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Abstract. We construct a new invariant of transverse links in the standard contact structure on
R

3
. This invariant is a doubly filtered version of the knot contact homology differential graded

algebra (DGA) of the link, see [4, 14]. Here the knot contact homology of a link in R
3 is the

Legendrian contact homology DGA of its conormal lift into the unit cotangent bundle S
∗
R

3 of
R

3, and the filtrations are constructed by counting intersections of the holomorphic disks of the
DGA differential with two conormal lifts of the contact structure. We also present a combinatorial
formula for the filtered DGA in terms of braid representatives of transverse links and apply it to
show that the new invariant is independent of previously known invariants of transverse links.

1. Introduction

Constructing effective invariants of transverse knots in contact 3–manifolds that go beyond the
obvious homotopy invariants has been a notoriously difficult problem. For knots transverse to the
standard contact structure on R3, the first such invariant proven to be effective was constructed
only recently, using combinatorial knot Heegaard Floer homology [15]; a related transverse invariant
in the Heegaard Floer homology of a general compact contact 3–manifold was subsequently con-
structed in [10]. In this paper we define and combinatorially present a new invariant for transverse
links in the standard contact R3. The new invariant is a filtration on the knot contact homology
differential graded algebra (DGA) [4, 14] for transverse links and it appears to be quite differ-
ent from the Heegaard Floer invariants. The construction of the invariant can be applied more
generally to produce invariants of transverse links in any contact 3–manifold and might even say
interesting things in higher dimensions, but the details are considerable more difficult, as are the
computations. So we defer the discussion of the general case to a future paper.

1.1. Transverse knot contact homology. In [14], the third author constructs a combinatorial
DGA associated to a framed knot K ⊂ R3 and shows that its homology, combinatorial knot
contact homology, is an invariant of framed knots. This invariant detects the unknot and encodes
the Alexander polynomial, among other things.

The current authors prove in [4] that the combinatorial DGA is (stable tame) isomorphic to
the Legendrian contact homology DGA of the conormal lift of a knot K and also generalize the
combinatorial description of knot contact homology to many-component links. Here the conormal
lift of a link K is a union ΛK of Legendrian tori in the unit cotangent bundle S∗R3 of R3 with the
contact structure given as the kernel of the canonical 1-form. The Legendrian contact homology
DGA of ΛK is an algebra generated by its Reeb chords with differential defined by a count of
holomorphic disks in S∗R3 × R in the spirit of symplectic field theory [8]. The calculation of it in
[4] uses the contactomorphism S∗R3 ≈ T ∗S2×R to transfer the holomorphic disk count in S∗R×R

to T ∗S2. The disk count is then carried out using the relation between holomorphic disks and
Morse flow trees [2].

We will call the Legendrian invariant of ΛK defined using holomorphic disks the knot contact
homology of K. We denote the underlying DGA by (KCA(K), ∂) and its homology by KCH(K).
The algebra KCA(K) is a free graded tensor algebra over the coefficient ring R = Z[H1(ΛK)] =

1
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Z[λ±1
1 , µ±1

1 , . . . , λ±1
r , µ±1

r ], where r is the number of components of K; the differential ∂ depends on
K as well, but we suppress this dependence to simplify notation.

Let (x1, x2, x3) be coordinates on R3 and let ξ0 = ker(dx3 −x1 dx2 +x2 dx1) denote the standard
contact structure on R3 (which is tight and invariant under rotations about the x3 axis). For links
K transverse to ξ0, we extend the coefficient ring of the knot contact homology DGA to R[U, V ],
where U and V are two formal variables which encode intersections of holomorphic disks with the
natural lifts of ξ0 that correspond to its two coorientations. The resulting DGA will be denoted
(KCA−(K), ∂−) and has a double filtration: by positivity of intersections the differential ∂− does
not decrease the exponents of U or V . Our main result is as follows.

Theorem 1.1. The filtered stable tame isomorphism type of (KCA−(K), ∂−), and hence its homol-
ogy, is an invariant of the transverse knot or link K in (R3, ξ0). The DGA can be computed from a
braid representative of K as described in Theorem 1.3 below. Moreover, the invariant distinguishes
transverse knots with the same self-linking number and with the same Heegaard Floer invariants.

The explicit formula for (KCA−(K), ∂−) is somewhat involved and is therefore presented sepa-
rately in Subsection 1.2. It should however be noted that our method for obtaining the combinato-
rial formula relies heavily on the explicit description of holomorphic disks used in the computation
of knot contact homology in [4]. An alternate and purely combinatorial approach to Theorem 1.1 is
worked out in [11]. It begins with the combinatorial description of Theorem 1.3 in terms of a braid
representation of the knot and proves invariance under transverse isotopy, without any reference to
the underlying geometry, via a study of effects of Markov moves. See [11] also for various algebraic
properties of the invariant and more detailed calculations which demonstrate its effectiveness.

Those familiar with the algebraic formalism of Heegaard Floer homology will notice that we can

construct several other invariants from (KCA−(K), ∂−). Two simpler invariants (K̂CA(K), ∂̂) and(
̂̂
KCA(K),

̂̂
∂

)
arise by setting (U, V ) = (0, 1) and (0, 0), respectively. Setting (U, V ) = (1, 1), on

the other hand, reduces (KCA−(K), ∂−) to the original knot contact homology DGA, (KCA(K), ∂).
Alternatively, one can tensor (KCA−(K), ∂−) with an extended coefficient ring R[U±1, V ±1], to ob-
tain a DGA, (KCA∞(K), ∂∞). It turns out that (KCA∞(K), ∂∞) depends on only the topological
isotopy class of K, rather than its transverse isotopy class.

Theorem 1.2. If K is a transverse knot, then as a DGA over Z[λ±1, µ±1, U±1, V ±1], (KCA∞(K), ∂∞)
is an invariant, up to stable tame isomorphism, of the topological knot underlying K.

In fact, it equals the Legendrian contact homology with coefficients in a relative homology group,
see Subsection 3.7 and also [11]. A statement similar to Theorem 1.2 holds for general transverse
links but will not be proven here.

1.2. Calculating (KCA(K)−, ∂−) from a braid presentation. We now turn to the computa-
tion of our transverse link invariant. To this end we first need to introduce some notation. Our
notation and conventions differ slightly from those of [11], in which the equivalence of conventions
is discussed.

The unit circle U in the plane {x3 = 0} is transverse to the contact structure defined by the 1-
form dx3−x2 dx1+x1 dx2. By work of Bennequin [1], any transverse link K can be isotoped so that
it is braided around U , i.e., contained in a tubular neighborhood U×D2 of U so that it is transverse
to the disk fibers. So K can be represented as the closure of a braid B in U ×D2 = S1 ×D2. The
braid B is an element of the braid group Bn for some n and can be expressed as a word in the
standard generators of Bn, σj (j = 1, . . . , n − 1) intertwining strands j and j + 1, along with their
inverses.

The Legendrian contact homology DGA of ΛK is a free associative non-commutative unital DGA
over the group ring of H1(ΛK ; Z). Fixing a framing on each component of K (e.g., the standard
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topological 0-framing) yields a distinguished basis {λ1, µ1, . . . , λr, µr} of H1(ΛK ; Z), where r is the
number of components of K. More precisely, by identifying TR3 with T ∗R3, we can identify ΛK with
the boundary of a tubular neighborhood of K, which consists of r disjoint tori. Each component of
K has a natural orientation given by the positive coorientation of the contact structure ξ0. Then
µj, λj are the meridian and framed longitude of the j-th torus.

Now, as described above, suppose that K is the closure of a braid B ∈ Bn in a tubular neigh-
borhood of the standard transverse unknot U. Let An denote the graded unital algebra over
Z[λ±1

1 , µ±1
1 , . . . , λ±1

r , µ±1
r ] freely generated by

{aij}1≤i,j≤n; i6=j in degree 0,

{bij}1≤i,j≤n; i6=j in degree 1,

{cij}1≤i,j≤n in degree 1, and

{eij}1≤i,j≤n in degree 2,

where the degrees of λ±1
j and µ±1

j equal 0 for j = 1, . . . , r. (When there is only one link component,

we drop the subscripts on λj , µj.) Let A(0)
n denote the subalgebra of An of elements of degree 0.

We define an automorphism φB : A(0)
n → A(0)

n as follows. Introduce auxiliary variables µ̃1, . . . , µ̃n

of degree 0, and write Ã(0)
n for the unital algebra over Z[µ̃±1

1 , . . . , µ̃±1
n ] freely generated by {aij}1≤i,j≤n;i6=j.

