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Abstract. Legendrian contact homology (LCH) is a powerful non-
classical invariant of Legendrian knots. Linearization makes the LCH
computationally tractable at the expense of discarding nonlinear (and
non-commutative) information. To recover some of the nonlinear in-
formation while preserving computability, we introduce invariant cup
and Massey products — and, more generally, an A∞ structure — on
the linearized LCH. We apply the products and A∞ structure in three
ways: to find infinite families of Legendrian knots that are not isotopic
to their Legendrian mirrors, to reinterpret the duality theorem of the
fourth author in terms of the cup product, and to recover higher-order
linearizations of the LCH.

1. Introduction

A central problem in the theory of Legendrian knots in the standard
contact 3-space is to produce effective invariants and understand their geo-
metric meaning. The first “classical” invariants of Legendrian knots were
the Thurston-Bennequin and rotation numbers [1]. These two invariants
classify Legendrian knots in the standard contact structure when the under-
lying smooth knot type is the unknot [11], a torus knot, or the figure eight
knot [13]; see also [4].

These early results raised the question of whether non-isotopic Legen-
drian knots with the same classical invariants exist. A particular instance
of this question was Fuchs and Tabachnikov’s Legendrian mirror question
[17]: given a Legendrian knot K with rotation number zero, is it isotopic to
its image K under the contactomorphism (x, y, z) 7→ (x,−y,−z)? This map
is isotopic to the identity through diffeomorphisms but not contactomor-
phisms (it changes the sign of the contact form). New invariants, beginning
with Legendrian contact homology [2, 10] — and Chekanov’s linearizations
in particular — followed by normal rulings [3] and the Knot Floer Homology
Legendrian invariant [28], have been used to find non-isotopic Legendrian
knots with the same classical invariants. In this paper, we study the al-
gebraic structure of the Legendrian contact homology differential graded
algebra (DGA) and how it can be used to define computable invariants of
Legendrian knots that are stronger than Chekanov’s linearizations and that
can distinguish a Legendrian knot from its Legendrian mirror. Though our
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examples are all knots in the standard contact 3-space, the algebra we de-
velop also gives invariants for Legendrian submanifolds in higher dimensional
contact manifolds [7, 9].

The Legendrian contact homology of a Legendrian knotK is the homology
of a free non-commutative DGA (AK , ∂) over Z2 with a nonlinear differen-
tial. The nonlinearity of the differential makes it extremely hard to exploit
the DGA directly. Several methods have been devised to extract useful in-
formation from the DGA. The most tractable of these is Chekanov’s method
of linearization [2], which uses an “augmentation” ε : AK → Z2 to produce
a finite-dimensional chain complex whose homology is denoted LCHε

∗(K).
The loss of non-commutative structure, however, means that linearized ho-
mology is unable to detect any differences between a Legendrian knot and
its mirror; this is also true of another easily computable invariant, a nor-
malized count of augmentations [27]. Chekanov also defined higher-order
linearizations that take nonlinear parts of the differential into account, in
part for the purpose of solving Fuchs and Tabachnikov’s mirror question,
but these invariants have not yet proved to be any more effective than the
original (order one) linearization. Implicit in Chekanov’s construction is a
word-length filtration of the DGA; the Er

p,q terms of the associated spectral
sequence are also Legendrian invariants. Still another method, Ng’s charac-
teristic algebra, retains the nonlinear structure of the DGA and can be used
to distinguish a Legendrian 62 knot from its mirror [26], but its practical
use is more art than algorithm.

In this paper, we develop a new method of extracting nonlinear infor-
mation from the DGA, namely by defining cup and Massey product struc-
tures — and even An and A∞ structures — on the linearized cohomology
LCH∗

ε (K). Most of the invariants we discuss are well known to experts in
the theory of A∞ algebras and DGAs, but we hope to make them more acces-
sible to the contact geometry community. Another main goal of this paper
is to show the efficacy of these invariants by constructing examples show-
ing the strength of these invariants. The cup product has already appeared
implicitly in the fourth author’s investigation of duality for the linearized
contact homology [32], and we reinterpret duality in terms of the cup prod-
uct in Section 4.2. Though interesting structurally, the cup products that
generate the duality pairing are of no use as invariants. There exist knots,
however, with non-trivial — and non-commutative — cup products that do
not contribute to the duality pairing. In fact, all of the product structures
produce nontrivial invariants.

Theorem 1.1. There exists an infinite family of knots that are distinguished
from their Legendrian mirrors by their linearized cohomology rings. More
generally, for each n > 2, there exists an infinite family of knots that are dis-
tinguished from their Legendrian mirrors by their nth-order Massey products
but not by their kth order Massey products for all k < n.
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Further, the product structures can contain more information than Chekanov’s
higher-order linearizations and the spectral sequence invariants.

Theorem 1.2. The order n linearized contact homology and the spectral
sequence invariants cannot distinguish a Legendrian knot from its mirror.
Further, the An structure on LCH∗

ε (K) is strictly stronger than the order n
linearized contact (co)homology.

Finally, we can reinterpret a result of the fourth coauthor [32] in terms of
the cup product operation.

Theorem 1.3. For every Legendrian knot K in the standard tight contact
structure on R

3 and every augmentation ε of its contact homology DGA,
there is an element κ ∈ LCHε

1(K) and an element c ∈ LCH1
ε (K) such that

〈c, κ〉 = 1 and the pairing

LCH
k

ε ⊗ LCH
−k

ε → Z2 : [a] ⊗ [b] 7→ 〈[a] ∪ [b], κ〉

is symmetric and non-degenerate, where LCH
∗

ε is a complement of the span
of c.

The rest of the paper is organized as follows: after reviewing some ba-
sic definitions in Section 2, we define the A∞ and product structures in
Section 3. We show that the product structures are effective invariants in
Section 4 by proving Theorem 1.1. We also establish Theorem 1.3 in this sec-
tion. Finally, we prove Theorem 1.2 in Section 5. In Section 6, we formulate
several open questions regarding the structure of the invariants discussed in
this text.

Acknowledgments: The authors thank Jim Stasheff for several helpful
discussions. The first author was supported by an REU through NSF grant
DMS-0739343. The second author was partially supported by NSF grant
DMS-0804820. The third and fifth authors were supported as undergraduate
summer research students by the Haverford College faculty support fund.
The fourth author was partially supported by NSF grant DMS-0909273.

