
µ(Γ) is the intersection number of Γ and Σ. The contribution of an intersection point t′ with
Γ(t′) ∈ Σ to µ(Γ) is calculated as follows. Fix a Lagrangian complement W of Λ. Then for
each v ∈ Γ(t′)∩Λ there exists a vector w(t) ∈W such that v+w(t) ∈ Γ(t) for t near t′. Define
the quadratic form Q(v) = d

dt |t=t′ω(v,w(t)) on Γ(t′)∩Λ and observe that it is independent of
the complement W chosen. Without loss of generality, Q can be assumed non-singular and
the contribution of the intersection point to µ(Γ) is the signature of Q. Given any loop Γ in
Λn we say µ(Γ) is the Maslov index of the loop.

If f : L → C
n is a Lagrangian immersion then the tangent planes of f(L) along any loop

γ in L gives a loop Γ in Λn. We define the Maslov index µ(γ) of γ as µ(γ) = µ(Γ) and note
that we may view the Maslov index as a map µ : H1(L) → Z. Let m(f) be the smallest
non-negative number that is the Maslov index of some non-trivial loop in L. We call m(f)
the Maslov number of f. When L ⊂ C

n × R is a Legendrian submanifold we write m(L) for
the Maslov number of ΠC : L→ C

n.
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2.3. The Conley–Zehnder index of a Reeb chord and the grading on A. Let L ⊂
R

2n+1 be a chord generic Legendrian submanifold and let c be one of its Reeb chords with
end points a, b ∈ L, z(a) > z(b). Choose a path γ : [0, 1] → L with γ(0) = a and γ(1) = b.
(We call such path a capping path of c.) Then ΠC ◦γ is a loop in C

n and Γ(t) = dΠC(Tγ(t)L),
0 ≤ t ≤ 1 is a path of Lagrangian subspaces of C

n. Since c∗ = ΠC(c) is a transverse double
point of ΠC(L), Γ is not a closed loop.

We close Γ in the following way. Let V0 = Γ(0) and V1 = Γ(1). Choose any complex
structure I on C

n which is compatible with ω (ω(v, Iv) > 0 for all v) and with I(V1) = V0.
(Such an I exists since the Lagrangian planes are transverse.) Define the path λ(V0, V1)(t) =
etIV1, 0 ≤ t ≤ π

2 . The concatenation, Γ ∗ λ(V0, V1), of Γ and λ(V0, V1) forms a loop in Λn

and we define the Conley–Zehnder index, νγ(c), of c to be the Maslov index µ(Γ ∗ λ(V0, V1))
of this loop. It is easy to check that νγ(c) is independent of the choice of I. However, νγ(c)
might depend on the choice of homotopy class of the path γ. More precisely, if γ1 and γ2 are
two paths with properties as γ above then

νγ1(c) − νγ2(c) = µ(γ1 ∗ (−γ2)),

where (−γ2) is the path γ2 traversed in the opposite direction. Thus νγ(c) is well defined
modulo the Maslov number m(L).

Let C = {c1, . . . , cm} be the set of Reeb chords of L. Choose a capping path γj for each cj
and define the grading of cj to be

|cj | = νγj (cj) − 1,

and for any t ∈ H1(L) define its grading to be |t| = −µ(t). This makes A(L) into a graded
ring. Note that the grading depends on the choice of capping paths but, as we will see below,
this choice will be irrelevant.

The above grading on Reeb chords cj taken modulo m(L) makes AZ2
a graded algebra

with grading in Zm(L). (Note that this grading does not depend on the choice of capping
paths.) In addition the map from A to AZ2

preserves gradings modulo m(L).

2.4. The moduli spaces. As mentioned in the introduction, the differential of the algebra
associated to a Legendrian submanifold is defined using spaces of holomorphic disks. To
describe these spaces we need a few preliminary definitions.

Let Dm+1 be the unit disk in C with m + 1 punctures at the points p0, . . . pm on the
boundary. The orientation of the boundary of the unit disk induces a cyclic ordering of the
punctures. Let ∂D̂m+1 = ∂Dm+1 \ {p0, . . . , pm}.

Let L ⊂ C
n × R be a Legendrian submanifold with isolated Reeb chords. If c is a Reeb

chord of L with end points a, b ∈ L, z(a) > z(b) then there are small neighborhoods Sa ⊂ L
of a and Sb ⊂ L of b that are mapped injectively to C

n by ΠC. We call ΠC(Sa) the upper
sheet of ΠC(L) at c∗ and ΠC(Sb) the lower sheet. If u : (Dm+1, ∂Dm+1) → (Cn,ΠC(L))
is a continuous map with u(pj) = c∗ then we say pj is positive (respectively negative) if
u maps points clockwise of pj on ∂Dm+1 to the lower (upper) sheet of ΠC(L) and points
anti-clockwise of pi on ∂Dm+1 to the upper (lower) sheet of ΠC(L) (see Figure 1).

If a is a Reeb chord of L and if b = b1 . . . bm is an ordered collection (a word) of Reeb
chords then let MA(a;b) be the space, modulo conformal reparameterization, of maps u :
(Dm+1, ∂Dm+1) → (Cn,ΠC(L)) which are continuous on Dm+1, holomorphic in the interior
of Dm+1, and which have the following properties

• p0 is a positive puncture, u(p0) = a∗,
• pj are negative punctures for j > 0, u(pj) = b∗j ,
• the restriction u|∂D̂m+1 has a continuous lift ũ : ∂D̂m+1 → L ⊂ C

n × R, and
• the homology class of ũ(∂D∗

m+1) ∪ (∪jγj) equals A ∈ H1(L),
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S a

S b

c k

Figure 1. Positive puncture lifted to R
2n+1. The gray region is the holomor-

phic disk and the arrows indicate the orientation on the disk and the Reeb
chord.

where γj is the capping path chosen for cj , j = 1, . . . ,m. Elements in MA(a;b) will be called
holomorphic disks with boundary on L or sometimes simply holomorphic disks.

There is a useful fact relating heights of Reeb chords and the area of a holomorphic disk
with punctures mapping to the corresponding double points. The action (or height) Z(c) of
a Reeb chord c is simply its length and the action of a word of Reeb chords is the sum of the
actions of the chords making up the word.

Lemma 2.1. If u ∈ MA(a;b) then

(2.4) Z(a) −Z(b) =
∫

Dm

u∗ω = Area(u) ≥ 0.

Proof. By Stokes theorem,
∫
Dm

u∗ω =
∫
∂Dm

u∗(−∑
j yjdxj) =

∫
ũ∗(−dz) = Z(a) − Z(b).

The second equality follows since u is holomorphic and ω =
∑n

j=1 dxj ∧ dyj . �

Note that the proof of Lemma 2.1 implies that any holomorphic disk with boundary on L
must have at least one positive puncture. (In contact homology, only disks with exactly one
positive puncture are considered.)

We now proceed to describe the properties of moduli spaces MA(a;b) that are needed
to define the differential. We prove in [7] that the moduli spaces of holomorphic disks with
boundary on a Legendrian submanifold L have these properties provided L is generic among
(belongs to a Baire subset of the space of) admissible Legendrian submanifolds. (L is ad-
missible if it is chord generic and it is real analytic in a neighborhood of all Reeb chord end
points. A more precise definitions of these concepts appears in [7] where it is shown that
admissible Legendrian submanifolds are dense in the space of all Legendrian submanifolds.)
The moduli spaces MA(a;b) can be seen as the 0-sets of certain “∂̄-type” C1-maps, between
infinite-dimensional Banach manifolds. We say a moduli space is transversely cut out if 0 is
a regular value of the corresponding map.

Proposition 2.2. [7, Corollary 9.15.5] For a generic admissible Legendrian submanifold
L ⊂ C

n × R the moduli space MA(a;b) is a transversely cut out manifold of dimension

(2.5) d = µ(A) + |a| − |b| − 1,

provided d ≤ 1. (In particular, if d < 0 then the moduli space is empty.)

If u ∈ MA(a;b) we say that d = µ(A) + |a| − |b| − 1 is the formal dimension of u, and if
v is a transversely cut out disk of formal dimension 0 we say that v is a rigid disk.

We mention here two transversality results which will prove useful for our computations
in Section 4. Let πi : C

n → C, i = 1, . . . , n, denote the complex projections.
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Proposition 2.3. [7, Corollary 9.22] Assume n > 1. For L in a Baire subset of the space of
admissible Legendrian submanifolds, no rigid holomorphic disk passes though the end points
of any Reeb chords of L.

Proposition 2.4. [7, Lemmas 9.24, 9.25] Assume n > 1. Consider a holomorphic disk u
with no (or one) negative punctures, and a formal dimension of 0. Assume that πi ◦ u = 0
for i = 2, . . . n and that the tangent space of the Lagrangian immersion splits along the
boundary of u. That is, the one path component of Tu(∂D1)ΠC(L) (or two path components
of Tu(∂D2)ΠC(L)) is of the form γ×V where γ(t) ⊂ C is a real line and V (t) ⊂ 0×C

n. Then
u is cut out transversely.

The moduli spaces we consider might not be compact, but their lack of compactness
can be understood. It is analogous to “convergence to broken trajectories” in Morse/Floer
homology and gives rise to natural compactifications of the moduli spaces, known as Gromov
compactness.

A broken holomorphic curve, u = (u1, . . . , uN ), is a union of holomorphic disks, uj :
(Dmj , ∂Dmj ) → (Cn,ΠC(L)), where each uj has exactly one positive puncture pj, with the
following property. To each pj with j ≥ 2 is associated a negative puncture qk

j ∈ Dmk
for

some k 6= j such that uj(pj) = uk(qk
j ) and qk′

j′ 6= qk
j if j 6= j′, and such that the quotient

space obtained from Dm1 ∪ · · · ∪DmN
by identifying pj and qk

j for each j ≥ 2 is contractible.
The broken curve can be parameterized by a single smooth v : (Dm, ∂D) → (Cn,ΠC(L)).
A sequence uα of holomorphic disks converges to a broken curve u = (u1, . . . , uN ) if the
following holds:

• For every j ≤ N , there exists a sequence φj
α : Dm → Dm of linear fractional transfor-

mations and a finite set Xj ⊂ Dm such that uα ◦ φj
α converges to uj uniformly with

all derivatives on compact subsets of Dm \Xj

• There exists a sequence of orientation-preserving diffeomorphisms fα : Dm → Dm

such that uα ◦ fα converges in the C0-topology to a parameterization of u.

Proposition 2.5. Any sequence uα in MA(a;b) has a subsequence converging to a broken
holomorphic curve u = (u1, . . . , uN ). Moreover, uj ∈ MAj(a

j ;bj) with A =
∑N

j=1Aj and

(2.6) µ(A) + |a| − |b| =
N∑

j=1

(
µ(Aj) + |aj | − |bj |) .

Heuristically this is the only type of non-compactness we expect to see in MA(a;b): since
π2(Cn) = 0, no holomorphic spheres can “bubble off” at an interior point of the sequence uα,
and since ΠC(L) is exact no disks without positive puncture can form either. Moreover, since
ΠC(L) is compact, and since C

n has “finite geometry at infinity”, or is ”tame at infinity”
[3, 7, 11, 30, 31], all holomorphic curves with a uniform bound on area must map to a compact
set.

Proof. The main step is to prove convergence to some broken curve, which appears as [7,
Theorem 11.2]. The statement about the homology classes follows easily from the definition
of convergence. Equation (2.6) follows from the definition of broken curves. �

We next show that a broken curve can be glued to form a family of non-broken curves.
For this we need some additional notation. Let c1, . . . , cr be an ordered collection of words
of Reeb chords. Let the length of (number of letters in) cj be l(j) and let a = a1 . . . ak be a
word of Reeb-chords of length k > 0. Let S = {s1, . . . , sr} be r distinct integers in {1, . . . , k}.
Define the word aS(c1, . . . , cr) of Reeb-chords of length k−r+

∑r
j=1 l(j) as follows. For each

index sj ∈ S remove asj from the word a and insert at its place the word cj .
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Proposition 2.6. [7, Proposition 10.1] Let L be a generic admissible Legendrian submanifold.
Let MA(a;b) and MB(c;d) be 0-dimensional transversely cut out moduli spaces and assume
that the j-th Reeb chord in b is c. Then there exist a ρ > 0 and an embedding

G : MA(a;b) ×MB(c;d) × (ρ,∞) → MA+B(a;b{j}(d)).

Moreover, if u ∈ MA(a;b) and u′ ∈ MB(c;d) then G(u, u′, ρ) converges to the broken curve
(u, u′) as ρ→ ∞, and any disk in MA(a;b{j}(d)) with image sufficiently close to the image
of (u, u′) is in the image of G.

2.5. The differential and contact homology. Let L ⊂ C
n × R be a generic admissible

Legendrian submanifold, let C be its set of Reeb chords, and let A denote its algebra. For
any generator a ∈ C of A we set

(2.7) ∂a =
∑

dim MA(a;b)=0

(#MA(a;b))Ab,

where #M is the number of points in M modulo 2, and where the sum ranges over all words
b in the alphabet C and A ∈ H1(L) for which the above moduli space has dimension 0. We
then extend ∂ to a map ∂ : A → A by linearity and the Leibniz rule.