For k = 1, . . . , n − 1, let φσk
: Ã(0)

n → Ã(0)
n be given by

φσk
(aij) = aij i, j 6= k, k + 1

φσk
(ak k+1) = −ak+1k

φσk
(ak+1k) = −µ̃kµ̃

−1
k+1ak k+1

φσk
(ai k+1) = aik i 6= k, k + 1

φσk
(ak+1 i) = aki i 6= k, k + 1

φσk
(aik) = ai k+1 − aikak k+1 i < k

φσk
(aik) = ai k+1 − µ̃kµ̃

−1
k+1aikak k+1 i > k + 1

φσk
(aki) = ak+1 i − ak+1 kaki i 6= k, k + 1

φσk
(µ̃±1

k ) = µ̃±1
k+1

φσk
(µ̃±1

k+1) = µ̃±1
k

φσk
(µ̃±1

i ) = µ̃±1
i i 6= k, k + 1.

Write B in terms of braid group generators, B = σm0

i0
. . . σml

il
∈ Bn, and let φB = (φσi0

)m0 ◦ · · · ◦
(φσil

)ml . Then φ descends to a homomorphism from Bn to the automorphism group of Ã(0)
n ; in

particular, φ satisfies the braid relations.
For j = i, . . . , n, let α(i) ∈ {1, . . . , r} be the number of the link component of K corresponding

to the i-th strand of B. Then φB can be viewed as an automorphism of A(0)
n by setting µ̃i = µα(i)

for all i and having φB act as the identity on λi for all i. As an automorphism of A(0)
n , φB acts as

the identity on µi as well.



4 T. EKHOLM, J. ETNYRE, L. NG, AND M. SULLIVAN

For convenient notation we assemble the generators of An into (n × n)-matrices. Writing Mij

for the element in position ij in the (n × n)-matrix M, we define the (n × n)-matrices

A :





Aij = aij if i < j,

Aij = µα(j)aij if i > j,

Aii = 1 + µα(i),

B :





Bij = bij if i < j,

Bij = µα(j)bij if i > j,

Bii = 0,

C :
{
Cij = cij , E :

{
Eij = eij .

We also associate (n × n)-matrices with coefficients in A(0)
n to the braid B as follows. Let φB(A)

be the matrix defined by
(
φB(A)

)
ij

= φB(Aij). Then there are invertible matrices ΦL
B and ΦR

B so

that

φB(A) = ΦL
B · A · ΦR

B .

More specifically, we define these matrices by setting B′ to be the (n+1)-braid obtained by adding
an extra strand labeled 0 to B (that is, viewing the word defining B as a word in the (n + 1)-
strand braid group generated by σ0, . . . , σn−1). Let φ′

B be the corresponding automorphism of the

{aij}0≤i,j≤n;i6=j. Then define ΦL
B and ΦR

B by

φ′
B(ai0) =

n∑

j=1

(
ΦL

B

)
ij

aj0 and φ′
B(a0j) =

n∑

i=1

a0i

(
ΦR

B

)
ij

;

see also [4, 12, 14]. (Note that since the 0-th strand does not interact with the others, µ̃0 does not
appear anywhere in the expressions for φ′

B(ai0) and φ′
B(a0j), and so ΦL

B,ΦR
B have coefficients in

A(0)
n .)
Also, define an (n× n) coefficient matrix λ as follows. Among the strands 1, . . . , n of the braid,

call a strand leading if it is the first strand belonging to its component. Then let λ be the diagonal
matrix defined by

λ :





λij = 0 if i 6= j,

λii = λα(i)µ
w(i)
γ(i) if the ith strand is leading,

λii = 1 otherwise,

where w(i) is the writhe (algebraic crossing number) of the i-th component of the braid, considered
by itself. Finally, in order to capture the two filtrations, we define the following additional matrices:

AU :





AU
ij = Uaij if i < j,

AU
ij = µα(j)aij if i > j,

AU
ii = U + µα(i),

BU :





BU
ij = Ubij if i < j,

BU
ij = µα(j)bij if i > j,

BU
ii = 0,

AV :





AV
ij = aij if i < j,

AV
ij = µα(j)V aij if i > j,

AV
ii = 1 + µα(i)V,

BV :





BV
ij = bij if i < j,

BV
ij = µα(j)V bij if i > j,

BV
ii = 0.

Theorem 1.3. The filtered knot contact homology DGA, (KCA(K)−, ∂−) of a transverse link
K represented as a braid B on n strands is given by the DGA, (An, ∂−), with the differential
∂− : An → An defined by the following matrix equations:

∂−A = 0,

∂−B = −λ
−1 · A · λ + ΦL

B · A · ΦR
B,

∂−C = AV · λ + AU · ΦR
B,

∂−E = BV · (ΦR
B)−1 + BU · λ−1 − ΦL

B · C · λ−1 + λ
−1 ·C · (ΦR

B)−1,
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where if M is an (n × n)-matrix, the matrix ∂−M is defined by (∂−M)ij = ∂−(Mij).

The rest of the paper is organized as follows. We provide some general geometric background
in Section 2 before defining the transverse invariant (KCA−(K), ∂−) and proving invariance in
Section 3. In Section 4, we derive the combinatorial formula for (KCA−(K), ∂−) by proving
Theorem 1.3, and present examples in Section 5.

Acknowledgments: The authors wish to thank MSRI for hosting them during this collaboration.
TE was partially supported by the Göran Gustafsson Foundation for Research in Natural Sciences
and Medicine. JBE was partially supported by NSF grant DMS-0804820. LLN was partially
supported by NSF grant DMS-0706777 and NSF CAREER grant DMS-0846346. MGS was partially
supported by NSF grants DMS-0707091 and DMS-1007260.

2. Geometric Constructions

In this section we recall the conormal construction and see how it can be used to construct invari-
ants of smooth embeddings using contact geometry. We then discuss filtrations on the Legendrian
contact homology DGA induced by complex hypersurfaces with certain properties.

2.1. Legendrian contact homology. In [8], the Legendrian contact homology LCH(Λ) of a
Legendrian submanifold Λ of a contact manifold (V, ξ) was introduced. The analytic underpinnings
were worked out in detail in [7] for a fairly general and useful case (but under the simplifying
assumption that the chosen Reeb field of ξ has no closed orbits, see below). In this case the
Legendrian contact homology LCH(Λ) is the homology of a DGA, (LCA(Λ), ∂), over a fixed ring,
which changes by a particular type of quasi-isomorphism, called a stable tame isomorphism, as Λ
changes by Legendrian isotopy. Thus, the stable tame isomorphism class of (LCA(Λ), ∂) might be
considered to be the actual Legendrian invariant underlying LCH(Λ).

We briefly sketch the definition of this DGA in the case handled in [7] for the convenience of the
reader and to establish some notation; for a more complete definition, see [7] and for generalizations
see [8].

Let P be a manifold with exact symplectic form dλ. The manifold P × R has a natural contact
structure ξ = ker(dz − λ) where z is the coordinate on R. The Reeb vector field of this form is ∂z

and consequently there are no closed Reeb orbits. Consider the projection

πC : P × R → P.

The algebra LCA(Λ) is the free tensor algebra generated over Z[H1(Λ)] by the double points of
πC(Λ). Notice that the double points are in one to one correspondence with “Reeb chords”, that is,
flow lines of the Reeb vector field that begin and end on Λ. Thus we will frequently refer to double
points as Reeb chords. For the double points we choose “capping paths” in Λ: that is, paths in Λ
that connect any Reeb chord endpoint to a fixed base point in its connected component, and fixed
paths connecting the base points of distinct components; together, these give paths that connect
the two points in Λ which project to a double point in πC(Λ). At a double point p there are two
point in Λ that project to it. We label the one with larger z coordinate z+ and the other z−. The
projection of a neighborhood of z+ in Λ to P will be called the upper sheet at z and the projection
of a neighborhood of z− will be called the lower sheet at z. We then can define a Maslov type index
|c| and |A| of Reeb chords c and homology classes A ∈ H1(Λ) to provide a grading on LCA(Λ). To
define the differential we fix an almost complex structure J on P (which can be thought of as an
almost complex structure on ξ using the isomorphism dπC|ξ). For this almost complex structure the
differential is determined by counting (pseudo-)holomorphic disks mapped into P with boundary
on πC(Λ). Given a Reeb chord a, a (noncommutative) word of Reeb chords b = b1 · · · bm, and a
homology class A ∈ H1(Λ), we define a moduli space

(2.1) MA(a;b)
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of holomorphic disks u : D → P with: boundary on Λ; one positive1 puncture at a and negative
punctures at b1, . . . , bm in the order given by the boundary orientation; and the homology class A
given by the lift of u(∂D) to Λ together with the chosen capping paths. For a generic almost complex
structure, this moduli space is a manifold of dimension |a| − |b| − |A| − 1, where |b| =

∑m
i=1 |bi|.

Furthermore, the space has a natural compactification which consists of (several level) broken curves
and which admits the structure of a manifold with boundary with corners. The moduli spaces can
be coherently oriented provided the Legendrian submanifold Λ is spin.

Define the differential on the generators of LCA(Λ) by

(2.2) ∂a =
∑

{u∈MA(a;b) | |a|−|b|−|A|−1=0}

(−1)|a|+1σ(u)eAb,

where σ(u) ∈ {±1} is determined by the moduli space orientation. The differential is then extended
to all of LCA(L) by the graded product rule and linearity.

