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Abstract

This manuscript identifies a maximal system of equations which renders the classical Dar-
boux problem elliptic, thereby providing a selection criterion for its well posedness. Let f
be a symplectic form close enough to ωm , the standard symplectic form on R2m. We prove
existence of a diffeomorphism ϕ, with optimal regularity, satisfying

ϕ∗ (ωm) = f and
〈
dϕ[;ωm

〉
= 0.

We establish uniqueness of ϕ when the system is coupled with a Dirichlet datum. As a
byproduct, we obtain, what we term symplectic factorization of vector fields, that any map u,
satisfying appropriate assumptions, can be factored as:

u = χ ◦ ψ with ψ∗ (ωm) = ωm ,
〈
dχ[;ωm

〉
= 0 and ∇χ+ (∇χ)t > 0;

moreover there exists a closed 2−form Φ such that χ = (δΦ yωm)] . Here, ] is the musical
isomorphism and [ its inverse. We connect the above result to an L2—projection problem.

1 Introduction
In the current manuscript we pursue our discussion on the transport of differential forms (cf. [11]
and [12]). The focus here will be on Darboux Theorem for symplectic forms, which foundational
character has been recognized since the pioneer work of Darboux [13]. The current state of the
theory allows to assert that, given two smooth enough symplectic forms f and g, there exist
infinitely many diffeomorphisms that pull f back to g; at least one of these symplectomorphims can
be shown to have optimal regularity properties (cf. [3]). A natural question is: "is there a maximal
system of equations which renders Darboux problem well posed?" In this manuscript we address this
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issue by identifying additional structural properties to be satisfied by these symplectomorphims,
which allow to select a unique solution without compromising on a loss of optimal regularity.
For the sake of simplicity, let us assume that g = ωm is the standard symplectic form on R2m

and ρ2m is the associated volume form

ωm =

m∑
i=1

dx2i−1 ∧ dx2i and ρ2m =
1

m!
(ωm)

m
= dx1 ∧ · · · ∧ dx2m.

We shall make use of the musical isomorphism ] which turns 1−forms into vector fields; while [
will denote its inverse.
We prove (in Corollary 8) that if f is a symplectic form close enough to ωm in a Hölder norm,

then there exists a diffeomorphism ϕ such that

ϕ∗ (ωm) = f and
〈
dϕ[;ωm

〉
= 0 (1)

and, when coupled with appropriate boundary and monotonicity conditions, such a ϕ is unique.
The map ϕ is also shown to have optimal regularity properties in Hölder spaces. Our uniqueness
result in Corollary 8 yields a stability property namely: if (ϕs, fs) satisfy (1) and the sequence
{fs} converges to f in the Hölder norm Cr,a, then the sequence {ϕs} converges in the Cr+1,b norm,
with 0 < b < a, to a ϕ ∈ Cr+1,a that satisfy (1). This stability result with a gain of regularity of
ϕ holds provided that f is close to ωm .
In Cartesian coordinates (x1, · · · , xn) , the identity ϕ∗ (g) = f is the system of [n (n− 1) /2]

equations ∑
1≤p<q≤n

gpq (ϕ)

(
∂ϕp

∂xi

∂ϕq

∂xj
− ∂ϕp

∂xj

∂ϕq

∂xi

)
= f ij , 1 ≤ i < j ≤ n.

The new complete system is obtained by adding the single equation
〈
dϕ[; g

〉
= 0, totaling [n (n− 1) /2]+

1 equations, the latter one reading off (cf. Section 2 (ix))∑
1≤i<j≤n

(
ϕjxi − ϕ

i
xj

)
gij = 0.