Since L is generic admissible, it follows from Propositions 2.5 and 2.6 that the moduli
spaces considered in the definition of ∂ are compact 0-manifolds and hence consist of a finite
number of points. Thus ∂ is well defined. Moreover,

Lemma 2.7. The map ∂ : A → A is a differential of degree −1. That is, ∂ ◦ ∂ = 0 and
|∂(a)| = |a| − 1 for any generator a of A.
Proof. After Propositions 2.5 and 2.6 the standard proof in Morse (or Floer) homology [28]
applies. It follows from (2.5) that ∂ lowers degree by 1. �

The contact homology of L is

HC∗(R2n+1, L) = Ker ∂/Im ∂.

It is essential to notice that since ∂ respects the grading on A the contact homology is a
graded algebra.

We note that ∂ also defines a differential of degree −1 on AZ2
(L).

2.6. The invariance of contact homology under Legendrian isotopy. In this section
we show

Proposition 2.8. If Lt ⊂ R
2n+1, 0 ≤ t ≤ 1 is a Legendrian isotopy between generic admissi-

ble Legendrian submanifolds then the contact homologies HC∗(R2n+1, L0), and HC∗(R2n+1, L1)
are isomorphic.

In fact we show something, that at least appears to be, stronger. Given a graded algebra
A = Z2[G]〈a1, . . . , an〉, where G is a finitely generated abelian group, a graded automorphism
φ : A → A is called elementary if there is some 1 ≤ j ≤ n such that

φ(ai) =

{
Aiai, i 6= j

±Ajaj + u, u ∈ A(a1, . . . , aj−1, aj+1, . . . , an), i = j,

where the Ai are units in Z2[G]. The composition of elementary automorphisms is called a
tame automorphism. An isomorphism from A to A′ is tame if it is the composition of a tame
automorphism with an isomorphism sending the generators of A to the generators of A′. An
isomorphism of DGA’s is called tame if the isomorphism of the underlying algebras is tame.

Let (Ei, ∂i) be a DGA with generators {ei1, ei2}, where |ei1| = i, |ei2| = i − 1 and ∂ie
i
1 =

ei2, ∂ie
i
2 = 0. Define the degree i stabilization Si(A, ∂) of (A, ∂) to be the graded algebra
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generated by {a1, . . . , an, e
i
1, e

i
2} with grading and differential induced from A and Ei. Two

differential graded algebras are called stable tame isomorphic if they become tame isomorphic
after each is stabilized a suitable number of times.

Proposition 2.9. If Lt ⊂ R
2n+1, 0 ≤ t ≤ 1 is a Legendrian isotopy between generic ad-

missible Legendrian submanifolds then the DGA’s (A(L0), ∂) and (A(L1), ∂) are stable tame
isomorphic.

Note that Proposition 2.9 allows us to associate the stable tame isomorphism class of a
DGA to a Legendrian isotopy class of Legendrian submanifolds: any Legendrian isotopy class
has a generic admissible representative and by Proposition 2.9 the DGA’s of any two generic
admissible representatives agree.

It is straightforward to show that two stable tame isomorphic DGA’s have the same ho-
mology, see [5, 15]. Thus Proposition 2.8 follows from Proposition 2.9. The proof of the later
given below is, in outline, the same as the proof of invariance of the stable tame isomorphism
class of the DGA of a Legendrian 1-knot in [5]. However, the details in our case require
considerably more work. In particular we must substitute analytic arguments for the purely
combinatorial ones that suffice in dimension three.

A Legendrian isotopy φt : L → C
n × R, 0 ≤ t ≤ 1, is admissible if φ0(L) and φ1(L) are

admissible Legendrian submanifolds and if there exist a finite number of instants 0 < t1 <
t2 < · · · < tm < 1 and a δ > 0 such that the intervals [tj − δ, tj + δ] are disjoint subsets of
(0, 1) with the following properties.

(A) For t ∈ [0, t1 − δ] ∪
(⋃m

j=1[tj + δ, tj+1 − δ]
)
∪ [tm + δ, 1], φt(L) is an isotopy through

admissible Legendrian submanifolds.
(B) For t ∈ [tj − δ, tj + δ], j = 1, . . . ,m, φt(L) undergoes a standard self-tangency move.

That is, there exists a point q ∈ C
n and neighborhoods N ⊂ N ′ of q with the

following properties. The intersection N ∩ ΠC(φt(L)) equals P1 ∪ P2(t) which, up
to biholomorphism looks like P1 = γ1 × P ′

1 and P2 = γ2(t) × P ′
2. Here γ1 and

γ2(t) are subarcs around 0 of the curves y1 = 0 and x2
1 + (y1 − 1 ± t)2 = 1 in the

z1-plane, respectively, and P ′
1 and P ′

2 are real analytic Lagrangian (n − 1)-disks in
C

n−1 = {z1 = 0} intersecting transversely at 0. Outside N ′ × R the isotopy is
constant. See Figure 2. (The full definition of a standard self tangency move appears
in [7, Definition 5.2]. For simplicity, one technical condition there has been omitted
at this point.)

t  > 0 t  = 0     t  < 0

Figure 2. Type B double point move.

Lemma 2.10. [7, Lemma 5.6] Any two admissible Legendrian submanifolds of dimension
n > 1 which are Legendrian isotopic are isotopic through a an admissible Legendrian isotopy.

This result does not hold when n = 1; one must allow also a “triple point move” see [5, 15].
To prove Proposition 2.9, we need to check that the differential graded algebra changes

only by stable tame isomorphisms under Legendrian isotopies of type (A) and (B). We start
with type (A) isotopies.
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Lemma 2.11. Let Lt, t ∈ [0, 1] be a type (A) isotopy between generic admissible Legendrian
submanifolds. Then the DGA’s associated to L0 and L1 are tame isomorphic.

To prove this we use a parameterized version of Proposition 2.2. If Lt, t ∈ I = [0, 1] is a
type (A) isotopy then the double points of ΠC(Lt) trace out continuous curves. Thus, when
we refer to a Reeb chord c of Lt′ for some t′ ∈ [0, 1] this unambiguously specifies a Reeb chord
for all Lt. For any t we let Mt

A(a;b) denote the moduli space MA(a;b) for Lt and define

(2.8) MI
A(a;b) = {(u, t)|u ∈ Mt

A(a;b)}.
As above “generic” refers to a member of a Baire subset, see [7] for a more precise formulation
of this term for 1-parameter families.

Proposition 2.12. [7, Corollary 9.16.5] For a generic type (A) isotopy Lt, t ∈ I = [0, 1]
the following holds. If a,b, A are such that µ(A) + |a| − |b| = d ≤ 1 then the moduli space
MI

A(a;b) is a transversely cut out d-manifold. If X is the union of all these transversely cut
out manifolds which are 0-dimensional then the components of X are of the form Mtj

Aj
(aj ,bj),

where µ(Aj) + |aj | − |bj | = 0, for a finite number of distinct instances t1, . . . , tr ∈ [0, 1].
Furthermore, t1, . . . , tr are such that Mtj

B(c;d) is a transversely cut out 0-manifold for every
c,d, B with µ(B) + |c| − |d| = 1.

At an instant t = tj in the above proposition we say a handle slide occurs, and an element
in Mtj

Aj
(aj ,bj) will be called a handle slide disk. (The term handle slide comes form the

analogous situation in Morse theory.)
The proof of Lemma 2.11 depends, just as the proof of Lemma 2.7, on one compactness-

and one gluing result which we describe next.

Proposition 2.13. Any sequence uα in MI
A(a;b) has a subsequence that converges to a

broken holomorphic curve with the same properties as in Proposition 2.5.

The proof of this proposition is identical to that of Proposition 2.5.

Proposition 2.14. [7, Theorems 10.2 and 10.3] Let δ > 0 and let Lt, t ∈ I = [−δ, δ] be
a small neighborhood of a handle slide at t = 0 in a generic type (A) isotopy. Then for δ
sufficiently small, L±δ are generic admissible and, with u ∈ M0

A(a;b) denoting the handle
slide disk, the following holds.

(1) Assume that c is the j-th letter in b. Let M0
B(c;d) be a moduli space of rigid holo-

morphic disks. Then there exist ρ0 > 0 and an embedding

G : M0
B(c;d) × [ρ0,∞) → MI

A+B(a;b{j}(d)).

Given v ∈ M0
B(c;d), G(v, ρ) converges to the broken curve (v, u) as ρ → ∞. More-

over, any curve in MI
A+B(a;b{j}(d)) with image sufficiently close to the image of

(v, u) is in the image of G.
(2) Let M0

B(c;d) be a moduli space of rigid holomorphic disks, where S = {s1, . . . , sr},
and d has a at every position of an element in S. Then there exist ρ0 > 0, and an
embedding

G′ : M0
B(c;d) × [ρ0,∞) → MI

B+r·A(c;dS(b, . . . ,b)).

Given v ∈ M0
B(c;d), G′(v, ρ) converges to the broken curve (v, u, . . . , u). Moreover,

any curve in MI
B+r·A(c;dS(b, . . . ,b)) with image sufficiently close to the image of

(v, u, . . . , u) is in the image of G′.
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Proof. We show here why the above are the only kind of broken curves to consider gluing. If
the broken curve lives in the compactification of the one-dimensional MI

B(c0; c), then by (2.6)
at least one of its pieces must have negative formal dimension. Since the handle slide disk u
is the only disk with negative formal dimension, all but one of the pieces of the broken disk
must be u. The requirement that our disks have just one positive puncture and Lemma 2.1
reduce all possible configurations of the broken curve to the ones considered above. �

We now prove Lemma 2.11 in two steps. First consider type (A) isotopies without handle
slides.

Lemma 2.15. Let Lt, t ∈ [0, 1] be a generic type (A) isotopy of Legendrian submanifolds for
which no handle slides occur. Then the boundary maps ∂0 and ∂1 on A = A(L0) = A(L1)
satisfies ∂0 = ∂1.

Proof. Propositions 2.13 and 2.14 imply that MI
A(a;B) is compact when its dimension is

one. Since if a sequence in this space converged to a broken curve (u1, . . . , uN ) then at
least one uj would have negative formal dimension. This contradicts the assumptions that
no handle slide occurs and that the type (A) isotopy is generic. Thus the corresponding 0
dimensional moduli spaces M0

A and M1
A used in the definitions of ∂0 and ∂1, respectively,

form the boundary of a compact 1-manifold. Hence their modulo 2 counts are equal. �

We consider what happens around a handle slide instant. Let Lt, t ∈ [−δ, δ] and M0
A(a;b)

be as in Lemma 2.14. Let ∂− denote the differential on A = A(L−δ), and ∂+ the one on
A = A(Lδ). For generators c in A define

φa(c) =

{
c if c 6= a,

a+Ab if c = a.

and extend φa to a tame algebra automorphism of A.

Lemma 2.16. Let c be a generator of A then

∂+c =

{
φa(∂−c) if c 6= a,
∂−(φa(c)) if c = a.

Proof. Any α ∈ A can be expressed in a unique way as a Z2-linear combination of elements
Cw, where C ∈ H1(L) and w is a word in the generators of A, see (2.3). Let 〈α,Cw〉 denote
the coefficient (0 or 1) in such an expansion. It follows from Proposition 2.14 that for any
generator c 6= a

〈(∂+ − ∂−)c,Bw1bw2〉 = 〈∂−c, (BA−1)w1aw2〉.
From this, the formula for ∂+c follows when c 6= a. The formula when c = a follows similarly.

�

Lemma 2.17. The map φa : A → A is a tame isomorphism from (A, ∂−) to (A, ∂+).

Proof. As φa is clearly a tame isomorphism of algebras we only need to check that it is also
a chain map. If c 6= a is a generator then φa∂−c = ∂+c = ∂+φac. It follows from Lemma 2.1
that ∂+a contains no terms which contain an a and that the word b does not contain the
letter a. Thus ∂+Ab = ∂−Ab and hence

φa∂−a = φa∂−(φa(a+Ab)) = φa(∂+a+ ∂+Ab) = ∂+(a+Ab) = ∂+φaa.

�

Proof of Lemma 2.11. The lemma follows from Lemmas 2.15, 2.16, and 2.17. �
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We consider elementary isotopies of type (B). Let Lt, t ∈ I = [−δ, δ] be an isotopy of type
(B) where two Reeb chords {a, b} are born as t passes through 0. Let o be the degenerate
Reeb chord (double point) at t = 0 and let C′ = {a1, . . . , al, b1, . . . , bm} be the other Reeb
chords. Again we note that ci ∈ C′ unambiguously defines a Reeb chord for all Lt and a and
b unambiguously define two Reeb chords for all Lt when t > 0. It is easy to see that (with
the appropriate choice of capping paths) the grading on a and b differ by 1 so let |a| = j and
|b| = j − 1. Let (A−, ∂−) and (A+, ∂+) be the DGA’s associated to L−δ and Lδ, respectively.

Lemma 2.18. The stabilized algebra Sj(A−, ∂−) is tame isomorphic to (A+, ∂+).

Proof of Proposition 2.9 and 2.8 . The first proposition follows from Lemmas 2.11 and 2.18
and implies in its turn the second. �

We prove Lemma 2.18 in several steps below. Label the Reeb chords of Lt so that

Z(bm) ≤ . . . ≤ Z(b1) ≤ Z(b) < Z(a) ≤ Z(a1) ≤ . . . ≤ Z(al),

let B = Z2[H1(L)]〈b1, . . . , bm〉 and note that B is a subalgebra of both A− and A+. Then

Lemma 2.19. For δ > 0 small enough

∂+a = b+ v,

where v ∈ B.