2. Background and Notation

We refer the reader to the survey article [12] or the first chapter of the
text [30] for the basic notions of Legendrian knot theory. In particular, we
assume that the reader is familiar with the Lagrangian (denoted πl) and
front (denoted πf ) projections (and the resolution procedure that generates
a Lagrangian projection from a front projection by smoothing left cusps,
turning right cusps into loops, and transforming all crossings into the form
in Figure 1) of a Legendrian knot in the standard contact (R3, ξ0 = kerα0).

2.1. Legendrian Contact Homology. In this section, we sketch the defi-
nition of Legendrian contact homology, which is the homology of the Chekanov-
Eliashberg differential graded algebra (DGA). See Chekanov’s original pa-
per [2], the paper [14], or the expository works [12, 30] for more details. As
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Figure 1. (a) The Reeb signs near a crossing of πl(K). (b)
A convex corner.

mentioned in the introduction, the algebraic structures described below also
work for Legendrian submanifolds of higher-dimensional contact manifolds;
see [6, 7, 9] for more.

To define the Chekanov-Eliashberg DGA (AK , ∂) of a Legendrian knot
K, we begin with the underlying algebra AK . Number the crossings of the
Lagrangian projection of K from 1 to n, and let A be the vector space over
Z2 generated by the labels {q1, . . . , qn}. Define the algebra AK to be the
unital tensor algebra over A, i.e.,

(2.1) AK =

∞⊕

k=0

A⊗k.

We sometimes denote AK as A(q1, . . . , qn) when we want to emphasize the
generating set for the algebra.

The generators qi are graded by a Conley-Zehnder index that takes values
in Z2r(K); the grading then extends naturally to all of AK . Specifically,
assume that at all crossings of πl(K), the strands meet orthogonally. Given
a generator qi, choose a path γi inside πl(K) that starts on the overcrossing
at i and ends at the undercrossing. Then define the grading |qi| to be:

(2.2) |qi| ≡ 2r(γi) −
1

2
mod 2r(K).

Finally, we need to define the differential ∂ on the generators of AK ; it
extends to the full algebra via linearity and the Leibniz rule. First, decorate
the sectors near every crossing of πl(K) with positive and negative signs
— called Reeb signs — as in Figure 1(a). To find ∂qi, let ∆(qi) be the
set of immersed disks (modulo smooth reparametrization) whose boundary
lies in πl(K). Further stipulate that the disks have convex corners (see
Figure 1(b)) such that the corner covers a positive Reeb sign at the crossing
i and negative Reeb signs at all other corners (it is possible that there
are no other corners). Finally, each disk in ∆(qi) contributes a term to ∂qi
consisting of the product of the generators associated to its negative corners,
taken in counterclockwise order starting after i. Note that the DGA (AK , ∂)

for the Legendrian mirror K has the same generators as those for K, but
the order of each term in the differential is reversed.

That this definition produces an invariant of Legendrian knots was proven
by Chekanov.
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Theorem 2.1 (Chekanov [2]). The differential ∂ has degree −1 and satisfies
∂2 = 0. The Legendrian contact homology H∗(AK , ∂) is invariant under
Legendrian isotopy.

In fact, Chekanov proved something more subtle: the “stable tame iso-
morphism” class of (AK , ∂) is an invariant. We recall the definition of stable
tame isomorphism. A graded isomorphism

φ : A(q1, ..., qn) −→ A(q′1, . . . , q
′
n)

is elementary if there is some j ∈ {1, . . . , n} such that

(2.3) φ(qi) =

{
q′i, i 6= j

q′j + u, i = j where u ∈ A(q′1, . . . , q
′
j−1, q

′
j+1, . . . , q

′
n).

A composition of elementary isomorphisms is called tame. The degree i-
stabilization Si(A) of A(q1, . . . , qn) is defined to be A(q1, . . . , qn, e

i
1, e

i
2). The

grading and the differential are inherited from the original algebra with the
additions |e1| = i, |e2| = i− 1, ∂e1 = e2, and ∂e2 = 0.

Two differential algebras (A, ∂) and (A′, ∂′) are stably tame isomorphic
if after each algebra has been stabilized some number of times they become
tame chain isomorphic.

2.2. Linearized Contact Homology and Cohomology. As it stands, it
is difficult to use Legendrian contact homology for practical computations,
as it is the homology of a non-commutative algebra with a nonlinear differ-
ential. To find a more amenable invariant, we use Chekanov’s linearization
technique. To do this, we break up the differential on A into its components:

(2.4) ∂k : A→ A⊗k.

If it were true that the constant term of the differential vanished, i.e. if
∂0 = 0, then the fact that ∂2 = 0 would imply that ∂2

1 = 0. In particular,
if ∂0 = 0, then (A, ∂1) is a finite-dimensional chain complex with easily
computable homology.

It is rarely true, however, that ∂0 = 0. To remedy this situation, consider
graded algebra maps ε : AK → Z2 that satisfy:

(1) ε(1) = 1, and
(2) ε ◦ ∂ = 0.

These maps are called augmentations. They do not always exist — see, for
example, [16, 29, 31] — but when they do, they allow us to linearize the
Chekanov-Eliashberg DGA. To see how, consider the graded isomorphism
φε : AK → AK defined by φε(qi) = qi + ε(qi). This map defines a new
differential ∂ε = φε∂(φε)−1; it is easy to check that ∂ε

0 = 0. Thus, for each
augmentation ε of (AK , ∂), there is a chain complex (A, ∂ε

1). This is called
the linearized chain complex with respect to ε. There is also a cochain com-
plex (A∗, δε), where A∗ has a basis {p1, . . . , pn} that is dual to {q1, . . . , qn}
and δε is the adjoint of ∂ε

1. The homologies of these complexes are called
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the linearized contact (co)homologies and are denoted by LCHε
∗(K) and

LCH∗
ε (K).

In hopes of detecting distinct Legendrian mirrors, Chekanov extended
the definition of the linearized (co)chain complex to include higher-order
pieces of the differential. There is a word-length filtration on the algebra
A given by FnA =

⊕∞
i=nA

⊗i. Chekanov defined the nth-order linearized
chain complex with respect to ε to be the graded vector space

A(n) = F 1A/Fn+1A

together with the differential ∂ε
(n) induced from the quotient. The nth-order

cochain complex is defined by taking duals and adjoints, as usual. The
homologies of these complexes are called the nth-order linearized contact
(co)homologies and are denoted by LCHε

∗(K,n) and LCH∗
ε (K,n).