The novelty here is that the additional requirement
〈
dϕ[;ωm

〉
= 0 makes (1) an elliptic system of

equations (cf. Proposition 14) according to the definition we propose in the appendix. Coinciden-
tally, as explained at the end of this introduction, the concept of ellipticity possesses an underlying
variational feature.
When Ω is contractible, Corollary 10 asserts that under appropriate boundary conditions, there

exists an unique 2−form Φ =
∑

Φijdxi ∧ dxj satisfying(
(δΦ yωm)

]
)∗

(ωm) = f and dΦ = 0

meaning, in Cartesian coordinates, that
m∑
l=1

2m∑
s,t=1

[
Φ
s(2l−1)
xsxi Φ

t(2l)
xtxj − Φ

s(2l−1)
xsxj Φ

t(2l)
xtxi

]
= f ij 1 ≤ i < j ≤ n

Φijxk − Φikxj + Φjkxi = 0 1 ≤ i < j < k ≤ n.

Note that when n = 2 the second equation is trivially fulfilled, while the first one reduces to the
Monge-Ampère equation.
The above considerations should be compared with a discovery made in the 90’s by Brenier

[5] (cf. also [15], [19], [20]) on a given probability volume form ρ on a convex set Ω. It asserts
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that if ϕ is the ‖·‖L2(ρn)− projection of the identity map onto the set of maps that pull ρ back
to the restriction of ρn to Ω, then dϕ[ = 0. Similar conclusions can be reached if one replaces the
‖·‖L2(ρn)− projection by any ‖·‖Lp(ρn)− projection for p ∈ [1,∞) (cf. [6], [7], [14], [16]). Beside
the variational analogy between the pull-back of volume forms and that of symplectic forms, there
is a striking algebraic coincidence in the number of equations which makes either system elliptic.
Indeed, in the case of volume forms the original problem at hand (resolved in the seminal work by
Moser [21]; for an account of some of the further developments see [4], [8], [10]) was to find a map
ϕ satisfying

det∇ϕ = f. (2)

The equation (2) is classically augmented with dϕ[ = 0, which means additional [n (n− 1) /2]
equations . The final system of interest

det∇ϕ = f and dϕ[ = 0 (3)

totals [n (n− 1) /2] + 1 equations. According to the definition in Appendix 6, it is elliptic (see
Example 31 (ii)). If we further assume that Ω is simply connected, one recovers, (since then
ϕ = ∇Φ), the Monge-Ampère equation

det∇2Φ = f.

The convexity condition on Φ simply expresses the fact that ϕ and the identity map are isotopic.
Our contribution includes understanding the importance of ellipticity as a way to address the

regularity and uniqueness issues for Darboux problem. As the notion of ellipticity is not easy to
find in the literature under the general form given here, we provide it in Appendix 6. The starting
point of the application of ellipticity in our context is the conclusion reached for the following
system: if (ν being the exterior unit normal to ∂Ω){

u∗ (ωm) = v∗ (ωm) and
〈
du[;ωm

〉
=
〈
dv[;ωm

〉
in Ω〈

u[ ∧ ν[;ωm
〉

=
〈
v[ ∧ ν[;ωm

〉
on ∂Ω,

then u ≡ v (cf. Proposition 16). In particular, we have uniqueness for the Dirichlet problem
(i.e. when u = v on ∂Ω) or for the weaker Dirichlet problem when u[ ∧ ν[ = v[ ∧ ν[ on ∂Ω.

Theorem 6, the backbone of our work, interestingly enough yields Corollary 21 (while Corollary
18 provides a local version) which we refer to as the symplectic factorization of vector fields. Our
statement is that any map u, close enough to a linear map (in particular the identity map), can
be factored as

u = χ ◦ ψ with ψ∗ (ωm) = ωm ,
〈
dχ[;ωm

〉
= 0 and ∇χ+ (∇χ)

t
> 0. (4)

Moreover, if Ω is contractible, there exists a closed 2−form Φ such that χ = (δΦ yωm)
]
.

The factorization (4) can be viewed as a nonlinear Hodge factorization (cf. Subsection 4.3) and
is reminiscent but different of the so-called polar factorization of vector fields, a result by Brenier
[5] which has had profound influence on many other fields of mathematics. The polar factorization
states that a vector field u can be written as

u = χ ◦ ψ with det∇ψ = 1, curlχ = 0 and ∇χ+ (∇χ)
t
> 0.