2.2. Almost complex hypersurfaces and filtration on Legendrian contact homology.

We now show how to use a complex hypersurface to add a “filtration” to the Legendrian contact
homology DGA. With the notation above, suppose that H is a submanifold of P such that

(1) H is an almost complex hypersurface (J(TH) = TH and the (real) codimension of H equals
2) and

(2) Λ ∩ H = ∅.

Given such Λ and H, we can extend the base ring for the contact homology DGA of Λ from
Z[H1(Λ)] to Z[H1(Λ)][UH ], by adjoining a formal variable UH and changing the definition of the
boundary map, using powers of UH to keep track of the number of times the holomorphic disks
in the definition of the boundary map intersect UH . Specifically, given u ∈ MA(a;b), positivity

of intersection shows that the intersection number of the image of u with H is a well-defined and
nonnegative integer which we denote nH(u). We can now modify the differential in Equation (2.2)
and define instead:

(2.3) ∂fa =
∑

{u∈MA(a;b) | |a|−|b|−|A|−1=0}

(−1)|a|+1σ(u)U
n

H
(u)

H
eAb.

Conditions (1) and (2) above ensure that ∂f is a filtered differential; that is, it respects the filtration

LCA ⊃ UH · LCA ⊃ U2
H
· LCA ⊃ · · · .

The proof that (LCA(Λ), ∂) is invariant up to stable tame isomorphism carries over to show that
the stable tame isomorphism type of (LCA(Λ), ∂f ) over Z[H1(Λ)][UH ] is an invariant of Λ under
isotopies Λt, 0 ≤ t ≤ 1, such that Λt satisfies condition (2) for all t, see Theorem 3.11 below.

2.3. The conormal construction and knot contact homology. Given any n-manifold M, the
cotangent bundle T ∗M has a canonical symplectic structure dλ where λ is the Liouville 1–form. If
we choose a metric g on M then we can consider the unit cotangent bundle S∗M. The restriction
of λ to S∗M is a contact form which we denote by α, and ξ = ker α is a contact structure on S∗M.

Let pr: T ∗M → M denote the natural projection. If K is a submanifold of M (of any dimension)
then the unit conormal bundle

ΛK = {β ∈ S∗M : pr(β) = p ∈ K and β(v) = 0 for all v ∈ TpK}
is a Legendrian submanifold of (S∗M, ξ). If we smoothly isotop K in M , it is clear that ΛK will
undergo a Legendrian isotopy in (S∗M, ξ). Thus any Legendrian isotopy invariant of ΛK is a smooth
isotopy invariant of K.

1Using the orientation on ∂D induced by the complex structure a puncture is positive if it maps the segment of
the boundary just before the puncture to the lower sheet at the double point and the segment just after the puncture
to the upper sheet. The puncture is negative if the roles of the upper and lower sheets are reversed.
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In this paper, we consider conormal lifts of links K ⊂ R3 which are Legendrian submanifolds
ΛK ⊂ S∗R3. There is a well known contactomorphism S∗R3 ≈ J1(S2) = T ∗S2×R and we will thus
consider ΛK ⊂ T ∗S2 ×R and use the version of Legendrian contact homology of ΛK defined in [7].
In particular, we define the knot contact homology algebra of a link K in R3 to be the Legendrian
contact homology algebra of ΛK ⊂ J1(S2). We denote it (KCA(K), ∂) and note that the stable
tame isomorphism class of (KCA(K), ∂) is an isotopy invariant of K. In [4] the authors show how
to compute (KCA(K), ∂) and demonstrate that it is equivalent to the combinatorial knot DGA
introduced by the third author in [14].

We recall for later use that the projection πF : J1(S2) → S2×R is called the front projection and
that a generic Legendrian submanifold Λ in J1(S2) can be recovered uniquely from πF (Λ) ⊂ S2×R.
Since S2 ×R can be visualized as R3 \ {(0, 0, 0)}, it will frequently be useful to study a Legendrian
submanifold Λ via its front projection.

2.4. Transverse link invariants. Consider a contact structure ξ on R3. If there is a Reeb vector
field Rξ for ξ such that the flow lines of the vector field trace out geodesics (in the flat Euclidean
metric on R3) then we can consider the submanifolds

H±
ξ = {η ∈ S∗

R
3 : ±η(Rξ) > 0 and η(v) = 0 for all v ∈ ξ}.

Since the Reeb flow lines of Rξ are geodesics, H±
ξ are foliated by Reeb flow lines in S∗R3. In other

words, identifying S∗R3 with J1(S2) = T ∗S2×R, the projected submanifold H
±
ξ = πC(H±

ξ ) in T ∗S2

is an embedded codimension 2 submanifold. One may also choose the almost complex structure on

T ∗S2 so that H
±
ξ is a holomorphic submanifold. Moreover, if K is a knot in R3 that is transverse

to ξ then its conormal lift ΛK projects to an exact Lagrangian submanifold in T ∗S2 that is disjoint

from H
±
ξ . Thus, as discussed above, we can construct an associated filtered contact homology DGA

that will be an invariant of the transverse isotopy class of K.
To carry out the above construction one must choose a contact form α with ξ = ker(α) so that

its Reeb flow traces out geodesics. The standard contact structure does have such representatives,
for example ξ0 = ker(sin x1 dx2 +cos x2 dx3), but it is quite difficult to actually compute the filtered
contact homology DGA for this contact structure. To take advantage of the computations in [4]
we would prefer to work with the contact form ker(dx3 + r2 dθ), but this contact form does not
have a Reeb vector field with the requisite properties. In the remainder of the paper we overcome
this problem by considering a different S2-subbundle B of T ∗R3 instead of the unit cotangent
bundle. As long as each fiber in this subbundle bounds a convex region containing the origin, we
can still identify B with J1(S2). By a judicious choice of B we will see that the projection of H±

ξ to

T ∗S2 retains enough of the properties discussed above to allow us to explicitly calculate a filtered
invariant for transverse knots in R3.

3. The Filtered DGA of Transverse Links in (R3, ξ0)

In this section we show how the standard contact structure ξ0 on R3 can be used to construct
a pair of complex hypersurfaces H± in T ∗S2 such that if K is any link in a sufficiently small ball
around the origin which is transverse to ξ0 then H± ∩ πC(ΛK) = ∅. In order to get a computable
invariant we adapt the geometry and use a slightly non-standard version of S∗R3.

In Subsection 3.1 we describe our geometric model of S∗R3 and its relation to T ∗S2 × R. In
Subsection 3.2 we show that we can control the image of the holomorphic disks used to compute
the knot contact homology so that they lie near the zero section in T ∗S2 if the original link is
sufficiently small. We then discuss the conormal lift of the standard contact structure on R3 in
Subsection 3.3 and show in Subsection 3.4 that it is no restriction to assume that all transverse
links and isotopies lie in a small ball around the origin. In Subsections 3.5 and 3.6, we define a
suitable almost complex structure on T ∗S2 and then prove the filtered DGA of a transverse link
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is well-defined and invariant up to stable tame isomorphisms under isotopies through transverse
links. Finally, in Subsection 3.7, we explain why the infinity theory for knots in R3 is a topological
invariant.

3.1. The spherical conormal bundle and the 1-jet space of S. Let y = (y1, y2, y3) be standard
Euclidean coordinates on R3. Let S denote the smooth boundary of a (not necessarily strictly)
convex subset of R3 which is symmetric with respect to reflection in the y1y2-plane and with
respect to rotations about the y3-axis. For y ∈ S, let ν(y) denote the outward unit normal to S at
y. Note that the symmetries of S imply that ν(y1, y2, y3) lies in the subspace spanned by the vectors
(y1, y2, 0) and (0, 0, y3). In particular, ν(0, 0, y3) = (0, 0,±1) and ν(y1, y2, 0) = 1√

y2
1
+y2

2

(y1, y2, 0).

We represent the spherical cotangent bundle of R3 as

S∗
R

3 = R
3 × S ⊂ T ∗

R
3 = R

3 × R
3

and use coordinates (x, y) = (x1, x2, x3, y1, y2, y3) on T ∗R3. The contact form on S∗R3 is the

restriction of the Liouville 1–form y · dx =
∑3

j=1 yj dxj on T ∗R3 to S∗R3. We compute the Reeb
vector field as follows.

Lemma 3.1. The Reeb vector field on S∗R3 is

(3.1) R(x, y) = |y|−1(ν(y) · ∂x) = |y|−1
∑

νj(y)∂xj

and the time t flow starting at (x, y) is

(3.2) Φt
R(x, y) =

(
x + t

(
|y|−1ν(y)

)
, y
)
.

Proof. If i denotes the standard complex structure on C3 = R3 + iR3 = T ∗R3 then the Reeb field
lies in the intersection of T (S∗R3) and the complex tangent line at y containing ν(y). Thus up to
normalization the Reeb field equals −iν(y) = ν(y) · ∂x. The lemma follows. �

The spherical cotangent bundle S∗R3 can be identified with the 1–jet space J1(S) = T ∗S ×R as
follows, where we use the flat metric on R3 to identify vectors and covectors.