Chekanov proved that the set of all linearized (co)homologies taken over
all possible augmentations is a Legendrian knot invariant; this set is called
the linearized (co)homology invariant of K. Invariance also holds for the
higher order linearized homologies. The proof relies on two facts that were
proved in [2]: first, the linearized invariant does not change under stabiliza-
tions of the Chekanov-Eliashberg DGA. Second, given a tame isomorphism
ψ : (A, ∂) → (A′, ∂′) and an augmentation ε′ of (A′, ∂′), the composite map

φε′ψ factors as ψφε, where ε is an augmentation of A and ψ does not reduce
the lengths of words in A. The map ψ is a DGA isomorphism between
(A, ∂ε) and (A′, (∂′)ε

′

), and hence restricts to an isomorphism between the

linearized complexes (A, ∂ε
1) and (A′, (∂′)ε

′

1 ).

Remark 2.2. The word-length filtration mentioned above gives rise to a spec-
tral sequence. As a consequence of the discussion above, the isomorphisms
ψ preserve the filtration, and hence the set of Er

p,q terms, taken over all
augmentations, of the spectral sequence is a Legendrian invariant for each
r ≥ 1. The E1

1,∗ terms are simply the (grading-shifted) linearized contact ho-
mology, but the relationship between terms deeper in the spectral sequence
and the higher-order linearized contact homology is not clear. A spectral
sequence that converges to the higher-order linearized contact homology will
be examined in Section 5.3.

3. A∞-algebras and Product Structures

As mentioned in the introduction, invariant product structures can be
defined on the linearized cohomology invariant by using higher-order terms
in the differential ∂. In fact, we shall see that the linearized cochain complex
carries the structure of an A∞ algebra, and that the A∞ structure on the
cochain complex induces an invariant A∞ structure on the linearized contact
cohomology.

3.1. A∞ Algebras and Massey Products. An An-algebra over Z2 is a
graded vector space V over Z2 together with a sequence of graded maps
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m = {mk : V ⊗k → V }1≤k≤n of degree 1 satisfying:

(3.1)
∑

i+j+k=l

mi+1+k ◦ (1⊗i ⊗mj ⊗ 1⊗k) = 0

for all 1 ≤ l ≤ n. An A∞-algebra is the obvious generalization to an infinite
sequence of maps. An A∞-algebra structure induces An structures for all
n ≥ 1. Notice that Equation (3.1) for l = 1 is m1 ◦m1 = 0, which implies
that m1 is a co-differential on V . From now on, we denote it by δ. The co-
homology of (V, δ) is denoted H∗(V ). When we take l = 2 in Equation (3.1),
we get:

δm2(a, b) = m2(δa, b) +m2(a, δb)

for all a, b ∈ V. Thus, m2 descends to a well defined product µ2 on H∗(V ).
We see this product is associative using Equation (3.1) when l = 3:

(3.2)
m2(a,m2(b, c)) +m2(m2(a, b), c) = δm3(a, b, c)

+m3(δa, b, c) +m3(a, δb, c) +m3(a, b, δc).

Thus, given an A∞ algebra (V,m), we obtain an ordinary associative algebra
(H∗(V ), µ2).

Remark 3.1. Usually, the A∞ algebra map mk is taken to have degree 2− k
instead of degree 1. Our maps mk should be thought of as degree 1 maps on
the algebra coming from V with grading shifted by one induced by degree
2−k maps m̃k defining a conventionally-graded A∞ algebra (V, m̃). Similar
comments apply to the definition of A∞ morphisms, which are usually taken
to have degree n− 1 instead of degree 0.

If we try to define a full A∞ structure on H∗(V ) by simply letting the
maps mk descend to cohomology, we run into trouble already at k = 3, as
Equation (3.2) shows that m3(a, b, c) is not necessarily a cycle even if a,
b, and c are. We can proceed in one of two ways: first, following Stasheff
[34], we can (partially) define a triple product on H∗(V ) as follows: given
[a], [b], [c] ∈ H∗(V ), suppose that µ2([a], [b]) = [0] = µ2([b], [c]). Let δx =
m2(a, b) and let δy = m2(b, c). Then we see that

m3(a, b, c) +m2(a, y) +m2(x, c)

is a cocycle. Since x and y are only defined up to the addition of cocycles,
we get a well-defined element

{[a], [b], [c]} ∈ H̃∗(V ) =
H∗(V )

Im(µ2([a], ·)) + Im(µ2(·, [c]))
.

This triple product is called a Massey product.
It is possible to inductively define higher-order Massey products onH∗(V )

using the A∞ structure. Given [a1], . . . , [an] ∈ H∗(V ), suppose that the
product {[ai], . . . , [aj ]} is defined and equal to zero modulo the successive
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images of all lower-order Massey products for all 1 ≤ i < j ≤ n. Following
the order 3 case in [34], we define:

{[a1], . . . , [an]} =




n∑

k=2

∑

0≤i1<···<ik−1<n

mk(b1,i1 , bi1+1,i2 , . . . , bik−1+1,n)


 ,

where blm ∈ V has been inductively defined by:

[bmm] = [am],

δblm =
m−l+1∑

k=2

∑

l≤i1<···<ik−1<m

mk(bl,i1 , bi1+1,i2, . . . , bik−1+1,m).

It is straightforward, but tedious, to check using the definition of the bkm

and the defining A∞ equation (3.1) that the higher-order Massey product
is indeed a cocycle and is well-defined modulo the successive images of the
lower-order Massey products in H∗(V ).

The Massey products have the practical advantage of computability, as
we shall see, but the theoretical disadvantage of being only partially defined.
The second way forward is to try to define a full A∞ structure on H∗(V ).
Before doing this, however, we need some more language. An A∞ morphism
φ : (V,m) → (W,n) is a collection of degree 0 linear maps φn : V ⊗n → W
that satisfy

(3.3)
∑

i+j+k=n

φi+1+k ◦ (1⊗i ⊗mj ⊗ 1⊗k) =
∑

1≤r≤n
i1+...+ir=n

nr ◦ (φi1 ⊗ · · · ⊗ φir).

Notice that this equation implies that φ1 : V → W commutes with the
codifferentials on V and W , and hence induces a map on cohomology. The
morphism φ is called an A∞ quasi-isomorphism if φ1 induces an isomorphism
on the cohomology.

Equation (3.3) for n = 2 says that

φ1 ◦m2 + φ2(δ ⊗ 1 + 1 ⊗ δ) = n2 ◦ (φ1 ⊗ φ1) + δ ◦ φ2.