The condition ψ∗ (ωm) = ωm is suffi cient, but much stronger, to ensure that ψ preserves Lebesgue
measure (i.e. det∇ψ = 1 which is equivalent to ψ∗ ((ωm)

m
) = (ωm)

m), while the condition〈
dχ[;ωm

〉
= 0 is necessary, but much weaker, to ensure that curlχ = 0.

Observe that (4), which resulted from a system of elliptic equations, is related to an orthogonal
projection problem. Indeed, define the 2−form f by u∗ (f) = ωm , then Proposition 23 (with
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h = ωm) shows that, would χ be a ‖·‖L2(ρ2m)− projection of the identity map onto the set of
diffeomorphisms pulling back f to ωm , then χ must satisfy ∇χ + (∇χ)

t ≥ 0 and
〈
dχ[;ωm

〉
= 0.

Furthermore letting ψ = χ−1 ◦ u, we have ψ∗ (ωm) = ωm .
We would like to end up this introduction with some questions that remain open. It would

be very enlightening to have a more geometrical proof of our results. In our theorems, which are
essentially perturbative, can the smallness assumption be removed, or, in other words, under what
more stringent conditions our results can be global?

2 Notation
We refer to [8] for this section and adopt the following notations. In the sequel the dimension is
always even, i.e.n = 2m.

(i) To any f =
∑
i<j f

ijdxi∧dxj ∈ Λ2 (Rn) , we associate, in a bijective way, a skew symmetric
matrix F ∈ Rn×n in the natural way. We also sometimes denote it by f. Explicitly the coeffi cient
at the i−th column and the j−th row of F (or f) is f ij , i.e.

F ji = f ij .

The rank of the 2−form f is the rank of the matrix F and is therefore necessarily even. Note that

detF =

(
1

m !
|fm|

)2

where fm = f ∧ · · · ∧ f︸ ︷︷ ︸
m−times

; in particular detF ≥ 0.

(ii) The standard symplectic form is

ωm =

m∑
i=1

dx2i−1 ∧ dx2i

and the associate standard symplectic matrix is

Jm =


J1 0 · · · 0 0
0 J1 · · · 0 0
...

...
. . .

...
...

0 0 · · · J1 0
0 0 · · · 0 J1

 where J1 =

(
0 −1
1 0

)
.

(iii) To any symplectic 2−form f, we write f−1 ∈ Λ2 (Rn) for the 2−form associated to the
skew symmetric matrix F−1 ∈ Rn×n. Note that

J−1
m = −Jm , ω−1

m = −ωm and ωm = Jm .

(iv) If u ∈ Λ1 (Rn) and f ∈ Λ2 (Rn) , then

u y f =

n∑
j=1

[
n∑
i=1

f ij ui

]
dxj ∈ Λ1 (Rn) .

(v) Note that if u ∈ Λ1 (Rn) , then

u y f = v ⇔ Fu = v
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in particular
u yωm = v ⇔ v yωm = −u.

(vi) As classical, we denote by d the exterior derivative, by ∗ the Hodge star operator and by
δ the interior derivative (or co-differential). So that if f is a k−form then

δf = (−1)
n(k−1) ∗ (d (∗f)) .

(vii) Let ϕ ∈ C1
(
Ω;Rn

)
, then

ϕ∗ (f) =
∑

1≤i<j≤n
f ij (ϕ) dϕi ∧ dϕj .

In particular if ϕD (x) = Dx and f is a constant 2−form, then

ϕ∗D (f) =
∑

1≤i<j≤n
f ijDi ∧Dj

and thus the skew symmetric matrix associated to ϕ∗D (f) is DtFD.