Lemma 3.2. The map φ : S∗R3 → J1(S) = T ∗S × R given by

φ(x, y) = (y, x − (x · ν)ν, x · y).

is a contactomorphism

φ : (S∗
R

3, y · dx) → (J1(S), dz − p · dq),

where q = (q1, q2) are local coordinates on S, p = (p1, p2) give the coordinates on the fiber of the
cotangent bundle and z is the coordinate on R.

Proof. Note that

φ∗(dq) = dy,

φ∗(dz) = x · dy + y · dx,

and thus

φ∗(dz − p · dq) = x · dy + y · dx − (x − (x · ν)ν) · dy = y · dx,

where we use ν · dy = 0, which holds since y ∈ S and ν is the normal of S at y. �
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3.2. Confining holomorphic curves. Fix δ > 0, let S ⊂ R3 be as above and write ρ0 =
max{|y| : y ∈ S}. Below we will measure lengths of cotangent vectors in T ∗S using the metric
coming from the one induced on T ∗R3 by the flat metric on R3. If (q, p) ∈ T ∗S then we write |p|
for the length of the cotangent vector measured with respect to this metric.

Lemma 3.3. If K is any link contained in B(δ), the ball of radius δ about the origin in R3, then

ΛK ⊂ {(q, p, z) ∈ T ∗S × R : |p| ≤ δ}.
Moreover, if c is a Reeb chord of ΛK then

∫

c
(dz − p dq) ≤ 2ρ0δ.

Proof. By Lemma 3.2 if x ∈ K and (x, y) ∈ ΛK ⊂ S∗R3 then

|p| = |x − (ν(y) · x)ν(y)| ≤ |x| ≤ δ.

For the second statement we note that Lemma 3.1 implies that a Reeb chord c of ΛK is a lift (lc, y)
into S∗R3 of a line segment lc in R3 with endpoints on K and that the action of the chord is

∫

lc

y · dx ≤
∫

lc

ρ0|dx| ≤ 2ρ0δ.

�

As a consequence of Lemma 3.3 we can confine holomorphic curves with boundary on ΛK . As in
Subsection 2.3, πC : J1(S) → T ∗S will denote the projection map and ΛK = πC(ΛK).

Lemma 3.4. Let J be an almost complex structure on T ∗S that is compatible with the symplectic
form on T ∗S. Fix δ0 > 0 a constant. Then there exists 0 < δ < δ0 such that if K is a link in
B(δ) then any J-holomorphic disk with boundary on ΛK and one positive puncture lies in {(q, p) ∈
T ∗S : |p| < 2δ0}.

Proof. Consider 0 < δ < δ0. By Stokes’ theorem and Lemma 3.3, the area of a disk u as described is
bounded above by 2ρ0δ and its boundary is contained in the region where |p| ≤ δ. By monotonicity
(see for example Proposition 4.3.1 [9]), there exists a constant C0 (depending only on J) such that
if u leaves the region where |p| ≤ 2δ0 then the area of u is at least C0δ

2
0 . Thus, taking δ < C0δ

2
0/2ρ0

the lemma follows. �

3.3. A contact form on R3 and its spherical cotangent lifts. Fix the contact form α0 =
dx3 − x2 dx1 + x1 dx2 on R3 and write, as in Section 1, ξ0 = ker(α0) for the corresponding contact
structure. Note that α0 is invariant under rotations in the x1x2-plane and that the diffeomorphism

(x1, x2, x3) 7→
(

1
2x1 , 1

2x2 , x3 − 1
2x1x2

)

gives a contactomorphism between α0 and the standard contact form on R3, dx3 − x2 dx1.
If v ∈ R3 is a non-zero vector, we denote the two open half rays determined by v as follows:

R± · v = {x ∈ R
3 : x = tv, ±t > 0}.

The positive and negative spherical lifts of α0 are

(3.3) H+ =
{
(x, y) ∈ S∗

R
3 : y ∈ R+ · α0(x)

}
and H− =

{
(x, y) ∈ S∗

R
3 : y ∈ R− · α0(x)

}
,

respectively. At all points x on a transverse link K, α0 fails to annihilate the tangent space TxK.
Thus we have the following immediate result.

Lemma 3.5. If K is transverse to ξ0 then the conormal lift ΛK of K is disjoint from H±. �



10 T. EKHOLM, J. ETNYRE, L. NG, AND M. SULLIVAN

3.4. Shrinking transverse links. The following straightforward lemma reduces the study of
transverse links in R3 with its standard contact structure to the study of transverse links lying
in an arbitrary small fixed neighborhood of the origin. Let Bd(r) denote the closed d-dimensional
ball of radius r around the origin and let B(r) = B3(r).

Lemma 3.6. Fix δ > 0. Let K(s), s ∈ Bd(1), be a continuous family of transverse links in
(R3, ξ0) such that K(s) ⊂ B(δ) for s ∈ ∂Bd(1). Then there is a homotopy K(s, t), 0 ≤ t ≤ 1,
with K(s, t) = K(s) if s ∈ ∂Bd(1), and such that K(s, 0) = K(s) and K(s, 1) ⊂ B(δ) for each
s ∈ Bd(1). In particular, the space of transverse links in R3 is weakly homotopy equivalent to the
space of transverse links in B(δ).

Proof. Note that if K is a transverse link in (R3, α) then so is Fc(K) where

Fc(x1, x2, x3) = (
√

c x1,
√

c x2, cx3)

for c > 0. Choose ǫ1, ǫ2 > 0 sufficiently small so that K(s) ⊂ B(ǫ−1
1 δ) for all s ∈ Bd(1) and

K(s) ⊂ B(δ) for all s ∈ (Bd(1) \ Bd(1 − ǫ2)). Choose any smooth ε : Bd(1) → [ǫ1, 1] such that

ε(s) = 1 if s ∈ ∂Bd(1), and ε(s) = ǫ1 if s ∈ Bd(1 − ǫ2).

Then K(s, t) = F(1−t)+tε(s)(K(s)) is a homotopy with the required properties. �

Using Lemma 3.6 in conjunction with Lemma 3.4, we can restrict our attention to a small
neighborhood of the zero section in T ∗S when counting holomorphic curves with boundary on the
conormal lift of transverse knots.

3.5. Almost complex structures. We choose S ⊂ R3 as in Subsection 3.1 with the additional
requirement that S is flat near the north and south poles. More precisely, for some fixed δ0 > 0 we
require that

S ∩
{

y ∈ R
3 :
√

y2
1 + y2

2 ≤ 3δ0

}
=

{
(y1, y2,±1) ∈ R

3 :
√

y2
1 + y2

2 ≤ 3δ0

}
.(3.4)

For 0 < k < 3, write

Ekδ0 = S ∩
{

y ∈ R
3 :
√

y2
1 + y2

2 ≤ kδ0

}
=

{
(y1, y2,±1) ∈ R

3 :
√

y2
1 + y2

2 ≤ kδ0

}
,

and let H±(kδ0) denote the intersection H±∩(T ∗Ekδ0 ×R). Note that the metric on S is flat in E3δ0

and that the almost complex structure induced by the metric agrees with the standard integrable
complex structure J0 on T ∗E3δ0 ⊂ C2.

Let K be a transverse link in the ball B(δ) and ΛK its conormal lift. As usual, let πC : J1(S) →
T ∗S denote the projection, and write H± = πC(H±) and H±(kδ0) = πC(H±(kδ0)).

Lemma 3.7. The spherical lifts H± of α0 intersect the subset ∂(T ∗E2δ0 ×R) ⊂ J1(S) transversely.
Moreover, H±(2δ0) is invariant under the Reeb flow and its projection H±(2δ0) ⊂ T ∗E2δ0 is a
smooth J0-complex subvariety.

Proof. By Formula (3.4), the normal vector to E2δ0 is ν = (0, 0, 1). By the definition of the contact
form α0 and Lemma 3.2,

(3.5)
H±(2δ0) =

{
(q, p, z) ∈ T ∗S × R : (q, p, z) = (±(−x2, x1, 1) , (x1, x2, 0) , x3)

and x2
1 + x2

2 ≤ 4δ2
0

}
.

This is clearly transverse to ∂(T ∗E2δ0 × R) and invariant under the Reeb flow (which is just
translation in the z-direction). Furthermore, under the identification ((u1, u2,±1), (v1, v2, 0)) 7→
(u1 + iv1, u2 + iv2) ∈ C2, H±(2δ0) corresponds to the complex line

(u1 + iv1, u2 + iv2) = (iζ, ζ),

where ζ = x1 + ix2. �
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Fix δ ∈ (0, δ0) so that Lemma 3.4 holds. As pointed out in Subsection 3.4, Lemma 3.6 implies
that when studying the isotopy classification of links in R3 which are transverse to α, it is no
restriction to assume that all such links are contained in B(δ) and that all isotopies are through
links inside B(δ). We thus make this assumption throughout the rest of the paper.