Thus, on the level of cohomology,

φ1m2([a], [b]) = n2(φ1[a], φ1[b]).

In other words, φ1 preserves the product structure on cohomology. One may
easily check that Equation (3.3) for n > 2 implies that φ1 will preserve the
Massey product and higher order product structures on the cohomology as
well.

We now return to the discussion of defining an A∞ structure on H∗(V ).
The relevant result is the Minimal Model Theorem, which we shall discuss
in more detail in Section 5.

Theorem 3.2 (Kadeishvili [19]). If (V,m) is an A∞ algebra over a field,
then its homology H∗(V ) also possesses an A∞ structure µ such that µ1 = 0,
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µ2 is induced from m2 as described above, and there exists an A∞ quasi-
isomorphism φ : (H∗(V ),µ) → (V,m). The A∞ structure on H∗(V ) is
unique up to A∞ quasi-isomorphism.

3.2. The A∞ Structure on the Linearized Cochain Complex. The
reason for discussing A∞-algebras is the following proposition.

Proposition 3.3. For each augmentation ε, the Legendrian contact homol-
ogy DGA (A, ∂) induces an A∞ structure on the linearized cochain complex
(A∗, δε).

Proof. Denote by mε
k the adjoint of ∂ε

k : A→ A⊗k for k ≥ 1. Expanding the
equation (∂ε)2 = 0 using ∂ε =

∑
∂ε

i and looking at the term with image in
A⊗n gives: ∑

i+j+k=n

(1⊗i ⊗ ∂ε
j ⊗ 1⊗k) ◦ ∂ε

i+1+k = 0.

Dualizing yields Equation (3.1). That mε
k has degree 1 follows from the fact

that ∂ε
k has degree −1. �

Remark 3.4. If the augmentation is not used, taking the adjoints of the ∂i

results in an obstructed or curved A∞ algebra; see [18].

Example 3.5. Let K be the Legendrian trefoil shown in Figure 2. We label

b1 b2 b3

a1

a2

Figure 2. Legendrian right handed trefoil knot.

the Reeb chords a1, a2, b1, b2 and b3 as shown in the figure. One may easily
compute that |ai| = 1 and |bi| = 0. In addition, we have:

∂a1 = 1 + b1 + b3 + b1b2b3

∂a2 = 1 + b1 + b3 + b3b2b1

∂bi = 0.

There are five different augmentations of this differential graded algebra; let
us consider the augmentation ε that sends b3 to 1 and all other generators
to 0. The augmented differential is:

∂εa1 = b1 + b3 + b1b2 + b1b2b3

∂εa2 = b1 + b3 + b2b1 + b3b2b1

∂εbi = 0.
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Thus, if we denote the dual of ai again by ai, and similarly for bi, the
associated A∞-structure is:

m1(a1) = 0 m2(b1, b2) = a1

m1(a2) = 0 m2(b2, b1) = a2

m1(b1) = a1 + a2

m1(b2) = 0 m3(b1, b2, b3) = a1

m1(b3) = a1 + a2 m3(b3, b2, b1) = a2

All other possible m2 and m3 products are 0, as are the mi for i ≥ 4. The
A∞-algebras associated to the other four augmentations may be computed
similarly.

Like the set of linearized cohomologies, the set of A∞ structures on the
linearized cochain complexes is an invariant.

Theorem 3.6. If the DGA (A, ∂) of a Legendrian knot has a set of aug-
mentations E, then the set of all quasi-isomorphism types of the A∞-algebras

{
(A∗,mε)

}
ε∈E

is invariant under Legendrian isotopy of the knot.

Theorem 3.2 shows that there is an inducedA∞ structure on the linearized
cohomology, and that it is also an invariant.

Corollary 3.7. The following structures are invariants of a Legendrian knot
up to Legendrian isotopy:

(1) The set of linearized cohomology rings together with their higher or-
der product structures.

(2) The set of A∞ algebras
{
(LCH∗

ε (K),µε)
}

ε∈E
.

Proof of Theorem 3.6. As in the discussion at the end of Section 2.2, it suf-
fices to show that if (A, ∂) and (A′, ∂′) are stable tame isomorphic DGAs
such that ∂0 = 0 = ∂′0 and the tame isomorphism ψ between the stabi-
lizations satisfies ψ0 = 0, then their associated A∞-algebras are A∞-quasi-
isomorphic. We shall check that the statement is true for tame isomorphisms
and stabilizations.

First, let ψ : A → A′ be a tame isomorphism satisfying the conditions
above. The component of ψ ◦ ∂ = ∂′ ◦ ψ applied to a ∈ A written in terms
of the components ∂i, ∂

′
i and ψi is

∑

i+j+k=n

(1⊗i ⊗ ∂j ⊗ 1⊗k) ◦ ψi+1+k =
∑

1≤r≤n,i1+...+ir=n

(ψi1 ⊗ · · · ⊗ ψir) ◦ ∂r.

Setting φn equal to the dual of ψn, we clearly see that Equation (3.3) is dual
to this equation. Moreover, as we know a tame isomorphism of differential
graded algebras induces an isomorphism on linearized cohomology, we see
that the collection of maps φ = {φn} is an A∞-quasi-isomorphism.
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Now consider ψ : A → A′ = S(A) to be the inclusion of A into a stabi-
lization. Specifically, let A′ = A ⊕ Z2〈a, b〉 where ∂′a = b and ∂c = ∂′c for
c ∈ A. Note that ψ1 is the inclusion map and ψn = 0 for n > 1. The result
clearly follows. �

4. Product Structures as Invariants

In this section, we consider the products induced by A∞ structure on the
linearized cochain complex. That is, we study the cup and Massey products
on the linearized contact cohomology of a Legendrian knot in more detail,
prove that they are nontrivial invariants, and relate the cup product to the
duality of [32].

Throughout this section, we let (AK , ∂) be a differential graded algebra
associated to a Legendrian knot K in R

3 with its standard contact structure.
Let ε : AK → Z2 be an augmentation and let ∂ε : AK → AK be the
associated differential with ∂ε

0 = 0.

4.1. The Cup Product. We summarize the discussion of the µ2 product
from the previous section as follows:

Corollary 4.1. There is an associative product on the linearized contact
cohomology of K given by the µ2 product:

LCHk
ε (K) ⊗ LCH l

ε(K) → LCHk+l+1
ε (L) : [a] ⊗ [b] 7→ [a] ∪ [b].

Moreover, the set of all linearized contact cohomology rings is an invariant
of Legendrian isotopy.