Proof. Let 0 ∈ H1(L) denote the zero element. In the model for the type (B) isotopy there
is an obvious disk in Mt

0(a; b) for t > 0 small which is contained in the z1-plane. We argue
that this is the only point in the moduli space. We restrict attention to the neighborhood
N of o∗ that is biholomorphic to the origin in C

n as in the description of a type (B) move.
Let πi : C

n → C be the projection onto the ith coordinate. If u : D → C
n is a holomorphic

map in Mt
0(a; b) then πi ◦ u will either be constant or not. If πi ◦ u is non-constant for i > 1

then the image of π1 ◦ u intersected with N has boundary on two transverse Lagrangian
submanifolds. As such it will have a certain area Ai. Since Z(a) − Z(b) → 0 as t → 0+ we
can choose t small enough so that Z(a) − Z(b) < Ai, for all i > 1. Then πi ◦ u must be a
point for all i > 1 and for i = 1, it can only be the obvious disk. Proposition 2.4 shows that
Mt

0(a; b) is transversely cut out and thus contributes to ∂+a. If u ∈ Mt
A(a; b), where A 6= 0

then the image of u must leave N . Thus, the above argument shows that Mt
A(a; b) = ∅ for t

small enough. Also, for t > 0 sufficiently small Z(a) −Z(b) < Z(bm). Hence by Lemma 2.1,
v ∈ B. �

Define the elementary isomorphism Φ0 : A+ → Sj(A−) (on generators) by

Φ0(c) =


ej1 if c = a,
ej2 + v if c = b

c otherwise.

The map Φ0 fails to be a tame isomorphism since it is not a chain map. However, we use it as
the first step in an inductive construction of a tame isomorphism Φl : A+ → Sj(A−). To this
end, for 0 ≤ i ≤ l, let Ai be the subalgebra of A+ generated by {a1, . . . , ai, a, b, b1, . . . , bm}
(note that Al = A+). Then, with τ : Sj(A−) → A− denoting the natural projection and
with ∂s− denoting the differential induced on Sj(A−), we have

Lemma 2.20.

(2.9) Φ0 ◦ ∂+w = ∂s
− ◦ Φ0w

for w ∈ A0 and

(2.10) τ ◦ Φ0 ◦ ∂+ = τ ◦ ∂s
− ◦ Φ0.
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Before proving this lemma, we show how to use it in the inductive construction which
completes the proof of Lemma 2.18.

Proof of Lemma 2.18. The proof is similar to the proof of Lemmas 6.3 and 6.4 in [15] (cf [5]).
Define the map H : Sj(A−) → Sj(A−) on words w in the generators by

H(w) =


0 if w ∈ A−,
0 if w = αej1β and α ∈ A−
αej1β if w = αej2β and α ∈ A−,

and extend it linearly. Assume inductively that we have defined a graded isomorphism Φi−1 :
A+ → Sj(A−) so that it is a chain map when restricted to Ai−1 and so that Φi−1(ak) = ak,
for k > i− 1. (Note that Φ0 has these properties by Lemma 2.20.)

Define the elementary isomorphism gi : Sj(A−) → Sj(A−) on generators by

gi(c) =

{
c if c 6= ai,
ai +H ◦ Φi−1 ◦ ∂+(ai) if c = ai

and set Φi = gi ◦Φi−1. Then Φi is a graded isomorphism. To see that Φi is a chain map when
restricted to Ai observe the following facts: τ ◦H = 0, τ ◦ gi = τ , and τ ◦ Φi = τ ◦ Φ0 for all
i. Moreover, ∂+ai ∈ Ai−1 and τ − idSj(A−) = ∂s− ◦H +H ◦ ∂s−, where in the last equation we
think of τ : Sj(A−) → Sj(A−) as τ : Sj(A−) → A− composed with the natural inclusion.

Using these facts we compute

∂s
−gi(ai) =∂s

−(ai) + (∂s
−H)Φi−1∂+(ai) = ∂s

−(ai) + (H∂s
− + τ + id)Φi−1∂+(ai)

=∂s
−(ai) + τΦ0∂+(ai) + Φi−1∂+(ai) = Φi−1∂+(ai).

Thus Φi ◦ ∂+(ai) = ∂s− ◦ gi(ai) = ∂s− ◦ Φi(ai). Since Φi and Φi−1 agree on Ai−1 it follows
that Φi is a chain map on Ai. Continuing we eventually get a tame chain isomorphism
Φl : A+ → Sj(A−). �

The proof of Lemma 2.20 depends on the following two propositions.

Proposition 2.21. [7, Theorem 10.4] Let Lt, t ∈ I = [−δ, δ] be a generic Legendrian isotopy
of type (B) with notation as above (that is, o is the degenerate Reeb chord of L0 and the Reeb
chords a and b are born as t increases past 0).

(1) Let M0
A(o, c) be a moduli space of rigid holomorphic disks. Then there exist ρ > 0

and a local homeomorphism

S : M0
A(o; c) × [ρ,∞) → M(0,δ]

A (a; c),

with the following property. If u ∈ M0
A(o; c) then any disk in M(0,δ]

A (a; c) sufficiently
close to the image of u is in the image of S.

(2) Let M0
A(c,d) be a moduli space of rigid holomorphic disks. Let S ⊂ {1, . . . ,m} be the

subset of positions of d where the Reeb chord o appears (to avoid trivialities, assume
S 6= ∅). Then there exists ρ > 0 and a local homeomorphism

S′ : M0
A(c,d) × [ρ,∞) → M(0,δ]

A (c,dS(b)),

with the following property. If u ∈ M0(c;d) then any disk in M(0,δ]
A (c;dS(b)) suffi-

ciently close to the image of u is in the image of S′.

Proposition 2.22. [7, Theorem 10.5] Let Lt, t ∈ I = [−δ, δ] be a generic isotopy of type
(B). Let M0

A1
(o; c1), . . . , M0

Ar
(o; cr), and M0

B(c;d) be moduli spaces of rigid holomorphic
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disks. Let S ⊂ {1, . . . ,m} be the subset of positions in d where the Reeb chord o appears and
assume that S contains r elements. Then there exists ρ > 0 and an embedding

G : M0
B(c;d) × Πr

j=1M0
Aj

(o;dj) × [ρ,∞) → M[−δ,0)
B+

P
Aj

(c;dS(c1, . . . , cr)),

with the following property. If v ∈ M0(c;d) and uj ∈ M0(o; cj), j = 1, . . . , r then any disk
in M[−δ,0)

B+
P

Aj
(c;dS(c1, . . . , cr)) sufficiently close to the image of (v, u1, . . . , ur) is in the image

of G.

Proof of Lemma 2.20. Equation (2.9) follows from arguments similar to those in Lemma 2.11.
Specifically, one can use these arguments to show that ∂+bi = ∂−bi. Then since ∂+bi ∈ B and
since Φ0 is the identity on B,

Φ0∂+bi = ∂+bi = ∂−bi = ∂s
−Φ0bi.

We also compute
Φ0∂+a = Φ0(b+ v) = ej2 + v + v = ej2 = ∂s

−Φ0a,

and, since ∂+b and ∂+v both lie in B,

Φ0∂+b = ∂+b, ∂s
−Φ0b = ∂s

−(ej1 + v) = ∂−v = ∂+v.

Since 0 = ∂+∂+a = ∂+b+ ∂+v, we conclude that (2.9) holds.
To check (2.10), we write ∂+ai = W1+W2+W3, where W1 lies in the subalgebra generated

by {a1, . . . , al, b1, . . . , bm}, where W2 lies in the ideal generated by a and where W3 lies in the
ideal generated by b in the subalgebra generated by {a1, . . . , al, b, b1, . . . , bm}.

Let ut, be a family of holomorphic disks with boundary on Lt. As t → 0, ut converges to
a broken disk (u1, . . . , uN ) with boundary on L0. This together with the genericity of the
type (B) isotopy implies that for t 6= 0 small enough there are no disks of negative formal
dimension with boundary on Lt since a broken curve which is a limit of a sequence of such
disks would have at least one component uj with negative formal dimension.

Let us : D → C
n, s 6= 0 be rigid disks with boundary on Ls. If, the image u−t(∂D) stays a

positive distance away from o∗ as t→ 0+ then the argument above implies that u−t converges
to a non-broken curve. Hence ∂−ai = W1 + W4 where for each rigid disk u−t : D → C

n

contributing to a word in W4 there exists points q−t ∈ ∂D such that u−t(q−t) → o∗ as
t → 0+. The genericity assumption on the type (B) isotopy implies that no rigid disk with
boundary on L0 maps any boundary point to o∗, see Proposition 2.3. Hence u−t must converge
to a broken curve (u1, . . . , uN ) which breaks at o∗. Moreover, by genericity and (2.6), every
component uj of the broken curve must be a rigid disk with boundary on L0. Proposition 2.22
shows that any such broken curve may be glued and Proposition 2.21 determines the pieces
which we may glue. It follows that W4 = Ŵ2 where Ŵ2 is obtained from W2 by replacing
each occurrence of b with v. Therefore,

τΦ0∂+(ai) = τΦ0(W1 +W2 +W3) = W1 + Ŵ2 = ∂−(ai) = τ∂s
−Φ0(ai).

�
2.7. Relations with the relative contact homology of [12]. Our description of contact
homology is a direct generalization of Chekanov’s ideas in [5]. We now show how the above
theory fits into the more general, though still developing, relative contact homology of [12].

We start with a Legendrian submanifold L in a contact manifold (M, ξ) and try to build
an invariant for L. To this end, let α be a contact form for ξ and Xα its Reeb vector field.
We let C be the set of all Reeb chords, which under certain non-degeneracy assumptions
is discrete. Let A be the free associative non-commutative unital algebra over Z2[H1(L)]
generated by C. The algebra A can be given a grading using the Conley-Zehnder index (see
[12]). To do this we must choose capping paths γ in L for each c ∈ C which connects its end
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points. Note that c ∈ C, being a piece of a flow line of a vector field, comes equipped with a
parameterization c : [0, T ] →M . For later convenience, we reparameterize c by precomposing
it with ×T : [0, 1] → [0, T ].

We next wish to define a differential on A. This is done by counting holomorphic curves in
the symplectization of (M, ξ). Recall the symplectization of (M, ξ) is the manifold W = M×R

with the symplectic form ω = d(ewα) where w is the coordinate in R. Now choose an almost
complex structure J on W that is compatible with ω (ω(v, Jv) > 0 if v 6= 0), leaves ξ invariant
and exchanges Xα and ∂

∂w . Note that L = L × R is a Lagrangian (and hence totally real)
submanifold of (W,ω). Thus we may study holomorphic curves in (W,ω, J) with boundary
on L. Such curves must have punctures. When the Reeb field has no periodic orbits (as in
our case) there can be no internal punctures, so all the punctures occur on the boundary.
To describe the behavior near the punctures let u : (Dm, ∂Dm) → (W,L) be a holomorphic
curve where Dm is as before. Each boundary puncture has a neighborhood that is conformal
to a strip (0,∞) × [0, 1] with coordinates (s, t) such that approaching ∞ in the strip is the
same as approaching pi in the disk. If we write u using these conformal strip coordinates
near pi then we say u tends asymptotically to a Reeb chord c(t) at ±∞ if the component of
u(s, t) lying in M limits to c(t) as s → ∞ and the component of u(s, t) lying in R limits
to ±∞ as s → ∞. The map u must tend asymptotically to a Reeb chord at each boundary
puncture. Some cases of this asymptotic analysis were done in [1]. For {a, b1, . . . , bm} ⊂ C
we consider the moduli spaces Ms

A(a; b1, . . . bm) of holomorphic maps u as above such that:
(1) at p0, u tends asymptotically to a at +∞; (2) at pi, u tends asymptotically to bi at −∞;
(3) and ΠM (u(∂D∗)) ∪i γi represents the homology class A. Here the map ΠM : W → M is
projection onto the M factor of W. We may now define a boundary map ∂ on the generators
ci of A (and hence on all of A) by

∂ci =
∑

#(Ms
A(ci; b1, . . . , bm))Ab1 . . . bm,

where the sum is taken over all one dimensional moduli spaces and # means the modulo two
count of the points in Ms

A/R. Here the R-action is induced by a translation in the w-direction.
Though this picture of contact homology has been known for some time now, the analysis

needed to rigorously define it has yet to appear. Moreover, there have been no attempts to
make computations in dimensions above three. Above, by specializing to a nice – though still
rich – situation, we gave a rigorous definition of contact homology for Legendrian submani-
folds in R

2n+1.
Recall that in our setting (M,α) = (R2n+1, dz − ∑n

j=1 yjdxj), the set of Reeb chords
is naturally bijective with the double points of ΠC(L). Thus, clearly the algebra of this
subsection is identical to the one described in Section 2.1.

We now compare the differentials. We pick the complex structure on the symplectization
of R

2n+1 as follows. The projection ΠC : R
2n+1 → C

n gives an isomorphism dΠC from
ξx ⊂ TxR

2n+1 to TΠ
C

(x)C
n and thus, via ΠC, the standard complex structure on C

n induces
a complex structure E : ξ → ξ on ξ. Define the complex structure J on the symplectization
R

2n+1 × R by J(v) = E(v) if v ∈ ξ and J( ∂
∂w ) = X. Then J is compatible with ω = d(ewα).