(viii) Recall that for u ∈ Λ1 (Rn) , f ∈ Λk (Rn) and h ∈ Λk+1 (Rn)

〈u ∧ f ;h〉 = 〈f ;u yh〉 (5)

where 〈·; ·〉 denotes the scalar product of forms (on the left hand side of (k + 1)−forms and on the
right hand side of k−forms).
(ix) Observe that the musical isomorphism ] : T ∗M = Rn × Rn → TM = Rn × Rn can be

in the current situation viewed as the identity map ] : Rn → Rn. Similarly, the inverse map
[ : TM → T ∗M will be viewed as the identity map [ : Rn → Rn. Therefore throughout the article
we identify a map ϕ ∈ C1 (Rn;Rn) with its associated 1−form ϕ[ ∈ C1

(
Rn; Λ1

)
, so that dϕ can

be seen as the 2−form dϕ[ ∈ C0
(
Rn; Λ2

)
and therefore dϕ y f is the scalar product of the 2−forms

dϕ and f ∈ C0
(
Rn; Λ2

)
. The notations ] and [ are used only in the introduction in order not to

burden too much the notations. In Cartesian coordinates we thus have that

dϕ y f =
〈
dϕ[; f

〉
= 〈dϕ; f〉 =

∑
1≤i<j≤n

(
ϕjxi − ϕ

i
xj

)
f ij =

n∑
i,j=1

ϕjxi f
ij = 〈∇ϕ;F 〉

where F is the skew symmetric matrix associated to f.
(x) Remark (cf. Theorem 3.5 in [8]) that, for f ∈ C1

(
Rn; Λk

)
and g ∈ C1

(
Rn; Λl

)
, then

δ (f y g) = (−1)
k+l

df y g − f y δg. (6)

In particular if k = 1, l = 2 and g is constant (or more generally δg = 0), we have

δ (f y g) = −df y g.

(xi) The integration by parts formula (cf. Theorem 3.28 in [8]) says that, if 1 ≤ k ≤ n, f ∈
C1(Ω; Λk−1) and g ∈ C1(Ω; Λk), then∫

Ω

〈df ; g〉+

∫
Ω

〈f ; δg〉 =

∫
∂Ω

〈ν ∧ f ; g〉 =

∫
∂Ω

〈f ; ν y g〉 . (7)

(xii) We also let

HN
(
Ω; Λ2

)
=
{
χ ∈ C∞

(
Ω; Λ2

)
: dχ = 0, δχ = 0 and ν yχ = 0 on ∂Ω

}
(8)

HT
(
Ω; Λ2

)
=
{
χ ∈ C∞

(
Ω; Λ2

)
: dχ = 0, δχ = 0 and ν ∧ χ = 0 on ∂Ω

}
. (9)

When Ω is contractible, then HN
(
Ω; Λ2

)
= HT

(
Ω; Λ2

)
= {0} .

5



3 Darboux theorem as an elliptic system
In this section we couple the classical Darboux theorems (local and global) with a natural constraint
so as to get an elliptic system. For that we first state some preliminary results and we then show
the existence and regularity of a solution for a system of first order equations of Cauchy-Riemann
type.

3.1 Some preliminary results
The proofs of the results in this subsection are straightforward to obtain and, so, will be skipped.

Proposition 1 Let n = 2m and Ω ⊂ Rn be an open set. Let f ∈ C1
(
Ω; Λ2

)
be a 2−form such

that fm 6= 0. Then
(∗fm) f−1 = ∗

(
mfm−1

)
.

Therefore d
[
fm−1

]
= 0 if and only if δ

(
(∗fm) f−1

)
= 0 in Ω.

Lemma 2 Let Ω ⊂ Rn be convex and u ∈ C1
(
Ω;Rn

)
verifying for a certain γ > 0

〈∇u (x) ξ; ξ〉 ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ Ω,

then u ∈ Diff1
(
Ω;u

(
Ω
))
.

Remark 3 The lemma is however false as soon as Ω is not convex. Examples of the type (in the
complex plane) z1+ε with ε > 0 small or a very similar example written in polar coordinates as

u (r, θ) = (r cos ((1 + ε) θ) , r sin ((1 + ε) θ))

show that the conclusion of the lemma is, in general, false.