Example 4.2. Consider the Legendrian trefoil K from Figure 2 again. We
computed the A∞-algebra structure in Example 3.5 above. From there, we
easily see that LCH1

ε (K) ≃ Z2 generated by a = [a1] = [a2] and LCH0
ε ≃

Z2 ⊕Z2 generated by b = [b2] and c = [b1 + b3]. Moreover we easily see that:

b ∪ c = a, c ∪ b = a,

and all other products are zero. Notice that the product structure here is
commutative; as we shall see, this is not the case in general.

We are now ready to prove the first part of Theorem 1.1, i.e. that the set
of linearized contact cohomology rings is a nontrivial invariant and stronger
than the linearized contact cohomology groups.

Proof of the first part of Theorem 1.1. For infinitely many choices of k, l,m,
the Legendrian knot in Figure 3 is not Legendrian isotopic to its Legendrian
mirror. The knot and its mirror have the same classical invariants and the
same linearized cohomology, but different linearized cohomology rings.



12 G. CIVAN, J. ETNYRE, P. KOPROWSKI, J. SABLOFF, AND A. WALKER

a1 a2

b1 b2

c1 c2

t1

t2

t3

t0

k

l

m

Figure 3. This knot is distinguished from its Legendrian
mirror by its cohomology ring. The crossings along the left
most, center and right most legs are denoted, respectively, by
xi, yi, and zi. Similarly the crossings coming from resolving
the right cusps along these legs are denoted by txi , t

y
i and tzi

respectively.

To see this, we first compute the gradings of the generators:

|a1| = −|a2| = k − l − 1

|b1| = −|b2| = k −m− 1

|c1| = −|c2| = l −m− 1

|ti| = |txi | = |tyi | = |tzi | = 1

|xi| = |yi| = |zi| = 0

For infinitely many choices of k, l,m, the gradings in each row will be dis-
tinct.

The differential has the following form:

∂a1 = 0 ∂t1 = 1 + x1(1 + a1a2 + b1b2)

∂a2 = y1c1b2 ∂t2 = 1 + (1 + a2a1)y1(1 + c1c2)

∂t3 = 1 + (1 + b2b1 + c2c1)z1

∂b1 = a1y1c1 ∂t0 = 1 + xk+1yl+1zm+1

∂b2 = 0

∂txi = 1 + xixi+1

∂c1 = 0 ∂tyi = 1 + yiyi+1

∂c2 = b2a1y1 ∂tzi = 1 + zizi+1
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Recall that for the Legendrian mirror of K, the ordering of the generators
in the differential are all reversed. In either case, since all but at most one of
the ai, bi, or ci have nonzero grading, then there is a unique augmentation
ε that sends the xi, yi, and zi to 1 and all other generators to 0.

The linearized codifferential δε of all generators ai, bi, and ci vanishes
(where we again abuse notation and identify a generator with its dual),
as does the linearized codifferential of the generators coming from the right
cusps. The linearized codifferentials of the xi, yi, and zi generators are sums
of “adjacent” right cusp generators, so it follows that the generators coming
from the right cusps are all equal in cohomology. The result is the following
computation:

(4.1) LCHk
ε (K) = 〈[ai], [bi], [ci], [t]〉.

The nontrivial cup products are:

[a1] ∪ [a2] = [a2] ∪ [a1] = [t] [c1] ∪ [b2] = [a2]

[b1] ∪ [b2] = [b2] ∪ [b1] = [t] [a1] ∪ [c1] = [b1]

[c1] ∪ [c2] = [c2] ∪ [c1] = [t] [b2] ∪ [a1] = [c2]

The cup products in the left column will be interpreted as part of a Poincaré
duality pairing in the next section. The cup products in the right column are
not symmetric; the first, for example, is a nontrivial map from LCH l−m−1

ε ⊗
LCHm−k+1

ε → LCH l−k+1
ε . Under the assumption that the generators ai, bi,

and ci have distinct gradings, we can then easily see that no such nontrivial
cup product exists in the cohomology ring of the Legendrian mirror. Hence,
the knot K and its Legendrian mirror are not Legendrian isotopic. �

Remark 4.3. There are examples of Legendrian knots with small crossing
number that have augmentations with non-commutative linearized cohomol-
ogy rings: consider, for example, the mirrors of the knots 821, 945, or 947 in
Melvin and Shrestha’s table [24].

4.2. Duality. We are now ready to prove Theorem 1.3 concerning the du-
ality in [32]. We note that Theorem 1.3 implies the product operation in
the ring structure of linearized contact cohomology is non-trivial, while the
first part of Theorem 1.1 shows that there are non-trivial products that are
not forced by the duality theorem.

Proof of Theorem 1.3. As described in [32], there is chain complex (Q∗, ∂Q)
that can be thought of in two ways: first, it is the mapping cone for a map
ρ : (A∗, ∂

ε
1) → CM∗(S

1; f), where CM∗ is the Morse complex for a Morse
function f on S1. As noted in [5], the long exact sequence of the mapping
cone is:

(4.2) · · · → Hk+1(S
1) → Hk(Q) → LCHε

k(K)
ρ∗
→ Hk(S

1) → · · · .

Further, ρ∗ is trivial in dimension 0 and onto in dimension 1; see the discus-
sion after Lemma 4.9 of [32] or Theorem 5.5 of [5].
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The second perspective on H∗(Q) is that there exists an isomorphism
η∗ : Hk(Q) → LCH−k

ε (K). Putting these viewpoints together and choosing
a splitting yields the following isomorphisms:

LCH1
ε (K) ≃ LCHε

−1(K) ⊕H0(S
1)

LCHε
1(K) ≃ LCH−1

ε (K) ⊕H1(S
1)

LCHk
ε (K) ≃ LCHε

−k(K) k 6= ±1.

Let c be the image under η∗ of a generator of H0(S
1) and define:

(4.3) LCH
1
ε = η∗LCH

ε
−1(K).

Finally, we define κ ∈ LCHε
1(K) to come from H1(S

1). The main theorem
of [5] shows that κ is the unique class that pairs to 1 with c and pairs to 0

on LCH
1
ε, and hence agrees with the κ defined in Theorem 5.1 of [32].

The map η∗ has an inverse φ∗ which comes from a “cap product”. More
specifically, the chain map φ(p) is constructed in [32] by counting immersed
disks with one negative corner at p, one negative corner at the output q′,
one positive corner at r with 〈r, κ〉 = 1 (in that counterclockwise order), and
possibly other negative augmented corners. Such disks, however, also con-
tribute to the evaluation of the productm2(p, p

′) on κ. Passing to homology,
we obtain:

(4.4) 〈[p′], φ∗[p]〉 = 〈[p] ∪ [p′], κ〉.