Our moduli spaces and the ones used in the standard definition of contact homology are re-
lated as follows. If u in Ms

A(a; b1, . . . , bm) then define p(u) to be the map in MA(a; b1, . . . , bm)
as p(u) = ΠC◦ΠM ◦u and p̃(u) = ΠM ◦u|∂D̂, where ΠM : R

2n+1×R → R
2n+1, the projection

from the symplectization back to the original contact manifold.

Lemma 2.23. The map p : Ms(a; b1, . . . , bm)/R → M(a; b1, . . . , bm) is a homeomorphism.

Proof. This was proven in the three dimensional case in [15] and the proof here is similar.
(For details we refer the reader to that paper but we outline the main steps.) It is clear
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from the definitions that p is a map between the appropriate spaces (we mod out by the
R in Ms since the complex structure on the symplectization is R-invariant and any two
curves that differ by translation in R will clearly project to the same curve in C

n). The
only non-trivial part of this lemma is that p is invertible. To see this let u ∈ Ms be written
u = (u′, z, τ) : Dm → C

n × R × R. The fact that u is holomorphic for our chosen complex
structure implies that z is harmonic and hence determined by its boundary data. Moreover,
the holomorphicity of u also implies that τ is determined, up to translation in w-direction,
by u′ and z. Thus if we are given a map u′ ∈ M then we can construct a z and τ for which
u = (u′, z, τ) will be a holomorphic map u : Dm → R

2n+1 × R. If it has the appropriate
behavior near the punctures then u ∈ Ms. The asymptotic behavior near punctures was
studied in [26]. �

3. Legendrian submanifolds

In this section, we review the Lagrangian projection and introduce the front projection,
both of which are useful for the calculations of Section 4. In Sections 3.3 and 3.4, we discuss
the Thurston-Bennequin invariant and the rotation class, which were the only invariants
before contact homology which could distinguish Legendrian isotopy classes. Finally, we
construct in Section 3.5 a useful technique for calculating the Conley-Zehnder index of Reeb
chords.

3.1. The Lagrangian projection. Recall that for a Legendrian submanifold L ⊂ C
n × R,

ΠC : L → C
n is a Lagrangian immersion. Note that L ⊂ C

n × R can be recovered, up to
rigid translation in the z direction, from ΠC(L): pick a point p ∈ ΠC(L) and choose any z
coordinate for p; the z coordinate of any other point p′ ∈ L is then determined by

(3.1)
n∑

j=1

∫
γ
yjdxj ,

where γ = ΠC ◦ Γ and Γ is any path in L from p to p′. Furthermore, given any Lagrangian
immersion f into C

n with isolated double points, if the integral in (3.1) is independent of the
path γ = f ◦ Γ then we obtain a Legendrian immersion f̃ into R

2n+1 which is an embedding
provided the integral is not zero for paths connecting double points.

A Lagrangian immersion f : L→ C
n is exact if f∗(

∑n
j=1 yjdxj) is exact and, in this case,

(3.1) is independent of γ. In particular, if H1(L) = 0 then all Lagrangian immersions of L
are exact. Also note that any Lagrangian regular homotopy ft : L→ C

n of exact Lagrangian
immersions will lift to a Legendrian regular homotopy f̃t : L→ C

n × R.

Example 3.1. Consider Sn = {(x, y) ∈ R
n × R : |x|2 + y2 = 1} and define f : Sn → C

n as

f(x, y) : Sn → C
n : (x, y) 7→ ((1 + iy)x).

Then f is an exact Lagrangian immersion, with one transverse double point, which lifts to a
Legendrian embedding into R

2n+1. (When n = 1 the image of f is a figure eight in the plane
with a double point at the origin.)

3.2. The front projection. The front projection projects out the yj’s:

ΠF : R
2n+1 → R

n+1 : (x1, y1, . . . , xn, yn, z) 7→ (x1, . . . , xn, z).

If L ⊂ R
2n+1 is a Legendrian submanifold then ΠF (L) ⊂ R

n+1 is its front which is a codimen-
sion one subvariety of R

n+1. The front has certain singularities. More precisely, for generic
L, the set of singular points of ΠF is a hypersurface Σ ⊂ L which is smooth outside a set of
codimension 3 in L, and which contains a subset Σ′ ⊂ Σ of codimension 2 in L with the fol-
lowing property. If p is a smooth point in Σ \Σ′ then there are local coordinates (x1, . . . , xn)
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around p in L, (ξ1, . . . , ξn, z) around ΠF (p) in R
n+1, and constants δ = ±1, β, α2, . . . , αn

such that

(3.2) ΠF (x1, . . . , xn) = (x2
1, x2, . . . , xn, δx

3
1 + βx2

1 + α2x2 + · · · + αnxn).

For a reference, see [2] Lemma on page 115. The image under ΠF of the set of smooth points
in Σ \ Σ′ will be called the cusp edge of the front ΠF (L). See Figure 3.

Any map L → R
n+1 with singularities of a generic front can be lifted (in a unique way)

to a Legendrian immersion. (The singularities of such a map allow us to solve for the yi-
coordinates from the equation dz =

∑n
i=1 yidxi and the solutions give an immersion.) In

particular, at a smooth point of the front the yi-coordinate equals the slope of the tangent
plane to the front in the xiz-plane.

The Legendrian immersion of a generic front is an embedding and a double point of a
Legendrian immersion correspond to a double point of the front with parallel tangent planes.
Also note that that ΠF (L) cannot have tangent planes containing the z-direction. For a more
thorough discussion of singularities occurring in front projections see [2].

Figure 3. Front projection of Example 3.1 in dimension 3, on the left, and
5, on the right.

3.3. The rotation class. Let (M, ξ) be a contact (2n+ 1)-manifold with a contact form α.
That is, α is a 1-form on M with ξ = Ker(α). The complete non-integrability condition on ξ
implies α ∧ (dα)n 6= 0 which in turn implies that for any p ∈M , dαp|ξp is a symplectic form
on ξp ⊂ TpM .

Let f : L→ (M, ξ), be a Legendrian immersion. Then the image of dfx : TxL→ Tf(x)M is
a Lagrangian plane in ξf(x). Pick any complex structure J on ξ which is compatible with its
symplectic structure. Then the complexification of df , dfC : TL⊗C → ξ is a fiberwise bundle
isomorphism. The homotopy class of (f, dfC) in the space of complex fiberwise isomorphisms
TL ⊗ C → ξ is called the rotation class of f and is denoted r(f) (or r(L) if L ⊂ M is a
Legendrian submanifold embedded into M by the inclusion). The h-principle for Legendrian
immersions [20] implies that r(f) is a complete invariant for f up to regular homotopy through
Legendrian immersions.

When the contact manifold under consideration is R
2n+1 with the standard contact struc-

ture we may further illuminate the definition of r(f). Let (x, y, z) ∈ R
n × R

n × R be coordi-
nates on R

2n+1 as in Section 2.1. If J : ξ(x,y,z) → ξ(x,y,z) is the complex structure defined by
J(∂xj + yj∂z) = ∂yj , J(∂yj ) = −(∂xj + yj∂z), for j = 1, . . . , n then the Lagrangian projection
ΠC : R

2n+1 → C
n gives a complex isomorphism from (ξ, J) to the trivial bundle with fiber

C
n. Thus we may think of dfC as a trivialization TL ⊗ C → C

n. Moreover, we can choose
Hermitian metrics on TL⊗ C and on C

n so that dfC is a unitary map. Then f gives rise to
an element in U(TL⊗C,Cn). One may check that the group of continuous maps C(L,U(n))
acts freely and transitively on U(TL ⊗ C,Cn) and thus π0(U(TL ⊗ C,Cn)) is in one to one
correspondence with [L,U(n)]. Thus we may think of r(f) as an element in [L,U(n)].

We note that when L = Sn then

r(f) ∈ πn(U(n)) ≈
{

Z, n odd,
0, n even.
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Thus for spheres we will refer to r(f) as the rotation number.

3.4. The Thurston-Bennequin invariant. Given an orientable connected Legendrian sub-
manifold L in an oriented contact (2n+ 1)-manifold (M, ξ) we define an invariant, called the
Thurston–Bennequin invariant of L, describing how the contact structure “twists about L.”
The invariant was originally conceived by Thurston and Bennequin [4] when n = 1 and
generalized to higher dimensions by Tabachnikov [32]. Here we only define the Thurston–
Bennequin invariant when L is homologically trivial in M (which for M = R

2n+1 poses no
additional constraints).

Pick an orientation on L. Let X be a Reeb vector field for ξ and push L slightly off of itself
along X to get another oriented submanifold L′ disjoint from L. The Thurston–Bennequin
invariant of L is the linking number

(3.3) tb(L) = lk(L,L′).

Note that tb(L) is independent of the choice of orientation on L since changing it changes
also the orientation of L′. The linking number is computed as follows. Pick any (n+1)-chain
C in M such that ∂C = L then lk(L,L′) equals the algebraic intersection number of C with
L′.

For a chord generic Legendrian submanifold L ⊂ R
2n+1, tb(L) can be computed as follows.

Let c be a Reeb chord of L with end points a and b, z(a) > z(b). Let Va = dΠC(TaL) and
Vb = dΠC(TbL). Given an orientation on L these are oriented n-dimensional transverse
subspaces in C

n. If the orientation of Va ⊕ Vb agrees with that of C
n then we say the sign,

sign(c), of c is +1 otherwise we say it is −1. Then

(3.4) tb(L) =
∑

c

sign(c),

where the sum is taken over all Reeb chords c of L. To verify this formula, use the Reeb-vector
field ∂z to shift L off itself and pick the cycle C as the cone over L through some point with
a very large negative z-coordinate.

Note that the parity of the number of double points of any generic immersion of an n-
manifold into C

n depends only on its regular homotopy class [33]. Thus the parity of tb(L)
is determined by the rotation class r(L). Some interesting facts [8] concerning the Thurston-
Bennequin invariant are summarized in

Proposition 3.2. Let L be a Legendrian submanifold in standard contact (2n + 1)-space.
(1) If n > 1 is odd, then for any k ∈ Z we can find, C0 close to L, a Legendrian subman-

ifold L′ smoothly isotopic and Legendrian regularly homotopic to L with tb(L′) = 2k.
(2) If n is even, then tb(L) = (−1)

n
2
+1 1

2χ(L).

The ideas associated with (1) are discussed below in Proposition 4.5. For (2), note that
if n = 2k is even then the sign of a double point c is independent of the ordering of the
subspaces Va and Vb and in this case tb(L) equals Whitney’s invariant [33] for immersions
of orientable 2k-manifolds into oriented R

4k which in turn equals −1
2χ(ν), where ν is the

oriented normal bundle of the immersion [23]. Since the immersion is Lagrangian into C
n its

normal bundle is isomorphic to the tangent bundle TL of L (via multiplication with i) and
as an oriented bundle it is isomorphic to TL with orientation multiplied by (−1)

n
2 .

If n = 1 the situation is much more interesting. In this case there are two types of contact
structures: tight and overtwisted. If the contact structure is overtwisted then the above
proposition is still true, but if the contact structure is tight (as is standard contact 3-space)
then tb(L) ≤ χ(L) − |r(L)|. There are other interesting bounds on tb(L) in a tight contact
structure, see [19, 27].
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The Thurston-Bennequin invariant of a chord generic Legendrian submanifold can also be
calculated in terms of Conley-Zehnder indices of Reeb chords. Recall C is the set of Reeb
chords of L.

Proposition 3.3. If L ⊂ R
2n+1 is an orientable chord generic Legendrian submanifold then

tb(L) = (−1)
(n−2)(n−1)

2

∑
c∈C

(−1)|c|.

Proof. Recall from (3.4) that tb(L) can be computed by summing sign(c) over all Reeb chords
c, where sign(c) is the oriented intersection between the upper and lower sheets of ΠC(L) at
c∗. So to prove the proposition we only need to check that sign(c) = (−1)

1
2
(n2+n+2)(−1)|c|.

This will be done after the proof of Lemma 3.4. �

3.5. Index computations in the front projection. Though it was easier to define con-
tact homology using the complex projection of a Legendrian submanifold it is frequently
easier to construct Legendrian submanifolds using the front projection. In preparation for
our examples below we discuss Reeb chords and their Conley-Zehnder indices in the front
projection.

If L ⊂ R
2n+1 is a Legendrian submanifold then the Reeb chords of L appears in the

front projection as vertical line segment (i.e. a line segment in the z-direction) connecting
two points of ΠF (L) with parallel tangent planes. (See Section 3.2 and note that L may
be perturbed so that the Reeb chords as seen in ΠF (L) do not have end points lying on
singularities of ΠF (L).)

A generic arc γ in ΠF (L) connecting two such points a, b intersects the cusp edges of ΠF (L)
transversely and meets no other singularities of ΠF (L) (it might also meet double points of
the front projection but “singularities” refers to non-immersion parts of ΠF (L)). Let p be a
point on a cusp edge where γ intersects it. Note that ΠF (L) has a well defined tangent space
at p. Choose a line l orthogonal to this tangent space. Then, since the tangent space does
not contain the vertical direction, orthogonal projection to the vertical direction at p gives
a linear isomorphism from l to the z-axis through p. Thus the z-axis induces an orientation
on l. Let γp be a small part of γ around p and let hp : γp → l be orthogonal projection. The
orientation of γ induces one on γp and we say that the intersection point is an up- (down-)
cusp if hp is increasing (decreasing) around p.