Lemma 3.8. Let K be a transverse link (by our standing assumption K ⊂ B(δ)). Then the sets
ΛK and H± are disjoint in T ∗S. In addition, H± \H±(2δ0) does not intersect any J-holomorphic
disk with boundary on ΛK and one positive puncture.

Proof. Lemmas 3.5 and 3.7 imply that H±(2δ0) and ΛK are disjoint, for if H±(2δ0) intersected a
Reeb flow line emanating from ΛK , then it would intersect ΛK itself since H±(2δ0) is foliated by
Reeb flow lines.

Lemmas 3.3 and 3.4 imply that any holomorphic curve with boundary on ΛK will be contained
in

{(q, p) ∈ T ∗S : |p| < 2δ0}.
Write x = (x1, x2, x3). The contactomorphism of Lemma 3.2 and the properties of S, see Subsec-
tion 3.1, imply that H± consists of the points (p(x), q(x)) ∈ T ∗S whose coordinates satisfy the
following:

q(x) = b(−x2, x1, 1),

where b > 0 is such that q(x) ∈ S; and

p(x) =

(
x1 − x2x3

√
1 − a2(x2

1 + x2
2) , x2 − x1x3

√
1 − a2(x2

1 + x2
2) , a2x3(x

2
1 + x2

2)

)
,

where a ≥ 0 is chosen so that ν(q(x)) = (−ax2, ax1,
√

1 − a2(x2
1 + x2

2)). It follows that

|p(x)|2 = (x2
1 + x2

2)(1 + a2x2
3).

Since the second factor is bigger than or equal to 1, the lemma clearly follows. �

Lemma 3.9. There exists an almost complex structure J on T ∗S which agrees with J0 in a neigh-
borhood of H± and outside the region where |p| ≤ δ0, and which is regular for ΛK in the sense that
0- and 1-dimensional moduli spaces of holomorphic disks with boundary on ΛK and one positive
puncture are transversely cut out.

Proof. Proposition 2.3(1) in [7] shows that the asserted regularity can be achieved by perturbing
J in an arbitrary small neighborhood of the double points of ΛK . Since these double points lie
neither on H± nor in the region where |p| ≥ δ0 the lemma follows. �

3.6. A filtered DGA. Following the discussion in Section 2, we now define a filtered version of
the Legendrian contact homology DGA of ΛK when K is a transverse link. See [7] for further
background details on the unfiltered DGA.

Let KCA−(K) = LCA(ΛK) be the graded free associative non-commutative unital algebra over
the ring Z[H1(ΛK)][U, V ] generated by the Reeb chords of ΛK . Here U, V are two (formal) variables
of grading 0. Other generators and coefficients have grading exactly as in the usual Legendrian
contact homology DGA determined via a Maslov index. We denote the grading | · |.

Consider a Reeb chord a, a monomial of Reeb chords b = b1 · · · bm, and a homology class
A ∈ H1(ΛK). Recall from (2.1) the moduli space MA(a;b) of holomorphic disks with boundary on
ΛK , which has dimension |a| − |b| − |A| − 1. For u ∈ MA(a;b), let nU (u) and nV (u) denote the
algebraic intersection of u and H+ and u and H−, respectively. Lemmas 3.7 and 3.8 imply that
these counts are well-defined and non-negative for the J and K we consider.

Define the differential ∂− : KCA−(K) → KCA−(K) by

(3.6) ∂−a =
∑

{u∈MA(a;b) | |a|−|b|−|A|=1}

(−1)|a|+1σ(u)UnU (u)V nV (u) eA b,
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where σ(u) ∈ {±1} is determined by the moduli space orientation; compare to Equation (2.3).
Setting U = V = 1 we recover the differential used in the Legendrian contact homology DGA
defined in [7].

Theorem 3.10. The above definition gives a filtered differential: ∂− does not decrease the expo-
nents of U or V, and (∂−)2 = 0.

Proof. The unfiltered version of the differential squares to zero due to the usual transversality,
gluing and compactness arguments [7]. The filtered version follows from the fact that nU and nV

are nonnegative, the fact that gluing and compactness respects the filtration, and Lemmas 3.8
and 3.9. �

We call the above filtered DGA the transverse knot DGA of K and denote it (KCA−(K), ∂−).
We next show that the filtered DGA of K is invariant under transverse isotopies of K up to filtered
stable tame isomorphism. (For the definition of stable tame isomorphism, which extends to our
situation, see [7] for example.) In particular, the homology of the filtered DGA (KCA−(K), ∂−) is
a transverse link invariant.

Theorem 3.11. The filtered DGA, (KCA−(K), ∂−), is invariant under transverse isotopies of K
up to filtered stable tame isomorphism.

Proof. By Lemma 3.6 we may assume that Kt, 0 ≤ t ≤ 1 is an isotopy of transverse links inside
B(δ) connecting two given transverse links. Then ΛKt is an isotopy of Legendrian submanifolds
confined to the region in J1(S) where |p| ≤ δ. To prove the invariance statement we generalize the
invariance proof in [6]. We study parameterized moduli spaces and first note that as long as there
are no disks of index −1 and no births/deaths of intersection points, the moduli spaces change by
cobordisms and the filtered differential is unchanged. In order to deal with a critical instance t′

we use a small perturbation of the trace of the fronts of the isotopies near the critical instance to
create a Legendrian submanifold ΛKt′

×R ⊂ J1(S ×R) and study a compact part of this manifold
corresponding to [−1, 1] ⊂ R. Straightforward modifications of Lemmas 3.4, 3.7, and 3.8 show
that H± × C ⊂ T ∗(S × R) (where we think of T ∗R as C) are disjoint from πC(ΛKt′

× R) and is
complex in regions where holomorphic disks with one positive puncture might exist. As above it
then follows that H± × C give filtrations on LCA−(ΛKt′

× R) compatible with those induced on

LCA−(ΛKt′
). From this filtered differential we construct a filtered stable tame isomorphism by

repeating, essentially verbatim, the construction of the stable tame isomorphism in the unfiltered
case given in [6]. �

3.7. Topological invariance of the infinity version in R3. Before delving in depth into the
technical details of the computation of the filtered DGA in R3 in Section 4, we give a geometric
explanation of Theorem 1.2, which says that the infinity version of the transverse invariant in R3

is actually a topological link invariant. To simplify notation, we treat only the single-component
knot case in this subsection. We give only a sketch of the proof here. A more detailed discussion
in the algebraic setting can be found in [11], though the presentation here has the advantage that
it explains the underlying geometric reason for this phenomenon.

Let K be an oriented transverse knot in R3. The homology H1(ΛK) ∼= Z2 has a distinguished set
of generators corresponding to the meridian and (0-framed) longitude of K, allowing us to identify
Z[H1(ΛK)] with R = Z[λ±1, µ±1]. We can then rewrite Equation (3.6) as

(3.7) ∂−a =
∑

{u∈(MA(a;b)/R) | dimM=1}

(−1)|a|+1σ(u)UnU (u)V nV (u)λlong(A)µmer(A)b,

where A is the linear combination of long(A) longitudes and mer(A) meridians.
As in [11], define the infinity DGA, (KCA∞(K), ∂∞), by tensoring (KCA−(K), ∂−) with R[U±1, V ±1]

and replacing λ by λ(U/V )−(sl(K)+1)/2, where sl(K) is the self-linking number of K. We are now
ready to prove Theorem 1.2 from the introduction.
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Proof of Theorem 1.2. Let u denote a holomorphic disk contributing to the Legendrian contact
homology of ΛK . Just as we viewed the boundary of u in Subsection 2.3 as an element of H1(ΛK)
by appending capping paths at Reeb chords, we can view the entirety of u as an element [u] of the
relative homology H2(S

∗R3,ΛK) by appending capping surfaces at Reeb chords.
The exact sequence

· · · −→ 0 −→ H2(S
∗
R

3) = Z −→ H2(S
∗
R

3,ΛK) −→ H1(ΛK) = Z
2 −→ 0 −→ · · ·

implies that H2(S
∗R3,ΛK) ∼= Z3. Pick a basis s, l,m of H2(S

∗R3,ΛK) such that the following
holds:

• s = [S2], the class of S2 in S∗R3 ∼= R3 × S2;
• l is the homology class of the conormal lift of a cooriented Seifert surface of K;
• m is the hemisphere of the S2 fiber of S∗R3 over some point p ∈ K, bounded by the

intersection of ΛK with this fiber and containing the positive lift of ξ over p.

Note that under the boundary map H2(S
∗R3,ΛK) −→ H1(ΛK), the classes s, l,m map to 0, the

longitude, and the meridian, respectively. Now intersecting with H± defines linear maps

nU , nV : H2(S
∗
R

3,ΛK) → Z

such that nU(s) = nV (s) = 1, nU (m) = 1, and nV (m) = 0. By the definition of self-linking number,
the difference nU (l) − nV (l) is sl(K); by adding the appropriate multiple of s to l, we may assume

that nU (l) = sl(K)−1
2 and nV (l) = − sl(K)+1

2 .