Since φ∗ is invertible on LCH
∗

ε, the pairing on the right must be non-
degenerate, as desired.

To see that the pairing is symmetric, notice that we could have defined a
map φ̂ using disks with one negative corner at p, one positive corner at r with
〈r, κ〉 = 1, one negative corner at the output q′ (in that counterclockwise
order), and possibly other negative augmented corners. The induced map

φ̂∗ also serves as an inverse for η∗, and hence must be the same map as φ∗.
Thus:

〈[p] ∪ [p′], κ〉 = 〈[p′], φ∗[p]〉

= 〈[p′], φ̂∗[p]〉

= 〈[p′] ∪ [p], κ〉.

�

4.3. The Massey Product. In this subsection, we study the Massey prod-
uct on the linearized contact cohomology of a Legendrian knot in more detail.
Using the same notation as in Section 4.1, we summarize the discussion of
the product from the Subsection 3.1 in the following corollary:

Corollary 4.4. If [a], [b] and [c] are elements in LCH∗
ε (K) of degrees r, s

and t, respectively such that

[a] ∪ [b] = 0 = [b] ∪ [c]
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then there is a well defined element

{[a], [b], [c]} ∈
LCHr+s+t+1

ε (K)(
Im(µε

2([a], ·)) + Im(µε
2(·, [c]))

)
∩ LCHr+s+t+1

ε (K)

given by

[mε
3(a, b, c) +mε

2(a, y) +mε
2(x, c)],

where δεx = mε
2(a, b) and δεy = mε

2(b, c).

Example 4.5. Consider the Legendrian trefoil K from Figure 2 again. We
computed the A∞-algebra structure in Example 3.5 and the product struc-
ture in Example 4.2. Even though mε

3 6= 0, one may easily check that all
Massey products are trivial in this example.

Notice that if one wants to compare the Massey product structures on
the linearized contact cohomologies of two Legendrian knots one must first
have an isomorphism of their cohomology rings (that is, an isomorphism
that preserves the product structure). The Massey product can be non-
trivial and distinguish Legendrian knots that are not distinguished by their
linearized contact cohomology ring structures.

Proof of second part of Theorem 1.1. The Legendrian knot K in Figure 4 is
not isotopic to its Legendrian mirror. The two knots can be distinguished
using the Massey products on the linearized contact cohomology but not by
their linearized contact cohomology rings.

To see this, we first compute the gradings of the generators:

|a1| = −|a2| = k − l − 1 |b1| = −|b2| = k − n− 1

|c1| = −|d| = m− n |c0| = −|f | = l −m− 1

|e0| = |e1| + 1 = l − n− 1 |ti| = |txi | = |tyi | = |tzi | = |twi | = 1

|xi| = |yi| = |zi| = |wi| = 0

For infinitely many choices of k, l,m, and n, the gradings in each row and
column will be distinct.

The differential has the following form:
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a1

a2

b1
b2

e1

e0c0
f

c1

s4

d

t1

t2

t3

t0

k

l

m n

Figure 4. This knot is distinguished from its Legendrian
mirror by its Massey products. The crossings along the left
most, center left, center right and right most legs are denoted,
respectively, by xi, yi, zi and wi. Similarly the right cusps
along these legs are denoted by txi , t

y
i , t

z
i and twi respectively.

∂a1 = 0 ∂t1 = 1 + x1(1 + a1a2 + b1b2)

∂a2 = y1c0c1b2 ∂t2 = 1 + (1 + a2a1)y1(1 + c0f + c0c1e0) + a2b1e1

∂t3 = 1 + [1 + b2b1 + (1 + b2b1)dc1]w1

∂b1 = a1y1c0c1 ∂t4 = 1 + (1 + fc0)z1 + c1d

∂b2 = 0 ∂t0 = 1 + xk+1yl+1zm+1wn+1

∂c0 = ∂c1 = 0 ∂txi = 1 + xixi+1 and similarly for tyi , t
z
i , t

w
i

∂d = e1c0 ∂e0 = (1 + b2b1)e1

∂f = c1e1 ∂e1 = 0

Since we assume that only the xi, yi, zi, and wi have zero grading, there
is a unique augmentation that sends these generators to 1 and all others to
0. Abusing notation to identify generators and their duals, we see that the
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linearized cohomology is given by:

(4.5) LCHk
ε (K) = 〈[ai], [bi], [ci], [d], [f ], [t]〉,

where [t] is once again any one of the right cusps.
Duality pairs the [ai], the [bi], [c0] with [f ], and [c1] with [d]. There are

no other nontrivial cup products; in fact, all cup products between cocycles
(beyond those involved in the duality pairing) vanish at the cochain level.
Thus, it follows that the m3 products between triples of cocycles yield two
Massey products:

{[c0], [c1], [b2]} = [a2],

{[a1], [c0], [c1]} = [b1].

Since the only class in the image of the cup product is [t], the Massey prod-

ucts above lie in LCH
∗

ε(K), and hence are nontrivial. Under the assumption
that the generators ai, bi, and ci have distinct gradings, we can then easily
see that there are no nontrivial Massey products in these gradings in the
linearized cohomology of the Legendrian mirror. Hence, the knot K and its
Legendrian mirror are not Legendrian isotopic even though their linearized
cohomology rings are isomorphic. �

4.4. Higher-Order Massey Products. As in the previous subsections,
we can show that the higher-order Massey products are also nontrivial.

Completion of the Proof of Theorem 1.1. The Legendrian knot Kn in Fig-
ure 5 is not isotopic to its Legendrian mirror. The two knots can be distin-
guished using the (n+ 1)st-order Massey products on the linearized contact
cohomology but not by their linearized contact cohomology rings or their
mth-order Massey products for m ≤ n.

By a similar calculation to the previous examples, one can show that
the cup products (besides those associated with duality) and the lower-
order Massey products all vanish, so the (n+1)st-order Massey product lies

in LCH
∗

ε(K). Further, the cup product and lower-order Massey products
vanish at the cochain level, so we have the following two Massey products
whose gradings are non-symmetric:

{[c0], . . . , [cn], [b2]} = [a2]

{[a1], [c0], . . . , [cn]} = [b1].