Let c be a Reeb chord of L with end points a and b, z(a) > z(b). Let q be the intersection
point of the vertical line containing c ⊂ R

n+1 and {z = 0} ⊂ R
n+1. Small parts of ΠF (L)

around a and b, respectively, can be viewed as the graphs of functions ha and hb from a
neighborhood of q in R

n to R (the z-axis). Let hab = ha − hb. Since the tangent planes of
ΠF (L) at a and b are parallel, the differential of hab vanishes at q. If the double point c∗ of
ΠC(L) corresponding to c is transverse then the Hessian d2hab is a non-degenerate quadratic
form (see the proof below). Let Index(d2hab) denote its number of negative eigenvalues.

Lemma 3.4. If γ is a generic path in ΠF (L) connecting a to b then

νγ(c) = D(γ) − U(γ) + Index(d2hab),

where D(γ) and U(γ) is the number of down- and up-cusps of γ, respectively.

Proof. To compute the Maslov index as described in Section 2.3 we use the Lagrangian
reference space x = 0 in R

2n (that is, the subspace Span(∂y1 , . . . , ∂yn)) with Lagrangian
complement y = 0 (Span(∂x1 , . . . , ∂xn)).

We must compute the Maslov index of the loop Γ ∗ λ(Vb, Va) where Vb and Va are the
Lagrangian subspaces dΠC(TbL) and dΠC(TaL) and Γ(t) is the path of Lagrangian subspaces
induced from γ. We first note that Γ(t) intersects our reference space transversely (in 0) if
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γ(t) is a smooth point of ΠF (L), since near such points ΠF (L) can be thought of as a graph
of a function over some open set in x-space (i.e. {z = 0} ⊂ R

n+1). Thus, for generic γ,
the only contributions to the Maslov index come from cusp-edge intersections and the path
λ(Vb, Va).

We first consider the contribution from λ(Vb, Va). There exists orthonormal coordinates
u = (u1, . . . , un) in x-space so that in these coordinates

d2hab = Diag(λ1, . . . , λn).

We use coordinates (u, v) on R
2n = C

n where u is as above, ∂j = ∂uj , and ∂vj = i∂j

(i =
√−1). In these coordinates our symplectic form is simply ω =

∑n
j=1 duj ∧ dvj , and our

two Lagrangian spaces are given by Va = Spann
j=1(∂j + id2ha∂j), Vb = Spann

j=1(∂j + id2hb∂j).
One easily computes

ω(∂j + id2hb∂j , ∂j + id2ha∂j) = ω(∂j , id
2hab∂j) = λj.

Moreover, let

Wj = Span(∂j + id2ha∂j , ∂j + id2hb∂j) = Span(∂j + id2ha∂j , i∂j) = Span(∂j + id2hb∂j , i∂j),

then Wj and Wk are symplectically orthogonal, ω(Wj,Wk) = 0, for j 6= k.
Let va(j) be a unit vector in direction ∂j + id2ha∂j and similarly for vb(j). Define the

almost complex structure I as follows

I(vb(j)) = Sign(λj)va(j),

and note that it is compatible with ω. Then esIvb(j), 0 ≤ s ≤ π
2 , intersects the line in

direction i∂j if and only if λj < 0 and does so in the positive direction.
It follows that the contribution of esIVb, 0 ≤ s ≤ π

2 (i.e. λ(Vb, Va)) to the Conley-Zehnder
index is Index(d2hab).

Second we consider cusp-edge intersections: at a cusp-edge intersection p (which we take
to be the origin) there are coordinates u = (u1, . . . , un) such that the front locally around
p = 0 is given by u 7→ (x(u), z(u)), where

x(u) = (u2
1, u2, . . . , un), z(u) = δu3

1 + βu2
1 + α2u2 + · · · + αnun,

where δ is ±1, and β and αj are real constants. We can assume the oriented curve γ is given
by u(t) = (εt, 0, . . . , 0), where ε = ±1. If we take the coorienting line l to be in the direction
of the vector

v(p) = (−β,−α2, . . . ,−αn, 1).

then the function hp is
hp(t) = δε3t3,

and we have an up-cusp if δε > 0 and a down cusp if δε < 0.
The curve Γ(t) of Lagrangian tangent planes of ΠC(Ln) along γ is given by

Γ(t) = Span(2εt∂1 + i
3δ
2
∂1, ∂2, . . . , ∂n).

The plane Γ(0) intersects our reference plane at t = 0 along the line in direction i∂1. As
described in Section 2.2 the sign of the intersection is given by the sign of

d

dt
ω(i 3δ

2σ∂1, 2σε∂1) = −3δε

Thus, we get negative signs at up-cusps and positive at down-cusps. The lemma follows. �
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Completion of Proof of Proposition 3.3. We say the orientations on two hyperplanes trans-
verse the the z-axis in R

n+1 agree if their projection to {z = 0} ⊂ R
n+1 induce the same

orientation on this n-dimensional subspace. Let c be a Reeb chord of L and let a and b denote
its end points on ΠF (L). If the orientations on TaΠF (L) and TbΠF (L) agree then the above
proof shows that the bases(

∂1 + id2ha∂1, . . . , ∂n + id2ha∂n, ∂1 + id2hb∂1, . . . , ∂n + id2hb∂n

)
'(

id2hab∂1, . . . , id
2hab∂n, ∂1, . . . , ∂n

)
,(3.5)

provide oriented bases for dΠC(TaL)⊕ dΠC(TbL). Note that the standard orientation of C
n

is given by the positive basis (∂1, i∂1, . . . , ∂n, i∂n) which after multiplication with (−1)
n(n+1)

2

agrees with the orientation given by the basis (i∂1, . . . , i∂n, ∂1, . . . , ∂n). Thus

sign c = (−1)
n(n+1)

2 (−1)Index(d2(hab)).

However, the orientations of TaΠF (L) and TbΠF (L) do not always agree. Let γ be the path
in L connecting a to b. The orientations on Tγ(t)(ΠF (L)) do not change as long as γ does
not pass a cusp edge. It follows from the local model for a cusp edge that each time γ
transversely crosses a cusp edge the orientation on Tγ(t)(ΠF (L)) changes. Thus sign c =

(−1)
n(n+1)

2 (−1)D(γ)+U(γ)(−1)Index(d2hab) = (−1)
1
2
(n2+n+2)(−1)|c| as we needed to show. �

4. Examples and constructions

Before describing our examples, we discuss the linearized contact homology in Section 4.1.
This is an invariant of Legendrian submanifolds derived from the DGA. Its main advantage
over contact homology it that it is easier to compute. In Section 4.2, we do several simple
computations of contact homology. In Sections 4.3 and 4.4, we describe two constructions:
stabilization and front spinning. In these subsections, we construct infinite families of pairwise
non-isotopic Legendrian n-spheres, n-tori and surfaces which are indistinguishable by the
classical invariants. In Section 4.6, we summarize the information gleaned from our examples
and discuss what this says about Legendrian submanifolds in general.

4.1. Linearized homology. To distinguish Legendrian submanifolds using contact homol-
ogy one must find computable invariants of stable tame isomorphism classes of DGA’s. We
use an idea of Chekanov [5] to “linearize” the homology of such algebras. To keep the dis-
cussion simple we will only consider algebras generated over Z2 and not Z2[H1(L)].

Let A be an algebra generated by {c1, . . . , cm}. For j = 0, 1, 2, . . . let Aj denote the ideal
of A generated by all words c in the generators with l(c) ≥ j. A differential ∂ : A → A is
called augmented if ∂(A1) ⊂ A1 (in other words if ∂cj does not contain 1 for any j). If (A, ∂)
is augmented then ∂(Aj) ⊂ Aj for all j. A DGA (A, ∂) is called good if its differential is
augmented.

Let (A, ∂) be a DGA with generators {c1, . . . , cm} and consider the vector space V = A1/A2

over Z2. If (A, ∂) is good then ∂ : A → A induces a differential ∂1 : V → V. Note that
{c1, . . . , cm} gives a basis in V and that in this basis ∂1cj equals the part of ∂cj which is
linear in the generators. We define the linearized homology of a (A, ∂) as

Ker(∂1)/ Im(∂1),

which is a graded vector space over Z2.
We want to apply this construction to DGA’s associated to Legendrian isotopy classes. Let

L ⊂ R
2n+1 be an admissible Legendrian submanifold with algebra (A(L), ∂) generated by

{c1, . . . , cm}. Let G be the set of tame isomorphisms of A(L) and for g ∈ G let ∂g : A(L) →
A(L) be ∂g = g∂g−1. We define the linearized contact homology of L, HLC∗(R2n+1, L) to be



22 TOBIAS EKHOLM, JOHN ETNYRE, AND MICHAEL SULLIVAN

the set of isomorphism classes of linearized homologies of (A, ∂g), where g ∈ G is such that
(A, ∂g) is good. (Note that this set may be empty.) Define G0 ⊂ G to be the subgroup of
tame isomorphisms g0 such that g0(cj) = cj + aj for all j, where aj = 0 or aj = 1. Note that
aj = 0 if |cj | 6= 0 since g0 is graded and that G0 ≈ Z

k
2 , where k is the number of generators

of A of degree 0.

Lemma 4.1. If Lt ⊂ R
2n+1 is a Legendrian isotopy between admissible Legendrian subman-

ifolds then HLC∗(R2n+1, L0) is isomorphic to HLC∗(R2n+1, L1). Moreover, if L ⊂ R
2n+1

is an admissible Legendrian submanifold then HLC∗(R2n+1, L) is equal to the set of isomor-
phism classes of linearized homologies of (A, dg0), where g0 ∈ G0 is such that (A, ∂g0) is
good.

Proof. The first statement follows from the observation that the stabilization (Sj(A), ∂) of
a good DGA (A, ∂) is good and that the linearized homologies of (Sj(A), ∂) and (A, ∂) are
isomorphic. The second statement is proved in [5]. �

Let L ⊂ R
2n+1 be an admissible Legendrian submanifold. Note that if A(L) has no

generator of degree 1 then (A, ∂) is automatically good and if A has no generator of degree
0 then G0 contains only the identity element. If the set HLC∗(R2n+1, L) contains only one
element we will sometimes below identify this set with its only element.

4.2. Examples. In this subsection we describe several relatively simple examples in which
the contact homology is easy to compute and defer more complicated computations to the
following subsections.

Example 4.2. The simplest example in all dimensions is L0 described in Example 3.1, with a
single Reeb chord c. Using Lemma 3.4 and the fact that the difference of the z-coordinates
at the end points of c is a local maximum we find |c| = n. So A(L0) = 〈c〉 and the differential
is ∂c = 0, showing (if n > 1) the contact homology is

HCk(R2n+1, L0) =

{
0, k 6≡ 0 mod n, or k < 0,
Z2, otherwise.

If n = 1 this is still true but M(c; ∅) is not empty (it contains two elements [5]).

Example 4.3. Generalizing Example 4.2 above we can consider the Legendrian sphere L′ in
R

2n+1 with 3 cusp edges in its front projection. See Figure 4. If one draws the pictures with

Figure 4. The sphere L′ with 3 cusps.

an SO(n) symmetry about the z-axis then there will be one Reeb chord running from the top
of the sphere to the bottom, call it c and a (n− 1)-spheres worth of Reeb chords. Perturbing
the symmetric picture slightly yields two Reeb chords a, b in place of the spheres worth in
the symmetric picture. The gradings are

|c| = n+ 2, |a| = 1, |b| = n.
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It is clear that whatever the contact homology of L′ is, it is different from that in the example
above. When n > 2 (respectively n = 2) there are two (respectively three) possibilities for
the boundary map. Thus for n even we have examples of non-isotopic Legendrian spheres
with the same classical invariants.

Given two Legendrian submanifolds K and K ′ we can form their “(cusp) connected sum”
as follows: isotope K and K ′ so that their fronts are separated by a hyperplane in R

n+1

containing the z-direction and let c be an arc beginning at a cusp edge of K and ending at a
cusp edge of K ′ and parameterized by s ∈ [−1, 1]. Take a neighborhood N of c whose vertical
cross sections consist of round balls whose radii vary with s and have exactly one minimum at
s = 0 and no other critical points. Introducing cusps along N as indicated in Figure 5. Define

c

Figure 5. The neighborhood of c and its deformation into the front projec-
tion of a Legendrian tube.

the “connected sum” K#K ′ to be the Legendrian submanifold obtained from the joining of
K \ (K ∩N),K ′ \ (K ′ ∩N) and ∂N. Note this operation might depend on the cusp edges one
chooses on K and K ′ but we will make this choice explicit in our examples. In dimension
3 it can be shown that the connected sum of two knots is well defined [5, 14]. It would be
interesting to understand this operation better in higher dimensions. See Remark 4.28 below.

Lemma 4.4. Let C and C′ be the sets of Reeb chords of K and K ′, respectively, and let | · |K ,
| · |K ′, and | · | denote grading in A(K), A(K ′), and A(K#K ′), respectively. It is possible to
perform the connected sum so that the set of Reeb chords of K#K ′ is C ∪ C′ ∪ {h} and so
that the following holds.