If we write [u] = s(u)s+ l(u)l+m(u)m for s(u), l(u),m(u) ∈ Z, then nU [u] = s(u)+ sl(K)−1
2 l(u)+

m(u) and nV [u] = s(u)− sl(K)+1
2 l(u). From Equation (3.7), the contribution of u to the differential

∂∞ has coefficient

(−1)|a|+1σ(u)UnU [u]V nV [u](λ(U/V )−(sl(K)+1)/2)l(u)µm(u)

= (−1)|a|+1σ(u)(λ/U)l(u)(µU)m(u)(UV )s(u).

Now in the definition of the unfiltered Legendrian contact homology of ΛK , which is a topological
knot invariant, one could use the coefficient ring Z[H2(S

∗R3,ΛK)] rather than Z[H1(ΛK)]. If one

writes λ̃, µ̃, σ̃ for the multiplicative generators of Z[H2(S
∗R3,ΛK)] corresponding to l,m, s, then

the contribution of u to Legendrian contact homology with this enhanced coefficient ring is

(−1)|a|+1σ(u)λ̃l(u)µ̃m(u)σ̃s(u).

But this is precisely the coefficient of the contribution of u to ∂∞, once we make the global substi-
tutions λ̃ = λ/U , µ̃ = µU , σ̃ = UV .

It follows that this global substitution turns (KCA∞(K), ∂∞) into the unfiltered Legendrian
contact homology DGA of ΛK with coefficients in Z[H2(S

∗R3,ΛK)]. Since the latter is a topological
invariant, the result follows. �

We remark that our choice of basis (l,m, s) for H2(S
∗R3,ΛK) in the proof of Theorem 1.2

is canonical, depending only on the topological type of K; as a consequence, the (stable tame)
isomorphisms on Theorem 1.2 act as the identity, not just an isomorphism, on the base ring
Z[λ±1, µ±1, U±1, V ±1]. This is clear for m, which can be defined using the orientation on K rather
than the contact structure, and for s. For l, suppose that there is a topological isotopy Kt between
two transverse knots K0 and K1, with a corresponding isotopy Σt of Seifert surfaces, such that Kt

fails to be a transverse knot at finitely many moments. At these moments, the self-linking number
may jump, generically by ±2, but nU ([Σt]) and nV ([Σt]) also each jump by ±1. Thus the quantity

nU ([Σt])− sl(Kt)−1
2 remains unchanged during the isotopy. Since l (which is [Σt] plus some multiple

of s) is chosen so that nU(l) = sl(Kt)−1
2 , the isotopy Kt preserves l.
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4. Computing the Filtered DGA of a Transverse Link

In this section we compute the filtered DGA of a transverse link to prove Theorem 1.3. We
begin by describing the main strategy used in [4] for calculating knot contact homology. This
description leads to a sufficient understanding of the behavior of all holomorphic disks needed for
the calculation of the filtered differential.

4.1. Scheme for calculating knot contact homology. The calculation of knot contact homol-
ogy in [4] proceeds as follows. Consider a link K braided around the unknot U with n strands
and view it as a multisection of a fibration U × D2, where D2 is the 2-disk, corresponding to a
tubular neighborhood of U . As we degenerate the multisection toward U the conormal lift ΛK ap-
proaches the conormal lift of the unknot ΛU (with multiplicity n). More precisely, a neighborhood
of ΛU ⊂ S∗R3 is contactomorphic to the 1-jet space J1(ΛU ) of ΛU and for K sufficiently close to U ,
ΛK is a multisection of J1(ΛU ) → ΛU with n sheets. In other words, over any open disk W ⊂ ΛU ,
ΛK is given by the 1-jet extension of n functions Fj : W → R, j = 1, . . . , n.

It will be useful to recall that when a Legendrian submanifold Λ in J1(S2) is given locally as the
1-jet of n functions Fi then its Reeb chords (that is double points of πC(Λ)) correspond to critical
points of the difference of these local functions Fi − Fj .

Recall that the Legendrian contact homology algebra KCA(K) of ΛK is generated by Reeb
chords and that its differential is defined by a count of holomorphic disks. Close to the limit as ΛK

approaches ΛU we have the following. The Reeb chords of ΛK are of two types.

I. Near each Reeb chord ch of ΛU there are n2 Reeb chords chij , 1 ≤ i, j ≤ n of ΛK , where

we write chij for the chord near ch that starts on the jth local sheet of ΛK near the start

point of ch and ends at the ith local sheet near the endpoint of ch.
II. There are n(n − 1) small Reeb chords corresponding to critical points of positive local

function differences of the form Fi − Fj . These critical points are either maxima or saddle
points. We denote the former by bij and the latter by aij, where 1 ≤ i, j ≤ n, i 6= j, and
we use the same notational conventions for subscripts as above.

Thus Reeb chords of ΛK are either Reeb chords of ΛU with a small chord added or subtracted or
small Reeb chords entirely inside the neighborhood of ΛU .

One of the main technical results of [4] (see [5] for a similar result) shows that holomorphic disks
admit a similar description: near the limit as ΛK approaches ΛU rigid holomorphic disk in T ∗S
with boundary on ΛK = πC(ΛK) and one positive puncture are of two types:

I. either they lie in an arbitrarily small neighborhood of a disk with one positive puncture
and boundary on ΛU and flow trees contained in a small neighborhood of ΛU determined
by the function differences Fi − Fj attached along its boundary;

II. or, they lie entirely inside a small neighborhood of ΛK and are determined by flow trees of
the functional differences Fi − Fj.

Furthermore, any disk with its positive puncture at a chord of type I (resp. II) is of type I (resp. II).
For the notion of flow trees we refer to [2, Section 2]. We do not give a complete definition of flow
trees here, but merely note that they are made from pieces of flow lines of the functional differences
Fi −Fj and that as ΛK collapses onto ΛU the corresponding holomorphic disks stay in smaller and
smaller neighborhoods of ΛU .

In conclusion, in order to compute the differential ∂ : KCA(K) → KCA(K) we need to under-
stand holomorphic disks with boundary on ΛU and flow trees determined by Fi − Fj . The latter
can be understood using finite dimensional Morse theory. In order to understand the former we
use the correspondence between holomorphic disks and flow trees on fronts from [2].
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4.2. The conormal lift of the unknot. One may easily compute (or see [3, 4] and Lemma 4.1
below) the conormal lift ΛU of the unknot U represented as the circle of radius r < δ in the x1x2-
plane. This lift can be slightly perturbed in J1(S) so that it has two Reeb chords denoted c and e,
see Figure 1.

ec

Figure 1. On the left is R3 with the unknot in the xy-plane and a normal circle
at one point is shown. The middle figure shows the normal circle seen in S2 × R ∼=
R3 − {(0, 0, 0)} which is thought of as the (front) projection of S∗R3 ∼= J1(S2) to
S2 ×R. On the right is the front projection of the entire conormal lift of the unknot
which is obtained by rotating the circle shown in the middle figure about the line
through the north and south poles. We have also slightly perturbed the picture on
the right so that there are only two Reeb chords, labeled c and e in the figure.

For purposes of finding holomorphic disks via flow trees, ΛU must be perturbed to be in general
position with respect to the front projection into S2 ×R. Notice that in Figure 1 there is a circle in
ΛU that is mapped to the north pole and a circle mapped to the south pole. Since ΛU is already in
general position outside the fibers over the north and south pole of S we concentrate our attention
there. Near the poles, the projection ΛU looks as follows.

Lemma 4.1. If U is the circle of radius r < δ in the x1x2-plane, then

ΛU ∩ T ∗E2δ0 = {(q, p) : q = (ξ1, ξ2,±1), p = (x1, x2, 0)} ≈ S1 × (−1, 1) × {±1},

where
√

x2
1 + x2

2 = r and where −ξ1x2 + ξ2x1 = 0.

Proof. This is immediate from the definition. �

In Figure 2 we see the front projection of ΛU over the region where S is flat. The left pictures
show ΛU in a neighborhood of the circle over the north (or south) pole, as described in Lemma 4.1,
and the corresponding cone in the front projection of ΛU . The right pictures show ΛU after
small perturbation near the cone point that makes the front projection generic. Using the right
representation we get the following result describing holomorphic disks of ΛU . See Figure 5 for a
description on the flow trees on the front and Figure 3 for a description of their lifts into ΛU .

Lemma 4.2 (Ekholm–Etnyre–Ng–Sullivan 2010, [4]). There are exactly six rigid holomorphic disks
with boundary on ΛU : four (IN , YN , IS, and YS) with positive puncture at c, and two (E1,E2) with
positive puncture at e and negative puncture at c. There are exactly four 1-parameter families

of holomorphic disks with positive puncture at e: ĨN , ỸN , ĨS, and ỸS . The boundaries of these
1-parameter families are as follows:

∂ĨN = (E1 # IN ) ∪ (E2 # IN ), ∂ỸN = (E1 # YN ) ∪ (E2 # YN ),

∂ĨS = (E1 # IS) ∪ (E2 # IS), ∂ỸS = (E1 # YS) ∪ (E2 # YS).