It follows that the knot Kn is not isotopic to its Legendrian mirror. �

Remark 4.6. Using the “splashes” of [15] or the “dips” of [31], it is possible
to show that the A∞ structure on the linearized cochain complex is A∞

quasi-isomorphic to one for which mk = 0 for all k ≥ 4. As the examples
above show, however, this does not mean that the A∞ structure µ on the
linearized contact cohomology is trivial for k ≥ 4.
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a1

a2

b1 b2

c0 c1 c2 cm

d1 d2 dm

e1 e2 em

e0

f1 f2 fm

t1 t2 tm

s1

s2

s3

s0

Figure 5. This knot is distinguished from its Legendrian
mirror by its order n+ 1 Massey products.

5. Products and Higher Order Linearizations

In this section, we explore the relationship between the A∞ structure
on the linearized contact cohomology, associated product structures, and
Chekanov’s order n linearizations.

5.1. The Minimal Model Theorem, Revisited. We begin by sketching
the proof of the Minimal Model Theorem 3.2 following Markl’s formulae in
[23]; see also [20, 21, 25, 33]. First, let us describe the construction of the
maps of µ. The fact that we are working over the field Z2 allows us to
choose maps i : H∗(V ) → V , p : V → H∗(V ), and h : V → V such that:

(5.1) p ◦ i = Id and Id +i ◦ p = δh+ hδ.

We next consider the set Γk of rooted planar trees with k leaves (the root
edge is not counted among the k leaves) and at least trivalent internal ver-
tices. For each T ∈ Γk, we construct a map gT : V ⊗k → V by placing the
inputs in order along the k leaves, an mk at each (k + 1)-valent internal
vertex, and an h at each internal edge; see Figure 6. The map gT is then
defined by appropriately inserting arguments and composing maps from the
leaves down to the root. We then define g1 = δ and for k ≥ 2, the maps:

gk =
∑

T∈Γk

gT .

These maps form a sequence g.
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m3

m2

m2 m2

m2
h h

Figure 6. The rooted trees that make up the map g3. The
rightmost tree gives the map gT (a, b, c) = m2(a, h◦m2(b, c)).

The products µ are then defined by:

µk = p ◦ gk ◦ (i⊗ · · · ⊗ i).

The product µ3 : H∗(V )⊗3 → H∗(V ), for example, is defined as follows,
where we write i(αk) = ak:

µ3(α1, α2, α3) = p
(
m3(a1, a2, a3)

+m2 (a1, h ◦m2(a2, a3)) +m2 (h ◦m2(a1, a2), a3)
)
.

The maps i, p, and h can also be extended to sequences of maps i, p,
and h. The map ik, for example, is defined by ik = h ◦ gk ◦ (i ⊗ · · · ⊗ i).
The formulae for pk and hk are also based on rooted planar trees, but are
somewhat more involved.

Proposition 5.1 (Markl [23]). The maps µ give an A∞ structure on H∗(V ),
the maps i and p are A∞ morphisms, and the maps h are an A∞ homotopy
between i ◦ p and the identity on V .

Here, an A∞ homotopy between two A∞ morphisms f, g : (V,m) →
(W,n) is a sequence of degree −1 maps hn : V ⊗n → V that satisfy:

fn + gn =
∑

i+j+k=n

hi+1+k ◦ (1⊗i ⊗mj ⊗ 1⊗k)

+
∑

1≤k≤r≤n
i1+...+ir=n

nr ◦ (fi1 ⊗ · · · ⊗ fik−1
⊗ hik ⊗ gik+1

⊗ · · · ⊗ gir).

Remark 5.2. In particular, we have that i is the A∞ quasi-isomorphism
promised by the Minimal Model Theorem. Note that the proposition also
yields An morphisms and homotopies by stopping the construction at any
finite step.

5.2. A∞ Structures Determine Massey Products. The relationship
between the A∞ structure on H∗(V ) and the Massey products is straight-
forward to state:

Proposition 5.3 (Kadeishvili [19]). Given αk ∈ H∗(V ), k = 1, 2, 3, such
that

µ2(α1, α2) = 0 = µ2(α2, α3),

the projection of µ3(α1, α2, α3) to H̃∗(V ) agrees with the Massey product
{α1, α2, α3}.
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To see this, choose x = h◦m2(a1, a2) and y = h◦m2(a2, a3). Notice that:

δx = m2(a1, a2) + i ◦ p ◦m2(a1, a2) + hδm2(a1, a2)

= m2(a1, a2).

Note that the last term in the first line vanishes since m2(a1, a2) is a cycle,
and the second-to-last term vanishes since m2(a1, a2) represents the zero
cohomology class by assumption. A similar fact holds for y, so we may take
x and y to be the elements required for the definition of the Massey product
{α1, α2, α3}. Now we need only compute that:

µ3(α1, α2, α3) = p
(
m3(a1, a2, a3) +m2 (a1, h ◦m2(a2, a3))

+m2 (h ◦m2(a1, a2), a3)
)

= p(m3(a1, a2, a3) +m2(a1, y) +m2(x, a3)),

which, by definition, projects to the Massey product.
In fact, this is the base case for a proof of a similar statement for order n

Massey products defined using the full An structure. The proof of this folk
theorem is a straightforward generalization of that in [22] using the language
introduced above.

5.3. A∞ Structure on LCH∗
ǫ and Higher Order Linearizations. We

are finally ready to prove Theorem 1.2, which states that the An structure on
LCH∗

ε is strictly stronger than the nth-order linearized cohomology. Before
proving the theorem, however, we need to introduce one more algebraic
object, Stasheff’s tilde construction (B̃n(V ), dn) of an An algebra (V,m)
[34]. The chains of this complex lie in

B̃n(V ) =

n⊕

k=1

V ⊗k,

while the differential dn is defined componentwise by:

(5.2) dn|V ⊗a =
∑

i+j+k=a

1⊗i ⊗mj ⊗ 1⊗k.

That this differential satisfies (dn)2 = 0 follows from the defining A∞ equa-
tion (3.1). The reason that we introduce the tilde construction is the fol-
lowing result.

Lemma 5.4. The nth-order linearized cochain complex with respect to ε is
the tilde construction of (A∗,mε).