(1) If c ∈ C then |c|K = |c|, if c′ ∈ C′ then |c|K ′ = |c|, and |h| = n− 1.
(2) ∂h = 0.
(3) If AK and AK ′ denote the subalgebras of A(K#K ′) generated by C∪{h} and C′∪{h},

respectively, then ∂(AK) ⊂ AK and ∂(AK ′) ⊂ AK ′.
(4) If c ∈ C then ∂c ∈ A(K#K ′)1 if and only if ∂Kc ∈ A(K)1 and similarly for c′ ∈ C′.

(In other words, the constant part of ∂c (∂c′) does not change after the connected
summation.)

Proof. We may assume that K and K ′ are on opposite sides of the hyperplane {x1 = 0} and
there is a unique point p, respectively p′, on a cusp edge of K, respectively K ′, that is closest
to K ′, respectively K. We may further assume that all the coordinates but the x1 coordinate
of p and p′ agree. Define K#K ′ using c, the obvious horizontal arc connecting p and p. It
is now clear that all the Reeb chords in K and K ′ are in K#K ′ and there is exactly one
extra chord h, coming from the minimum in the neighborhood N of c. It is also clear that
the gradings of the inherited chords are unchanged and that |h| = n− 1.

Denote zj = xj + iyj. The image of a holomorphic disk u : D → C
n with positive puncture

at h∗ must lie in the complex hyperplane {z1 = 0}. To see this notice that the projection of
K#K ′ onto the z1-plane is as shown in Figure 6. Let u1 be the composition of u with this
projection. If u1 is not constant then u(∂D) must lie in the shaded region in Figure 6. Thus
the corner at h∗ (note h∗ projects to 0 in this figure) must be a negative puncture. Since any
holomorphic disk with positive puncture at h∗ must lie entirely in the hyperplane {z1 = 0}
it cannot have any negative punctures. Thus ∂h has only a constant part. For n > 2 this
implies ∂h = 0 immediately. If n = 2 then ∂h = 0 since in this case, there are exactly two
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K K’

Figure 6. The projection onto the z1-plane (left). The intersection with the
z2-plane (right).

holomorphic disks in the z2-plane, see Figure 6, and Proposition 2.4 implies both these disks
contribute to the boundary map.

To see (3) consider the projection ofK#K ′ onto the z1-plane, see Figure 6. If a holomorphic
disk D intersected the projection of K and K ′ then it would intersect the y1-axis in a closed
interval, with non-trivial interior, containing the origin. This contradicts the maximum
principle since the intersection of the boundary of D with the y1-axis can contain only the
origin.

For the last statement, consider Reeb chords in K, those in K ′ can be handled in exactly
the same way. We use Proposisiton 2.3 which implies that we may choose the points p so
that no rigid holomorphic disk u : D → C

n with boundary on K maps any point in ∂D
to p. Since the space of rigid disks is a compact 0 manifold there are only finitely many
rigid disks, u1, . . . , ur, say. Since each uk is continuous on the boundary ∂D we find that
u1(∂D) ∪ · · · ∪ ur(∂D) stays a positive distance d away from p. Consider the ball B(p, 1

2d)
and use a tube attached inside B(p, 1

4d) for the connected sum. If c ∈ C and v is a rigid
holomorphic disk with boundary on K#K ′, with positive puncture at c, no other punctures,
and such that the image v(∂D) is disjoint from ∂B(p, 1

2d) then v is also a disk with boundary
on K and hence v = uj for some j.

Since no holomorphic disk with boundary on K#K ′ which touches a point in K can pass
the hyperplane {x1 = 0} ⊂ C

n it will also represent a disk on the connected sum K#L0,
where L0 is a small standard sphere. Pick a generic Legendrian isotopy Kt, 0 ≤ t ≤ 1
of K#L0 to K which is supported in (K ∩ B(p, 1

4d))#L0. Then either there exists t < 1
such that all rigid disks v on Kt for t > 0 satisfies v(∂D) ∩ (B(p, 1

2d) \ B(p, 1
4d)) = ∅ or

there exists a sequence of rigid disks vj with boundary on Ltj , tj → 1 as j → ∞ such that
vj(∂D) ∩ (B(p, 1

2d) \B(p, 1
4d)) 6= ∅. In the first case the lemma follows from the observation

above. We show the second case cannot appear: by Gromov compactness, the sequence vj has
a subsequence which converges to a broken disk (v1, . . . , vN ) with boundary on K. Since K is
generic there are no disks with negative formal dimension and all components of (v1, . . . , vN )
must be rigid. But since vj is rigid the broken disk must in fact be unbroken by (2.6). Thus
we find a rigid disk v1 with boundary on K such that v1(∂D)∩B(p, d) 6= ∅ contradicting our
choice of p. The lemma follows. �

4.3. Stabilization and the proof of Theorem 1.1. In this subsection we describe a
general construction that can be applied to Legendrian submanifolds called stabilization.
Using the stabilization technique, we prove Theorem 1.1. We begin with a model situation.

In R
n+1 consider two unit balls F and E in the hyperplanes {z = 0} and {z = 1},

respectively. Let M be a k-manifold embedded in F. Let N be a regular ε-neighborhood of
M in F for some positive ε � 1. Deform F to F ′ by pushing M up to z = ε and deform
N so that the z-coordinate of p ∈ N is ε − dist(p,M). Note that are many Reeb chords,
one for each point in M and F \ N. To deform this into a generic picture choose a Morse
function f : M → [0, 1] and g : (F \N) → [0, 1] such that g−1(1) = ∂F and g−1(0) = ∂N.
(It is important to notice that we may, if we wish, modify the boundary conditions on g|∂F

depending on our circumstances.) Take a positive δ � ε and further deform F ′ by adding
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δf(p) to the z coordinate of points in M and subtracting δg(p) from the z coordinate of
points in F \ N. The result is a generic pair of Lagrangian disks F ′ and E with one Reeb
chord for each critical point of f and g. Define F ′′ as we defined F ′ but begin by dragging
M up to z = 1 + ε (instead of z = ε as we did for F ′).

Now if ΠF (L) is the front projection of a Legendrian submanifold L and there are two
horizontal disks in ΠF (L) we can identify them with F and E above. (Note we can always
assume there are horizontal disks by either looking near a cusp and flattening out a region,
or letting F and E be the disks obtained by flattening out the regions around the top and
bottom of a Reeb chord.) Legendrian isotope L so that F becomes F ′. Replacing F ′ in ΠF (L)
by F ′′ will result in the front of a Legendrian submanifolds L′ which is called the stabilization
of L along M .

Proposition 4.5. If L′ is the stabilization of L with notation as above, then

(1) The rotation class of L′ is the same as that of L.
(2) The invariant tb is given by

tb(L′) =

{
tb(L), n even,
tb(L) + (−1)(D−U)2χ(M), n odd,

where D,U, is the number of down, up, cusps along a generic path from E to F in
ΠF (L).

(3) The Reeb chords of L and L′ are naturally identified. The grading of any chord not
associated with M,F and E is the same for both L and L′. Let c be a chord associated
to M,F and E and let |c|L be its grading in L and |c|L′ its grading in L′. Then

|c|L′ = n− 2 − |c|L
This theorem may seem a little strange if one is used to Legendrian knots in R

3. In
particular, it is well known that in 3 dimensions there are two different stabilizations and
both change the rotation number. What is called a stabilization in dimension 3 is really
a “half stabilization,” as defined here. (Recall such a “half stabilization” corresponds to
adding zig-zags to the front projection and looks like a “Reidemeister Type 1” move in the
Lagrangian projection [13].) In particular if one does the above described stabilization near
a cusp in dimension 3 it will be equivalent to doing both types of half stabilizations. See
Figure 7.

Figure 7. Our stabilization in dimension 3 is equivalent to two normal 3
dimensional stabilizations [13].

Remark 4.6. The stabilization procedure will typically produce non-topologically isotopic
knots when done in dimension 3.
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Proof. Recall the rotation class is defined as the Legendrian regular homotopy class. Now
(1) is easy to see since the straight line homotopy from ΠF (L) to ΠF (L′) will give a regular
Legendrian homotopy between L and L′. Statement (2) follows from (3). As for (3) let c be a
chord corresponding to a critical point of the Morse function f then Lemma 3.4 implies that
|c|L = (k−Morse Indexc(f)) +D−U − 1 and |c|L′ = Morse Indexc(f) + (n− k)−D+U − 1
where k is the dimension of M. �

We now consider some examples to see what effect stabilization has on contact homology.

Example 4.7. Let L be a Legendrian submanifold in R
2n+1 and p a point on a cusp of ΠF (L).

Consider a small ball B around p in R
n+1. We can isotope the front projection so as to create

two new Reeb chords c1 and c2 in B, see Figure 7, such that |c1| = 0 and |c2| = 1. Let F ′ be
the front obtained by pushing the lower end point of c1 past the upper sheet of ΠF (L) in B
and let L′ be the corresponding Legendrian submanifold.

Proposition 4.8. The contact homology of L′ is

HCk(R2n+1, L′) = 0.

Proof. We can assume that p is at the origin in R
n+1. For any ε define Bε to be the product

of the ball of radius ε about p in the x1z-plane times [−ε, ε]n−1 (in x2 . . . xn-space). We may
now assume that ΠF (L) ∩ Bε is the cusp shown in Figure 7 times [−ε, ε]n−1 and that the
stabilization is done in B ε

2
. A “monotonicity” argument shows that any disk with a positive

puncture at c2 (or c1) and leaving Bε has area bounded below. (See for example, [7, Lemma
11.3].) However, the action of c2 can be made arbitrarily small. Therefore any disk with a
positive corner at c2 must stay in the ball Bε. The projection of ΠC(L′)∩Bε to a zj-plane j 6= 1
is shown on the left hand side of Figure 8. (The reason for the appearance of this picture is
that we can choose the front so that ∂z

∂xj
·xj ≤ 0, for all j > 1.) The boundary of a projection

Figure 8. ΠC(L′) projected onto a zj-line, j 6= 1 (left) and intersected with
the z1-plane (right).

of a holomorphic curve must lie in the shaded region of the figure; moreover, the corner at c2
of such a disk is negative. Thus any holomorphic curve with positive puncture at c2 must lie
entirely in the z1-plane. The right hand side of Figure 8 shows ΠC(L′)∩Bε∩{z1−plane}. We
see there one disk which by Proposition 2.4 contributes to the boundary of c2. Thus ∂c2 = 1,
and one may easily check this implies HCk(R2n+1, L′) = 0. �

This last example is not particularly surprising given the analogous theorem, long known
in dimension 3 [5], that stabilizations (or actually “half stabilizations” even) kill the contact
homology. With this in mind the following examples might be a little surprising. It shows
that in higher dimensions stabilization does not always kill the contact homology. The main
difference with dimension 3 is the stabilizations we do below would, in dimension 3, change
the knot type.

Example 4.9. When n = 2 we define the sphere L1 via its front projection, which is described
in Figure 9. For n > 2 there is an analogous front projection: take two copies, L0, L

′
0, of the
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Legendrian sphere L0 from Example 4.2 and arrange them as shown in the figure. Deform
L0 as shown in Figure 9. Take a curve c, parameterized by s ∈ [−1, 1], from the cusp edge
on L0 to the cusp edge on L′

0. By taking this curve to be very large we can assume the rate
of change in its z-coordinate is very small. Moreover we will assume that by the time it
passes under L0 its z-coordinate is less than the z-coordinates of L′

0 and thus has to “slope
up” to connect with L′

0. (These choices will minimize the number of Reeb chords.) Take a
neighborhood N of c whose vertical cross sections consist of round balls whose radii vary
with s and have exactly one minimum at s = 0 and no other critical points. Introducing
cusps along N as indicated in Figure 5 we can join L0, L

′
0 and ∂N together to form a front

L0

L0

L’0

L’0

c

z

x1 x1

x2

Figure 9. On the left hand side the x1z-slice of part of L1 is show. To see
this portion in R

3 rotate the figure about its center axis. On the right hand
side we indicate the arc c connecting the two copies of L0.

projection for a Legendrian sphere in R
2n+1. There are exactly six Reeb chords involving only

L0 and L′
0 which we label a1, . . . , a6. There is also a Reeb chord b that occurs in N where

the radii of the cross sectional balls have a minimum. Using Lemma 3.4 we compute:

|a1| = |a2| = |a5| = n,

|b| = n− 1,
|a4| = 0,
|a3| = |a6| = −1.

Proposition 4.10. The following are true
(1) L1 is a stabilization of L0.
(2) For all n the rotation classes of L1 and L0 agree.
(3) When n is even tb(L1) = tb(L0) and when n is odd tb(L1) = tb(L0) − 2.
(4) The linearized contact homology of L1 in homology grading −1 is

HLC−1(R2n+1, L1) = Z2.

(5) L0 and L1 are not Legendrian isotopic.

Proof. Let L′
1 be the Legendrian sphere whose front is the same as the front of L1 except that

L′
0 has been moved down so as to make L0 and L′

0 disjoint. Then L′
1 is clearly Legendrian

isotopic to L0 and stabilizing L′
1 (using M a point) results in L1. Thus Statement (1) holds.