3.2 Existence theorem for a linear elliptic system
Let Ω ⊂ Rn be a bounded connected open smooth set with exterior unit normal ν. Let r ≥ 0 be
an integer and 0 < a < 1 be a real number. Let g ∈ Cr,a

(
Ω
)
and f ∈ Cr,a

(
Ω; Λ2

)
be such that

df = 0 in Ω and
∫

Ω

〈f ;χ〉 = 0, ∀χ ∈ HN
(
Ω; Λ2

)
.

In the sequel we say that the symmetric part of A ∈ C0
(
Ω;Rn×n

)
is definite with constant e =

e (A) > 0, if
1

e
|ξ|2 ≥ |〈A (x) ξ; ξ〉| ≥ e |ξ|2 for every x ∈ Ω and ξ ∈ Rn.

Throughout this subsection we suppose that A ∈ Cr+1,a
(
Ω;Rn×n

)
and B ∈ Cr,a

(
Ω;Rn×n

)
are

invertible and the symmetric part of BA−1 is definite with constant e = e
(
BA−1

)
. Let C ∈

Cr,a
(
Ω;Rn

)
.

The following theorem is an intermediary and central step toward the proof of Theorem 6, the
heart of Subsection 3.3. It can be expressed in terms of differential forms when A and B are skew
symmetric matrices and thus n = 2m (cf. Remark 5).
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Theorem 4 (A first order elliptic system) (I) Under the above assumptions, there exists u ∈
Cr+1,a

(
Ω; Λ1

)
such that, in Ω,

d (Au) = f and
〈
Bt;∇u

〉
+ 〈C;u〉 = g (10)

and the system (10) is elliptic. Furthermore, there exists a constant c = c (r, a, e,Ω) such that

‖u‖Cr+1,a ≤ c (‖f‖Cr,a + ‖g‖Cr,a) . (11)

(II) If moreover
∫

Ω
g = 0 and

div (Bj) =

n∑
i=1

(
Bij
)
xi
∈ Cr,a

(
Ω
)
, 1 ≤ j ≤ n (12)

then there exists u ∈ Cr+1,a
(
Ω; Λ1

)
satisfying (11) and{

d (Au) = f and δ (Bu) = g in Ω

ν y (Bu) = 0 on ∂Ω;

if, in addition, Ω is simply connected then such a u is unique.

Remark 5 Further assume A and B are skew symmetric matrices and let α ∈ Cr+1,a
(
Ω; Λ2

)
,

β ∈ Cr,a
(
Ω; Λ2

)
be respectively the 2−forms associated to A and B so that u yα = Au and

u yβ = Bu. Assume that δβ ∈ Cr,a
(
Ω; Λ1

)
. Since

δ (u yβ) = −du yβ − u y δβ =
〈
Bt;∇u

〉
+ 〈C;u〉 , (13)

where we have set C = −δβ, the theorem asserts the existence of u ∈ Cr+1,a
(
Ω; Λ1

)
, such that

d (u yα) = f and δ (u yβ) = g in Ω.

- For example, if β = α or β = (∗αm)α−1, then the symmetric part of BA−1 is automatically
definite. Note also that, in view of Proposition 1 and (6), if β = (∗αm)α−1 and α is closed then
β is co-closed.

- The boundary condition ν y (Bu) = 0 reads off

ν y (u yβ) = (u ∧ ν) yβ = 〈u ∧ ν;β〉 = 0 on ∂Ω.

Proof (Theorem 4). Step 1. (i) Theorem 8.3 in [8] provides us with F ∈ Cr+1,a
(
Ω; Λ1

)
and a

constant c = c (r, a,Ω) such that
dF = f in Ω (14)

and
‖F‖Cr+1,a ≤ c ‖f‖Cr,a .