Proof. Clearly, we have that A(n)
∼=

⊕n
i=1A

⊗i and the differential ∂ε
(n) is

equivalent to the following, essentially because of the Leibniz rule and the
fact that any term of length greater than n becomes zero in A(n):

∂ε
(n)| =

∑

i+j+k≤n

1⊗i ⊗ ∂ε
j ⊗ 1⊗k.
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Dually, it is now easy to see that the nth-order linearized cochain complex
has cochains in

⊕n
i=1(A

∗)⊗i and codifferential δε
(n) defined precisely as in

Equation (5.2). �

It is straightforward to see that An morphisms and homotopies translate
to similar notions for the tilde construction (see, for example, [23, 33]).

Lemma 5.5. (1) An An morphism f : (V,m) → (W,n) determines a

chain map B̃nf : B̃nV → B̃nW whose V ⊗a component is
∑

r

∑

i1+···+ir=a

fi1 ⊗ · · · ⊗ fir .

(2) An An homotopy h : (V,m) → (W,n) between f and g determines a

chain homotopy B̃nh : B̃nV → B̃nW between B̃nf and B̃ng.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We begin by proving that the An structure on the
linearized cohomology determines the nth-order linearized cohomology. Fix
an augmentation ε. By the remarks in Section 5.1, we know that the An

structures on the linearized cochain complex (A∗, δε) and the linearized coho-
mology LCH∗

ε are A∞ homotopy equivalent. The lemma above then implies
that their tilde constructions are chain homotopy equivalent, and hence have
isomorphic cohomologies. Since the An structure on LCH∗

ε determines the
cohomology of its tilde construction, it also determines the cohomology of
the tilde construction of the An structure on A∗ which, by Lemma 5.4, is
simply LCH∗

ε (K,n). This proves the first half of the theorem.
To prove that the An structure is strictly stronger, we observe that since

order n Massey products can be used to distinguish the Legendrian knots
in Theorem 1.1 from their Legendrian mirrors, Proposition 5.3 and its order
n generalization implies that the An structures also distinguish these knots.
On the other hand, the higher-order cohomologies can never distinguish a
Legendrian knot K from its Legendrian mirror K. To see why, notice that
the reflection map τ : A(n) → A(n) defined by:

τ(a1 ⊗ · · · ⊗ an) = an ⊗ · · · ⊗ a1

gives a quasi-isomorphism (but not necessarily a tame isomorphism) between
(A(n), ∂(n)) and (A(n), ∂(n)). �

Remark 5.6. One can associate a spectral sequence to the tilde construction,
similar to the Eilenberg-Moore spectral sequence for the bar construction.
To obtain the spectral sequence, filter the tilde complex by:

F iB̃n(V ) = B̃−i(V ).

This filtration is obviously bounded, and hence the spectral sequence con-
verges to the nth-order linearized cohomology. As with the word-length
filtration of Remark 2.2, the set of terms Ep,q

r , taken over all augmentations,
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are Legendrian invariants. The E1 term is determined by the linearized co-
homology, and the differential d1 is given by extending the map µ2 by the
Leibniz rule; this observation gives an elementary proof of Theorem 1.2 in
the case that n = 2. As pointed out in [34], the higher differentials are
related to the A∞ Massey product.

5.4. An Alternative Proof when n = 2. In this section, we present
a more down-to-earth proof that, for a fixed augmentation, the linearized
cohomology ring is strictly stronger than the order 2 linearized cohomology,
i.e. the n = 2 case of Theorem 1.2. This is, more or less, an unraveling of
the remark about spectral sequences above.

First, write A(2) as A ⊕ A⊗2. For ease of exposition, we drop the aug-
mentation ǫ from the notation. In this notation, the codifferential can be
recorded by:

(5.3) δ(2) =

[
δ m2

0 δ⊗

]
,

which implies the following lemma:

Lemma 5.7. The second order linearized cochain complex is the mapping
cone of the degree 1 chain map m2 : ((A∗)⊗2, δ⊗) → (A∗, δ).

Associated to this mapping cone we have the standard long exact se-
quence:

· · · → LCHk(K) → LCHk(K, 2) → Hk((A∗)⊗2, δ⊗)
d∗
→ LCHk+1(K) → · · · .

Since we are working over a field, the Künneth formula gives us:

Hk((A∗)⊗2, δ⊗) =
⊕

i+j=k

LCH i ⊗ LCHj.

Moreover, we know that the connecting homomorphism d∗ is induced by
m2. That is, it is given by the cup product µ2. Again, since we are working
over a field, the short exact sequences into which the long exact sequence
above decomposes must all split. This gives:

(5.4) LCHk(K, 2) ≃ kerµ2 ⊕
(
LCHk(K)/ Imµ2

)
.

In other words, the second-order linearization is determined by the image
and kernel of the cup product map on linearized contact cohomology. Thus,
the linearized cohomology and the cup product determine the second-order
linearized cohomology.

6. Open Questions

We end this text by listing several open questions about the relative effi-
cacy of and structural relationships between the invariants discussed above.

Although Theorem 1.2 settles the relationship between the A∞ structure
on the linearized Legendrian contact cohomology and the higher-order lin-
earized cohomologies, there are still questions that arise from relationships
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between the product structures and the spectral sequence discussed in Re-
mark 5.6.

Question 6.1. Does the Massey product structure on LCH∗
ε (K) determine

the third order linearized contact (co)homology or E3
p,q invariants? In fact,

do the Massey products up to order n determine Ek
p,q for k ≤ n?

Note that algebraically, there is no reason to expect these questions to be
true, but the geometric input into the algebra might dictate otherwise.

A more basic question to ask about the higher-order linearized contact
cohomology invariant is:

Question 6.2. Are the higher order linearized contact (co)homology invari-
ants stronger than the first order linearized contact (co)homology?

Finally, we recall that the Legendrian contact homology DGA can be
defined with coefficients in Z or Z[t, t−1], not just Z2 [14, 8]. The A∞

and Massey product structures can still be defined, but depending on the
precise sign convention chosen, augmentations can be more difficult to come
by when considering these rings. Even so, the families of examples in the
proof of Theorem 1.1 still work over Z, so long as we use the sign convention
of [14] over Z[t, t−1] and evaluate t to −1; in the language of [8], this is
equivalent to using the A-shaded sign convention with the null-cobordant
spin structure on S1. On the other hand, once we are no longer working
over a field, the Minimal Model Theorem need not hold, leading to:

Question 6.3. Does Theorem 1.2 still hold over Z or Z[t, t−1]?

Surprisingly, the following question is still open for Legendrian knots in
the standard contact R

3, though the answer is “yes” in higher dimensions:

Question 6.4. Is the contact homology, linearized or otherwise, defined over
Z or Z[t, t−1] a stronger invariant than the corresponding theory defined over
Z2?
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