Statements (2) and (3) follow from (1) and Proposition 4.5. Statement (5) follows from (4).
The Reeb chords for L′

1 and L1 are easily identified and their gradings are the same except
for |a5|L′

1
= −2. At this point it is clear that HLC−1(R2n+1, L1) = Z2 or Z2 ⊕ Z2. (This

is good enough to distinguish L0 and L1.) Since L′
1 and L0 are Legendrian isotopic their
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linearized contact homologies must agree. Furthermore, the linearized contact homology of
L0 is a one element set,

HLCn = HLCn(R2n+1, L0) = Z2, HLCj = HLCj(R2n+1, L0) = 0, j 6= n.

Thus, if ∂′1 denotes the (linearized) differential on A(L′
1)1/A(L′

1)2 we conclude the following.

(a) ∂′1a5 = 0 since a5 is the generator of lowest grading.
(b) Im(∂′1|Span(a3, a6)) = Span(a5) since HCL−2 = 0 and thus Ker(∂′1|Span(a3, a6)) is

1-dimensional.
(c) If n > 2 then ∂′1a4 spans Ker(∂′1|Span(a3, a4)) since HLC−1 = 0, if n = 2 then

Im(∂′1|Span(a4, b)) = Ker(∂′1|Span(a3, a4)) and therefore Ker(∂′1|Span(a4, b)) is 1-
dimensional.

(d) If n > 2 then ∂′1b = 0. Also, Im(∂′1|Span(a1, a2)) = Ker(∂′1|Span(a4, b)).

Let L̂1 be the Legendrian immersion “between” L′
1 and L1 with one double point which

arises as the length of the Reeb chord a5 shrinks to 0. Take L̂1 to be generic admissible.
Moreover, by Proposition 2.3 we may assume that no rigid holomorphic disk with boundary
on L̂1 and without puncture at a∗5 maps any boundary point to a∗5. As in the proof of Lemma
4.4, we find a ball B(a∗5, d) such that no rigid disk without puncture at a∗5 maps a boundary
point into B(a∗5, d).

Let Kt, t ∈ [−δ, δ] be a small Legendrian regular homotopy such that K0 = L̂1, Kδ is
Legendrian isotopic to L′

1 and K−δ is Legendrian isotopic to L1. Moreover, we take Kt

supported inside a small neighborhood of a5 which map into B(a∗5,
1
4d) by ΠC. Now if

u : D → K0 is a disk on K0 which maps no boundary point into B(a∗5,
1
2d) then u can be

viewed as a disk with boundary on Kt and vice versa.
We show that there exists ε > 0 such that for |t| < ε there exist no rigid disk with boundary

on Kt and without puncture at a5 which map a boundary point to B(a∗5,
1
2d). If this is not

the case we extract a subsequence vj of such maps which, by Gromov compactness, converges
to a broken disk (v1, . . . , vN ) with boundary on K0. If N > 1 then, by (2.6) at least one of
the disks vj must have negative formal dimension but since K0 is generic admissible no such
disks exists and the limiting disk v1 is unbroken. Now v1 is a rigid disk with boundary on
K0 and without puncture at a∗5 which maps boundary points to B(a∗5, d). This contradicts
the choice of K0 and hence proves the existence of ε > 0 with properties as claimed. Thus,
(c) above implies, with ∂1 the differential on A(L1)1/A(L1)2, ∂1(Span(a4)) (∂1(Span(a4, b))
if n = 2) is 1-dimensional and hence (4) holds. �

Let L2 be the Legendrian sphere obtained by connect summing two copies of L1. Note L1

only has one cusp edge so there is no ambiguity in the construction; thus, we choose any
arc which is disjoint from the fronts of the two spheres that are being connect summed. We
similarly define Lk by connect summing Lk−1 with L1.

Theorem 4.11. The Legendrian spheres Lk are all non Legendrian isotopic and, for n even,
have the same classical invariants.

Proof. This follows since HLC−1(R2n+1, Lk) equals Z
k
2. �

In order to construct examples in dimensions 2n+ 1 where n is odd we consider a variant
of this example.

Example 4.12. Let L′
1 be constructed as L1 is in Example 4.9 except start with L0 and L′

0
as shown in Figure 10. Like L1, L′

1 will have seven Reeb chords which we label in a similar
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L0

L’0

Figure 10. The position of L0 and L′
0 to construct L′

1.

manner. Here the grading on the chords is

|a1| = |a2| = |a5| = n,

|a3| = |a6| = |b| = n− 1,
|a4| = 0.

Proposition 4.13. The following are true
(1) L′

1 is a stabilization of L0.
(2) For all n the rotation class of L′

1 and L0 agree.
(3) When n is even tb(L′

1) = tb(L0) and when n is odd tb(L′
1) = tb(L0) + 2.

(4) The linearized contact homology of L′
1 has only one element and in homology grading

0 is
HLC0(R2n+1, L′

1) = Z2.

(5) L0 and L′
1 are not Legendrian isotopic.

The proof of this proposition is identical to the proof of Proposition 4.10. To obtain
interesting examples when n is odd we let K1 be the connected sum of L1 and L′

1 and let Kk

be the connected sum of Kk−1 with K1.

Theorem 4.14. The classical invariants of Kk agree with those of L0 but Kk and Kj are
not Legendrian isotopic if k 6= j.

This follows from Propositions 3.3, 4.10, 4.13, Lemma 4.4, and the computations of the
linearized contact homology for L1 and L′

1.

Example 4.15. Let Fg be the Legendrian surface of genus g with front obtained by “connect
summing” several standard 2-spheres as shown in Figure 11 . Then A(Fg) is generated by

^

1a
2a g+1a

1â 2â
g+1â

c1 c2 cg+1

1
b

1
b

Figure 11. Top view of Fg.

{aj , âj , bk, b̂k, cj}1≤j≤1+g, 1≤k≤g,
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where |aj | = |âj| = 2 and |bk| = |b̂k| = |cj | = 1. Using projection to and slicing with the z1-
and z2-planes as above we find

∂a1 = b1 + c1,

∂â1 = b̂1 + c1,

∂aj = bj−1 + bj + cj , for j 6= 1, 1 + g,

∂âj = b̂j−1 + b̂j + cj , for 1 < j < 1 + g,

∂a1+g = bg + c1+g,

∂â1+g = b̂g + c1+g,

∂bk = ∂b̂k = ∂cj = 0, for all j, k.

We find HC∗(R5, Fg) = Z2〈a, b1, . . . , bg〉 where |a| = 2 and |bi| = 1. Let L1 be as in Example
4.9 and define F 0

g = Fg and F k
g = F k−1

g #L1. Then the subspace of elements of grading −1
in HLC∗(R5, F k

g ) is k-dimensional. Thus, F k
g and F j

g are not Legendrian isotopic if j 6= k.
Clearly tb(F k

g ) = tb(F j
g ). To see that r(F k

g ) = r(F j
g ), it suffices to check, via front projections,

that the Maslov classes are the same on the generators of H1(F
j
g ) = H1(F

j
g ).

4.4. Front spinning. Given a Legendrian manifold L ⊂ R
2n+1 we construct the suspension

of L, denoted ΣL as follows: let f : M → R
2n+1 be a parameterization of L, and write

f(p) = (x1(p), y1(p), . . . , xn(p), yn(p), z(p)),

The front projection ΠF (L) of L is the subvariety of R
n+1 parameterized by ΠF ◦ f(p) =

(x1(p), . . . , xn(p), z(p)). We may assume that L has been translated so that ΠF (L) ⊂ {x1 >
0}. If we embed R

n+1 into R
n+2 via (x1, . . . , xn, z) 7→ (x0, x1, . . . xn, z) then ΠF (ΣL) is

obtained from ΠF (L) ⊂ R
n+1 by rotating it around the subspace {x0 = x1 = 0}. See

Figure 12. We can parameterize ΠF (ΣL) by (sin θx1(p), cos θx1(p), x2(p), . . . , xn(p)), θ ∈ S1.

z

x

x0

1

Figure 12. The front of ΣL.

Thus, ΠF (ΣL) is the front for a Legendrian embedding L × S1 → R
2n+3 we denote the

corresponding Legendrian submanifold ΣL. We have the following simple lemma.

Lemma 4.16. The Legendrian submanifold ΣL ⊂ R
2n+3 has

(1) the topological type or L× S1,
(2) the Thurston–Bennequin invariant tb(ΣL) = 0,
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(3) Maslov class determined by

µΣL(g) =

{
µL(h), if g = ιh where ι : π1(L) → π1(ΣL) is the natural inclusion
0, if g = [point × S1],

(4) the same Maslov number as L, m(ΣL) = m(L), and
(5) the rotation class of ΣL is determined by the rotation class of L.

Though it seems difficult to compute the full contact homology of ΣL we can extract
useful information about its linear part. To this end we introduce the following notation. Let
L ⊂ R

2n+1 be a Legendrian submanifold and let A = A(L) = Z2[H1(L)]〈c1, . . . , cm〉 be the
graded algebra generated by its Reeb chords. We associate auxiliary algebras to L which are
free unital algebras over Z2[H1(ΣL)]. For any integer N , let Z

0
2N ⊂ Z2N denote the subgroup

of even elements and let Z
1
2N = Z2N \ Z

0
2N .

• Let
AN

Σ (L) = Z2[H1(ΣL)]
〈
cj [α], ĉj [β]

〉
1≤j≤m, α∈Z

0
2N , β∈Z

1
2N

,

where |cj [α]| = |cj |, α ∈ Z
0
2N and |ĉj [β]| = |cj | + 1, β ∈ Z

1
2N .

• For β ∈ Z2N , define the subalgebra AN
Σ [β] ⊂ AN

Σ = AN
Σ (L) as

AN
Σ [β] = Z2[H1(ΣL)]〈cj [β − 1], cj [β + 1], ĉj [β]〉1≤j≤m.

• Define the algebra

Aσ(L) = Z2[H1(ΣL)]〈cj , ĉj〉1≤j≤m,

where |ĉj | = |cj | + 1.

We note that there is a natural homomorphism π : AN
Σ → Aσ defined on generators by

π(cj [α]) = cj , and π(ĉj [β]) = ĉj . Also note that for each α ∈ Z
0
2N there is a natural inclusion

∆[α] : A → AN
Σ defined on generators by ∆[α](ci) = ci[α], and using the natural inclusion

H1(L) → H1(ΣL) on coefficients.
Viewing A(L) and Aσ(L) as a vector space over Z2, see (2.3), and again using H1(L) →

H1(ΣL) we define the linear map Γ: A(L) → Aσ(L) by

Γ(1) = 0, Γ(tn1
1 . . . tns

s ci1 . . . cir) = tn1
1 . . . tnr

r

( r∑
j=1

ci1 . . . cij−1 ĉijcij+1 . . . cir

)
.

Proposition 4.17. Let c1, . . . , cm be the Reeb chords of L and let (A, ∂) denote its DGA.
Then there exits an even integer N and a representative X of the Legendrian isotopy class
of ΣL with associated DGA (A(X), ∂Σ) satisfying

A(X) = AN
Σ ,(4.1)

∂Σci[α] = ∆[α](∂ci), for all α ∈ Z
0
2N ,(4.2)

∂Σĉi[β] = ci[β − 1] + ci[β + 1] + γ1
i [β] + γ2

i [β], for all β ∈ Z
1
2N(4.3)

where, γ2
i [β] lies in the ideal of AN

Σ [β] generated by all monomials which are quadratic in the
variables ĉ1[β], . . . , ĉm[β],, where γ1

i [β] ∈ AN
Σ [β] is linear in the generators ĉi[β] and satisfies

(4.4) π(γ1
i [β]) = Γ(∂ci).

Moreover, (A(X), ∂Σ) is stable tame isomorphic to (A2
Σ, ∂Σ).

We will prove this proposition in the next subsection but first we consider its consequences.
To simplify notation, we consider the algebra generated over Z2 instead of Z2[H1(ΣL)].
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Figure 13. The knots Tk.

Example 4.18. Let Tk be the Legendrian torus knot in Figure 13 with rotation number
r(Tk) = 0. The algebra for Tk is A(Tk) = Z2〈a1, a2, c1, . . . , c2k+1〉 with |a1| = |a2| = 1 and
|cj | = 0 for all j. With Greek letters running over the integers in [1, 2k + 1] we have

∂a1 = 1 +
∑
α

cα +
∑

α>β>γ

cαcβcγ + · · · + c2k+1c2k . . . c1,

∂a2 = 1 +
∑
α

cα +
∑

α<β<γ

cαcβcγ + · · · + c1c2 . . . c2k+1,

∂cj = 0, all j.

We note that ∂g, where g is the elementary automorphism with g(c1) = c1 + 1 and which
fixes all other generators, is augmented and that the linearized homology of (A, ∂g) is (as a
vector space without grading) Z

2k+1
2 . Applying the suspension operation n times we get a

Legendrian n-tori ΣnTk with tb(ΣnTk) = 0 for all n > 0, with rotation classes independent
of k (see Lemma 4.16), and with Maslov number equal to 0. The algebras of ΣnTk admit
an elementary isomorphism (add 1 to each c1[α1][α2] . . . [αn] with |c1[α1][α2] . . . [αn]| = 0)
making them good and such that the corresponding linearized homology is isomorphic to
Z

2n(2k+1)
2 . This implies that every chord generic Legendrian representative of ΣnTk has at

least 2n(2k+1) Reeb chords. Moreover, since ΣnTj has a representative with 2n(2j+3) Reeb
chords it is easy to extract an infinite family of pairwise distinct Legendrian n-tori from the
above.