Here E1 # IN denotes the broken disk obtained by adjoining IN to E1 etc., see Figure 4.
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Figure 2. Along the top of the figure is an annular neighborhood of the circle in
ΛU that maps to the fiber above the north pole. On the middle left, we see the image
of this annulus near the north pole in the front projection, a cone whose boundary
is two circles. On the bottom left is the image of this annulus near the north pole
in S2 (that is, the top view of the cone where we have slightly offset the circles so
that they are both visible). On the middle right, we see the top view of the cone
after it has been perturbed to have a generic front projection. More specifically, the
lighter outer curve is the image of the cusp curves, the dotted lines are the image
of double points in the front projection and the darkest inner curve is the image of
the circle that mapped to the cone point before the perturbation. On the bottom
right, we see the image in S2 of the cusp curve and the two boundary circles on ΛU .

c c c

e e e

IN
YN

E0

E1

Figure 3. The rigid disks from Lemma 4.2 in the northern hemisphere of S2.

Using the convention of [4], the disks IN , YN , IS , YS contribute 1, λ, λµ, µ, respectively, to ∂c.
Similarly E1 and E2 contribute −λ−1c and λ−1c, respectively, to ∂e. This gives the differential

∂c = 1 + λ + λµ + µ

∂e = (−λ−1 + λ−1)c = 0.
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e e e

ee

Figure 4. The one dimensional families of disks from Lemma 4.2 in the northern
hemisphere of S2.

�

Now that we have recalled the computation of the knot contact homology of the standard unknot
in the x1x2-plane, we turn to computing the filtration on this knot thought of as a transverse knot.

4.3. Intersection numbers for disks with boundary on ΛU . We first note that Lemma 3.8
implies that any point in the intersection between H± and a holomorphic disk with boundary on ΛU

must lie in T ∗E2δ0 so it will be sufficient to consider the parts of the holomorphic disks which lie in
this region. As we shrink the unknot U towards the x3 axis in R3, its conormal lift ΛU approaches
the 0-section in J1(S). We can also see that the perturbed front generic version of ΛU collapses
onto the 0-section. As we degenerate ΛU onto the 0-section, the boundaries of the holomorphic
disks converge to the curves on the torus ΛU depicted in Figure 5.

c+

c
−

c+

e+

e+

e
−

IN

IS

YN

YS

E0

E0E1

E1µ

λ

Figure 5. Boundaries of holomorphic disks on ΛU .
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The Legendrian torus ΛU can be described as the 1-jet of a multifunction from S2 to R and we
notice that the curves in the figure are given by gradient flow lines for the functional differences
of the multifunction. Furthermore, for an appropriate almost complex structure, the holomorphic
disks C1-converge to the strips corresponding to these flow lines outside any fixed neighborhood
of its vertices, see [2, Lemma 5.13, Remark 5.14, and Subsection 6.4], and inside neighborhoods of
its vertices they converge to other local models, see [2, Subsection 6.1]. Here the strip of a flow
line consists of the line segments in the cotangent fibers between its cotangent lift. In particular,
if we choose a perturbation of ΛU so that its projection to T ∗S consists of affine subspaces in
a neighborhood of (0, 0, 1) ∈ S then the standard complex structure for which H± is a complex
hypersurface is appropriate in the above sense, see [2, Subsection 4.1, 2nd bullet from the end].

Consider the flow-line disks depicted in Figure 6. These flow lines lie in the two distinct homotopy
classes of the disks IN and YN . (Which of these disks looks like the letter I or Y depends on the
perturbation of ΛU which makes its front generic, see also Figure 4.) The disks I1 and I2 correspond

I1 I2

u1

u2

Figure 6. Two holomorphic disks in distinct homotopy classes. We have chosen
coordinates on S2 near the north pole so that the north pole corresponds to (0, 0).

to flow lines of the difference of two functions that locally describe part of ΛU near the north pole.
With notation and coordinates near the north pole of S2 indicated in Figure 6, the gradient of the
function describing the upper sheet of I1 equals −∂u1

and that of its lower sheet is ∂u2
, and the flow

line corresponding to I1 in S follows the curve C1 = (t, t), −T ≤ t ≤ ǫ where ǫ > 0 is arbitrarily
small. Thus the flow line strip of I1 is

(t, s) 7→ ((t, t), (s(−∂u1
) + (1 − s)∂u2

)), −T ≤ t ≤ ǫ, 0 ≤ s ≤ 1,

near the origin. Similarly, the flow line strip of I2 is

(t, s) 7→ ((−t, t), (s∂u1
+ (1 − s)∂u2

)), −T ≤ t ≤ ǫ, 0 ≤ s ≤ 1.

On the other hand the intersection of H+ with the fibers of T ∗S over the point (t, t) ∈ C1 is
a(t∂u1

− t∂u2
) for some a > 0, see Equation (3.5). That is,

H+ ∩ T ∗C1 = {((t, t), a(t∂u1
− t∂u2

))},
and we see that the strip and the hypersurface intersect once (over the point (− 1

2a ,− 1
2a)). Similarly,

over the flow line of I2 we have

H+ ∩ T ∗C1 = {((−t, t), a(t∂u1
+ t∂u2

))},
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and we see that the strip and the hypersurface do not intersect: the solution of the equation which
sets the fiber coordinates equal would lie over the point (−t, t) where t = 1

2a but as ǫ > 0 is
arbitrarily small this point does not lie on the flow line of I2.

In order to relate the above calculation to Lemma 4.2, consider the disk D± in the fiber of T ∗S
bounded by the circle ((0, 0,±1), p) ∈ ΛU∩T ∗E2δ0 and oriented according to the induced orientation
on the fiber. We notice that this circle is a lift of a longitude for U. Using the description of H± in
Lemma 3.7 it is easy to see that D± intersects H± with intersection number ∓1. (Note here that
the orientation of the base followed by the orientation of the fiber gives the orientation opposite
to the complex orientation on T ∗S and that the orientation induced on the normal bundle to the
fiber by H+, respectively H−, agrees, respectively disagrees, with the orientation on the base.)
Consulting Figure 5 and considering the algebraic topology of ΛU ⊂ T ∗S2 one may easily see that
the difference cycle between the disk corresponding to IN and YN is homologous to D+. Since the
intersection number of these disks with H+ equals 1 or 0 (by the above calculation) it follows that
the disk corresponding to IN has intersection number 1 with H+ and the disk corresponding to
YN has intersection number 0. Similarly, the disks corresponding to IS and YS intersect H− with
intersection number 1 and 0, respectively. In addition, since D∓ does not intersect H±, we find
that the IS and YS (respectively IN and YN ) disks do not intersect H+ (respectively H−).

The following result follows from the computation of the knot contact homology differential for
U in Lemma 4.2 and the computations of the intersection numbers between holomorphic disks and
H± above.

Theorem 4.3. Let U be the transverse unknot with self-linking number −1. The filtered DGA
(KCA−(U), ∂−) is filtered stable tame isomorphic to the algebra over R[U, V ] generated by c and
e, where |c| = 1 and |e| = 2, and

∂−c = U + λ + λµV + µ and ∂−e = 0.

�

4.4. The filtered DGA of a transverse link. We begin by recalling the computation of the knot
contact homology from [4]. Using the notation in the introduction we have the following result.

Theorem 4.4 (Ekholm–Etnyre–Ng–Sullivan 2010, [4]). The differential in the Legendrian DGA
associated to the conormal lift ΛK of a framed knot K is (KCA(K), ∂) where KCA(K) is gen-
erated over Z[µ±, λ±] by the aij, bij , cij , and eij described in Subsection 4.1 and 4.2 and the map
∂ : KCA(K) → KCA(K) is determined by the following matrix equations:

∂A = 0,

∂B = −λ
−1 ·A · λ + ΦL

B ·A · ΦR
B,

∂C = A · λ + A · ΦR
B ,

∂E = B · (ΦR
B)−1 + B · λ−1 − ΦL

B ·C · λ−1 + λ
−1 · C · (ΦR

B)−1,

where A,B,C,E,λ,ΦL
B ,ΦR

B are as in Subsection 1.2, and if M is an (n × n)-matrix, the matrix
∂M is defined by (∂M)ij = ∂Mij . �

In Subsection 4.1 above we discussed the holomorphic curves involved in the computation of the
differential. In particular, one may easily conclude the following result.