Using Example 4.18 we find

Theorem 4.19. There are infinitely many Legendrian n-tori in R
2n+1 that are pairwise not

Legendrian isotopic even though their classical invariants agree.

Example 4.20. As a final family of examples we consider the Whitehead doubles of the unknot
Ws shown in Figure 14. Note that r(Ws) = 0. The algebra for Ws is

A(R3,Ws) = Z2〈c0, . . . , cs, a1, . . . , as+2〉
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Figure 14. The front projection (left) and Lagrangian projection (right) of
the knots Ws.

with |ci| = 1, |a1| = −|a2| = s− 2 and |ai| = 0 for i > 2. Moreover,

∂c0 = 1 + a1a2 + as+2,

∂c1 = 1 + a3,

∂ci = 1 + ai+1ai+2 for i > 1,
∂ai = 0 for all i.

The differential is clearly not augmented, but there will be a unique tame graded automor-
phism making it augmented. The only feature of the linearization we use is that

HLC2−s(R5,ΣWs) = Z2,

HLCi(R5,ΣWs) = 0 for i < 2 − s.

The computation of these groups for ΣnWs yields the same answer. Thus, they are all distinct
and we get another proof of Theorem 4.19.

4.5. Proof of the front spinning proposition. To prove Proposition 4.17 we first analyze
another Legendrian submanifold. Let ψ : R → R≥0 be a smooth small perturbation of the
constant function 1 that is a 2-periodic and has non-degenerate local maxima at even integers
and local minima at odd integers. Given a Legendrian submanifold L ⊂ R

2n+1 parameterized
as above we define the front ΠF (L× R) in R

n+1 by

(4.5) G(p, t) = (ψ(t)z(p), t, x1(p), . . . , xn(p)).

Denote the resulting Legendrian submanifold of R
2(n+1)+1 by L× R. Heuristically, L× R is

a kind of “cover” of ΣL and the boundary map of ΣL shall be determined by studying the
boundary map of L× R. We begin with a simple lemma.

Lemma 4.21. For each Reeb chord cj of L there are Z Reeb chords, cj [n], for L×R; moreover,
|cj [2n]| = |cj | + 1 and |cj [2n + 1]| = |cj |.
Lemma 4.22. A holomorphic disk in C

n+1 with boundary on ΠC(L × R) cannot intersect
the hyperplane z0 = k, k ∈ Z. In addition any holomorphic disk with a negative corner at
cj [2k] or a positive corner at cj [2k + 1] must lie entirely in the plane z0 = 2k, z0 = 2k + 1,
respectively.

The proof of this lemma is identical to the proof of Lemma 4.4 once one has drawn the
projection of ΠC(L × R) onto the z0-plane. Also, an argument similar to that in the proof
of Lemma 4.4 in combination with Proposition 2.4 shows:
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Lemma 4.23. There is a unique holomorphic disk with positive corner at cj [2n] and negative
corner at cj [2n± 1] and this disk is transversely cut out.

We now discuss perturbations of L necessary to ensure the appropriate moduli spaces are
manifolds. To ensure all our moduli spaces are cut out transversely we might have to perturb
our Legendrian near positive corners of non-transversely cut out holomorphic disks. Note
that due to Lemma 4.22 we see disks with positive corners at a Reeb chord in x0 = 2k + 1
lie in z0 = 2k + 1. Thus the linear problem splits for these disks and an argument similar to
the proof of Proposition 2.3 shows they are all transversely cut out. In perturbing L× R to
be generic we can assume the perturbation is near the hyperplanes x0 = 2k, k ∈ Z and none
of the Reeb chords move.

Now let B2k = Z2[H1(L)]〈cj [2k − 1], cj [2k], cj [2k + 1]〉mj=1 and B2k+1 = Z2[H1(L)]〈cj [2k +
1]〉mj=1. These are all sub-algebras of the algebra B generated by all the Reeb chords for L×R.
Let ∂R be the boundary map for L× R. From the above Lemmas we clearly have

∂R(B2k+1) ⊂ B2k+1

and
∂R(B2k) ⊂ B2k.

Moreover Lemma 4.22 and our discussion of the generic perturbation above give

Lemma 4.24. Let Γ±1 : A → B±1 be given by Γ±1(cj) = cj [±1]. Then

∂Rcj [±1] = Γ±1(∂cj).

To understand ∂R on B0 we begin with

Lemma 4.25. ∂2
R

= 0.

Proof. Let F be the part of the front of L×R between x0 = −(2k+ 3
2) and x0 = 2k+ 3

2 , say.
Let F ′ be F translated 4k+10 units in the x1-direction. For sufficiently large k F∩F ′ = ∅. For
such a k let G∪G′ be F ∪F ′ rotated by π

2 around the affine subspace {x0 = 0, x1 = 2k+ 5}.
Now make f∪F ′∪G∪G′ into a closed Legendrian submanifold L′ by adding “round corners.”

Using the lemmas above and a monotonicity argument as in the proof of Lemma 4.8 it is
easy to see that the boundary map for L′ agrees with ∂R on B0 and B1. Since we know the
square of the boundary map for a closed compact Legendrian is 0 the lemma follows. �

Lemma 4.26. We can choose L × R so that the part of ∂R(cj [0]) that is constant in the
generators c0[0], . . . , cm[0], is

cj [−1] + cj [1].

Proof. This term is present in ∂R(cj [0]) by Lemma 4.23.
To see there are no disks D with just one corner (which of course is positive at cj [0])

assume we have such a disk D. Then consider ψs : R → R where ψ0 = ψ and ψ1(s) = 1
and the corresponding Legendrian submanifolds (L × R)s whose fronts are defined using ψs

just as the front of L × R used ψ in (4.5). As we isotope L × R = (L × R)0 to (L × R)1
we see that D will have to converge to a (possibly broken) disk for (L × R)1. But arguing
as in the lemmas above we can see that any such disk will have to have z0 constant and
thus corresponds to a disk for L. However there can be no rigid holomorphic disk for L with
corner at cj since |cj | = |cj [0]| − 1 = 1 − 1 = 0. Moreover, if we have a broken holomorphic
disk one can similarly see that one of the pieces of the broken disk will have negative formal
dimension and thus cannot exist since we took L to be generic.

One may similarly argue that there are no holomorphic disks with one positive corner at
cj [0] and all negative corners at Reeb chords ck[±1], where k 6= j for some j. �
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Lemma 4.26 implies
∂R(cj [0]) = cj [−1] + cj[1] + ηj + rj ,

where ηj is the part of ∂R(cj [0]) linear in c1[0], . . . , cm[0] and rj is the remainder (terms which
are at least quadratic in the cj [0]’s). Since ∂2

R
= 0 we see that

(4.6) ∂R(cj [−1] + cj [1]) = σ(ηj),

where σ is the algebra homomorphism defined by σcj [0] = cj [−1] + cj [1] and σcj [±1] = 0. A
straightforward calculation shows that

ηj = Γ0(∂cj)

is a solution to (4.6) where Γ0 : A → B0 is the linear map defined on monomials by

Γ0(cj1 . . . cjr) =cj1 [0]cj2 [−1] . . . cjr [−1] + cj1 [1]cj2 [0]cj3 [−1] . . . cjr [−1] + . . .

+cj1 [1] . . . cjr−1[1]cjr [0].

While this is not the only solution to (4.6), it is unique in the following sense: let B′ =
Z2[H1(L)]〈c1, . . . , cm, c1[0], . . . , cm[0]〉 and define π : B0 → B′ by π(cj [±1]) = cj and π(cj [0]) =
cj [0].

Lemma 4.27. If α is linear in the cj [0]’s and σ(α) = 0 then π(α) = 0.

Proof. Assume α satisfies the hypothesis of the lemma. Let acj[0]b be a monomial in α with
l(a) = l1 and l(b) = l2 where l(·) = length of monomial. We claim that since σ(α) = 0, there
must be another monomial in α of the form a′cj [0]b′ where π(a) = π(a′) and π(b) = π(b′).
The lemma will follow. To see this note that

σ(acj [0]b) = acj[−1]b+ acj [1]b.

Since the (l1 + 1)th letter in these monomials is different they can only be canceled by a
monomial of the form σ(a′cj [0]b′) or by terms coming from two separate monomials w1 and
w2 in α. So either we are done or two of the four terms in σ(w1+w2) are canceled by σ(acj [0]b)
leaving two other terms. Note the two leftover terms still have different (l1 + 1)th letters. So
once again either there is a term of the form a′cj [0]b′ to cancel these two terms or there are
two more monomials in α. We clearly will eventually find the desired term a′cj [0]b′ (induction
on the number of terms in α). One should observe that a′ and b′ have the properties stated
above because in each step in the above cancellation process we are replacing cj [±1]’s with
cj [∓1]’s. �

We are now ready to prove our main result of this subsection.

Proof of Proposition 4.17. Consider ΣL represented by rotating the front of L around a circle
C with radius 1

πN for some even integer N. Perturb this non-generic front with a function
φ on C similar to (4.5) so that φ approximates the constant function 1, has local minima
at angles 2m · π

N and local maxima at (2m + 1) · π
N , m = 1, . . . ,N − 1. Let XN denote the

corresponding Legendrian submanifold. Then there is a natural 1−1 correspondence between
the generators of the algebra A(XN ) and the generators of AN

Σ (L).
Considering the projections of XN to the complex lines in C

n+1 which intersect R
n+1 in

lines through antipodal local minima of φ we see that the differential ∂Σ of A(XN ) = AN
Σ

preserves the subalgebras AN
Σ [β] for every β ∈ Z

1
2N . Moreover, a finite part of the front of

XN over an arc on C between two minima is for N sufficiently large an arbitrarily good
approximation of the part of the front of L × R between −1 and 1. In fact, since all spaces
of rigid disks on L×R are transversely cut out there is a neighborhood of L×R in the space
of (admissible) Legendrian submanifolds such that the moduli spaces of rigid disks on any
Legendrian submanifold in this neighborhood is canonically isomorphic to those of L × R.



36 TOBIAS EKHOLM, JOHN ETNYRE, AND MICHAEL SULLIVAN

This can be seen as follows: by Gromov compactness, there exists a neighborhood of L× R

in the space of admissible Legendrian submanifolds such that for any Y in this neighborhood
there are no holomorphic disks with boundary on Y and with negative formal dimension, pick
a generic type (A) isotopy from L × R to Y and apply Lemma 2.11. Thus, for sufficiently
large N the subalgebras (AN

Σ [β], ∂Σ) are all isomorphic to the algebras (B0, ∂). The first part
of the proposition now follows from Lemmas 4.26 and 4.27.

For the statement of stable tame isomorphism class, note that the subalgebras of AN
Σ

generated by all Reeb chords corresponding to maxima and minima over the circle in the
closed upper (lower) half planes are both isomorphic to the subalgebra of A(L×R) generated
by Reeb chords between 1 and N + 1. Change the front of L× R by shrinking the minima
of ψ over 1 and N + 1 until the corresponding Reeb chords are shorter than all other Reeb
chords. We can then find a Legendrian isotopy which cancels pairs of maxima and minima of
ψ between 1 and N+1, leaving one maximum. Thus the subalgebra generated by Reeb chords
between 1 and N+1 is stable tame isomorphic to B0. Moreover, if the stabilizations and tame
isomorphisms corresponding to self tangencies and handle slides in the canceling process are
constructed as in the proofs of Lemmas 2.11 and 2.18, respectively, then Reeb chords which are
shorter than the positive chord of a handle slide disk and shorter than both chords canceling
in a self tangency are left unchanged by the tame isomorphisms. Thus the subalgebra B1 and
BN+1 are left unchanged by this chain of stabilizations and tame isomorphisms and hence it
induces a chain of stabilizations and tame isomorphisms connecting A2

Σ(L) to AN
Σ (L). �

4.6. Remarks on the examples.

Remark 4.28. In dimension 3 the connected sum of Legendrian knots is well defined [14].
However in higher dimensions there are several ways to make a Legendrian version of the
connected sum. Lemma 4.4 discusses one such way. However there are other direct general-
ization of the 3 dimensional connected sum. Thus the correct definition of connected sum is
not clear. Even if we just consider the “cusp connected sum” (from Lemma 4.4) it is still not
clear if it is well defined. So we ask

Is the connected sum well defined?
And more specifically

Does the cusp connected sum depend on the cusps chosen in the construction?

Remark 4.29. Colin, Giroux and Honda have announced the following result: in dimension 3
if you fix the tb, r and a knot type there are only finitely many Legendrian knots realizing this
data. If one considers this question in higher dimensions most of our examples described above
provide counterexamples to the corresponding assertion. In particular consider Theorem 4.14.

Remark 4.30. Given a Legendrian submanifold L we can define an invariant N(L) to be
the minimal number of Reeb chords associated to a generic representative of L. One can ask

Is there an effective bound on N(L) in terms of the Thurston-Bennequin
invariant and rotation class?

The result of Colin, Giroux and Honda mentioned above indicate a positive answer to this
question in dimension 3. While our examples above show that these answer is a resounding
NO in dimensions above 3.
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