Lemma 4.5 (Ekholm–Etnyre–Ng–Sullivan 2010, [4]). Given any δ′ > 0, ΛK can be Legendrian
isotoped to be close enough to ΛU so that any holomorphic disk with boundary on ΛK , one positive
puncture, and involving only the chords aij and bij , has its image contained within a δ′-neighborhood

of ΛU .
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Proof. While this lemma follows directly from the results in [4], we comment that it can also be
seen by observing that the Reeb chords aij and bij have small action. This action can be made
arbitrarily small as we isotop K to be close to U. Now a monotonicity argument will confine the
holomorphic curves to stay close to ΛU . �

To compute the filtration on a transverse knot we will need to explicitly describe the holomorphic
disks used in the computation of the differential. More specifically we need to understand disks of
Type I, discussed in Subsection 4.1. To this end we summarize the computations from [4].

Theorem 4.6 (Ekholm–Etnyre–Ng–Sullivan 2010, [4]). Given any δ′ > 0, ΛK can be Legendrian
isotoped to be close enough to ΛU so that any holomorphic disk with boundary on ΛK has its image
contained within a δ′-neighborhood of ΛU and one of the disks described in Lemma 4.2.

Specifically, the holomorphic disks that contribute to the terms in ∂cij satisfy

• the terms in Aλ with µ coefficients are contained in neighborhoods of IS (and ΛU ),
• the terms in Aλ without µ coefficients are contained in neighborhoods of YN (and ΛU ),
• the terms in AΦR

B with µ coefficients are contained in neighborhoods of YS (and ΛU), and

• the terms in AΦR
B without µ coefficients are contained in neighborhoods of IN (and ΛU ).

The holomorphic disks that contribute to the ΦL
B ·C · λ−1 + λ

−1 ·C · (ΦR
B)−1 terms in ∂eij are

contained in neighborhoods of either E0 or E1 (and ΛU ).
The holomorphic disks that contribute to the B · (ΦR

B)−1 + B · λ−1 terms of ∂eij are contained

in neighborhoods of one of the disk in the 1-parameter families ĨN , ỸN , ĨS, and ỸS (and ΛU ). That
is, they are close to the union of ΛU ∪ E1 ∪ E2 and one of the disks IN , YN , IS , YS , shifted in the
λ-direction some fixed distance (the same distance for all disks). More precisely,

• disks associated to those terms in Bλ
−1 with µ coefficients correspond to YS ,

• disks associated to those terms in Bλ
−1 without µ coefficients correspond to IN ,

• disks associated to those terms in B
(
ΦR

B

)−1
with µ coefficients correspond to IS , and

• disks associated to those terms in B
(
ΦR

B

)−1
without µ coefficients correspond to YN .

�

We are now in a position to prove the combinatorial expression for the filtrations given in
Theorem 1.3.

Proof of Theorem 1.3. The first equation in the theorem follows for grading reasons.
The second equation in the theorem follows from Theorem 4.4 and the fact that none of the

holomorphic disk contributing to the differential of a bij can intersect H± by Lemma 4.5.
Since the disks E0 and E1 lie close to the equator, Lemma 3.8 and the third paragraph of

Theorem 4.6 imply that there are no intersections of H± with the disks with positive puncture at
an eij-chord and one negative puncture at an cij-chord. Thus, ΦL

B · C · λ−1 + λ
−1 · C · (ΦR

B)−1

appears in both ∂E and ∂−E.
The remainder of the differentials are affected by this filtration. The effect is easily derived by

the intersections of H± with the disk from Lemma 4.2 which was worked out in Subsection 4.3.
Some simple bookkeeping yields the desired computation. �

5. Some Examples

In this section, we present some computations of the filtered transverse knot DGA, (KCA−, ∂−).
The first shows that the additional filtration structure is nontrivial; the second is an outline of a
computation that shows that the filtered DGA is an effective invariant of transverse knots.
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5.1. The unknot. We compute the transverse knot DGA for three versions of the unknot, the
closure of the trivial 1-braid and the closure of the 2-braids σ1 and σ−1

1 . The first two both represent
the standard transverse unknot in R3 with self-linking number −1, while the third represents the
transverse unknot with self-linking number −3. We will show that the filtered DGAs for the first
two are stable tame isomorphic and are distinct from the filtered DGA for the third.

For the trivial 1-braid, Theorem 1.3 or 4.3 yields a DGA with two generators c, e and differential

∂−c = U + λ + λµV + µ, ∂−e = 0.

For the 2-braid σ1, the relevant matrices are

ΦL
σ1

=

(
−a21 1

1 0

)
, ΦR

σ1
=

(
−a12 1

1 0

)
, λ =

(
λµ 0
0 1

)

A =

(
1 + µ a12

µa21 1 + µ

)
, AU =

(
U + µ Ua12

µa21 U + µ

)
, AV =

(
1 + µV a12

µV a21 1 + µV

)
,

BU =

(
0 Ub12

µb21 0

)
, BV =

(
0 b12

µV b21 0

)
.

We then calculate from Theorem 1.3 that ∂−(a12) = ∂−(a21) = 0,

∂−

(
0 b12

b21 0

)
=

(
0 − 1

λµa12 − a21

−λµa21 − a12 0

)
,

∂−

(
c11 c12

c21 c22

)
=

(
λµ + λµ2V − µa12 µ + U + a12

µ + U + λµ2V a21 − µa21a12 1 + µV + µa21

)
,

∂−

(
e11 e12

e21 e22

)
=

(
b12 + 1

λµ(c12 − c21 + a21c11) Ub12 − c22 + a21c12 + b12a12 + 1
λµ(c11 + c12a12)

c22 + 1
λb21 − 1

λµc11 µV b21 − c12 + c21 + c22a12

)
.

If we apply successively the eight tame automorphisms

e12 7→ e12 − b12c12 − 1
λµc2

12

c21 7→ c21 − µV b21 + c12 − c22a12

b12 7→ b12 − 1
µc22 + 1

λµ2 c11

b21 7→ b21 + 1
µc11 − λc22

e11 7→ e11 + 1
λµ2 c22c11 − 1

µe12 − 1
λµe22 + V e21

c12 7→ c12 − 1
µc11

a21 7→ a21 − V − 1
µ

a12 7→ a12 + λ + λµV,

then we obtain a DGA with the same generators but differential

∂−(c11) = −µa12, ∂−(c12) = U + λ + λµV + µ, ∂−(c22) = µa21,

∂−(e12) = −µb12, ∂−(e21) = 1
λb21, ∂−(e22) = c21,

∂−(a12) = ∂−(a21) = ∂−(b12) = ∂−(b21) = ∂−(c21) = ∂−(e11) = 0.

Destabilizing yields a DGA generated by c12, e11 with differential ∂−(c12) = U + λ + λµV + µ,
∂−(e11) = 0, which agrees with the DGA for the trivial 1-braid above.

For the 2-braid σ−1
1 , we use the matrices

ΦR
σ−1

1

=

(
0 1
1 −a21

)
, λ =

(
λµ−1 0

0 1

)
.
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The expression for ∂−C from Theorem 1.3 now yields in particular

∂−(c11) = λµ−1 + λV + Ua12.

To see that the filtered DGA for σ−1
1 differs from the filtered DGA for the trivial 1-braid, note that

if we set (U, V ) = (0, 0) in the former to obtain (
̂̂
KCA,

̂̂
∂), we find that

̂̂
∂(c11) = λµ−1, a unit in

Z[λ±1, µ±1], and so the homology of (
̂̂
KCA,

̂̂
∂) is trivial. On the other hand, if we set (U, V ) = (0, 0)

with the trivial 1-braid, we obtain a DGA generated by c, e with
̂̂
∂(c) = λ + µ and

̂̂
∂(e) = 0, and

it is clear that this DGA has nontrivial homology.

5.2. The knot m(76). Let K1,K2 be the transverse knots given by the closures of the 4-braids

σ1σ
−1
2 σ1σ

−1
2 σ−1

3 σ2σ
3
3, σ1σ

−1
2 σ1σ

−1
2 σ3

3σ2σ
−1
3 ,

respectively. These are both transverse representatives of the mirror of the knot 76, with self-linking
number −1. The following result demonstrates that the filtered DGA is an effective invariant of
transverse knots.

Theorem 5.1. The filtered DGAs for K1 and K2 are not filtered stable tame isomorphic, and thus
K1 and K2 are not transversely isotopic.

Proof. Consider the DGAs (K̂CA(Ki), ∂̂) over Z[λ±1, µ±1] obtained from the filtered DGAs by
setting (U, V ) = (0, 1). One can count by computer the number of DGA maps (augmentations)

from (K̂CA(Ki), ∂̂) to (Z/3, 0) that send λ to −1 and µ to +1; there are 5 for K1 and 0 for K2.
The result follows. (See [11] for more details.) �

As noted in [11], the hat version of knot Floer homology for m(76) is 0 in the relevant bidegree
(0, 0), and so the transverse invariants in knot Floer homology [10, 15] do not distinguish K1 and
K2. One similarly finds that other previously developed transverse invariants (in Khovanov or
Khovanov–Rozansky homology, for instance) do not distinguish K1 and K2. We conclude that the
transverse invariant from knot contact homology is independent of previously known transverse
invariants.
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