(ii) We claim that the operator L : C2
(
Ω
)
→ C0

(
Ω
)
defined by

LV =
〈
Bt;∇

(
A−1∇V

)〉
+
〈
C;A−1∇V

〉
is elliptic. Indeed let A−1 =

(
aij
)
and B =

(
bij
)
and observe that the leading term in L is

n∑
i,j,k=1

bjia
i
kvxjxk
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and thus the ellipticity follows from the fact that the symmetric part of BA−1 is definite.

(iii) We then set
u = A−1∇V +A−1F

where V ∈ Cr+2,a
(
Ω
)
(cf. Theorems 6.6 and 6.8 in [17]) is the solution of{
LV = g −

〈
Bt;∇

(
A−1F

)〉
−
〈
C;A−1F

〉
in Ω

V = 0 on ∂Ω.
(15)

The map u satisfies then the conclusions of the theorem.

(iv) We now prove the ellipticity of (10), cf. Definition 26. First observe that the leading term
(in terms of derivatives) in the operator 〈Bt;∇u〉 + 〈C;u〉 is of the form div (Bu) = δ (Bu) , we
have therefore to show that the following algebraic system

ξ ∧ (Aσ) = 0 and ξ y (Bσ) = 0.

has, for any ξ 6= 0, σ = 0 ∈ Rn as the only solution. The first equation leads to the existence of
s ∈ R such that Aσ = sξ, or equivalently σ = sA−1ξ. Plugging this in the second equation we
obtain

s
〈
BA−1ξ; ξ

〉
= 0

which implies, since the symmetric part of BA−1 is definite, s = 0 and hence σ = 0.

Step 2. We next discuss (II) except the uniqueness that is dealt with in Step 3. Note that

δ (Bu) = div (Bu) =
〈
Bt;∇u

〉
+ 〈C;u〉

where C = (C1, · · · , Cn) with Cj = div (Bj) . Hence the operator L takes the following form

LV = δ
(
BA−1dV

)
.

We then solve (14), as in Step 1 and instead of solving (15), we replace the boundary datum V = 0
by
〈
ν;BA−1dV

〉
= −

〈
ν;BA−1F

〉
; or in other words we find a solution of{

δ
(
BA−1dV

)
= g − δ

(
BA−1F

)
in Ω〈

ν;BA−1dV
〉

= −
〈
ν;BA−1F

〉
on ∂Ω.

This is a Neumann type problem which is solvable since
∫

Ω
g = 0. We then proceed exactly as in

Step 1.

Step 3. We finally deal with the uniqueness issue. So let v satisfy{
d (Av) = 0 and δ (Bv) = 0 in Ω

ν y (Bv) = 0 on ∂Ω

and set w = Av. Since Ω is simply connected and dw = 0, we can find W so that w = ∇W. The
function W therefore satisfies {

div
(
BA−1∇W

)
= 0 in Ω〈

ν;BA−1∇W
〉

= 0 on ∂Ω.

The divergence theorem implies∫
Ω

div
(
W
(
BA−1∇W

))
=

∫
∂Ω

W
〈
ν;BA−1∇W

〉
= 0.
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We therefore have

0 =

∫
Ω

div
(
W
(
BA−1∇W

))
=

∫
Ω

〈
BA−1∇W ;∇W

〉
≥ γ

∫
Ω

|∇W |2

(provided
〈
BA−1ξ; ξ

〉
≥ γ |ξ|2 , if the other sign prevails, we just reverse the inequality above) and

hence ∇W = 0 which implies that v = 0 as claimed.

3.3 The main theorem and some corollaries
Let Ω ⊂ Rn be a bounded connected open smooth set with exterior unit normal ν. Recall that
HN

(
Ω; Λ2

)
has been defined in (8) and if Ω is contractible, then HN

(
Ω; Λ2

)
= {0} .

Throughout this subsection r ≥ 0 and n = 2m are integers, 0 < a < 1 and ωm is the standard
symplectic form and its associated skew symmetric matrix is Jm . Let f ∈ Cr,a

(
Ω; Λ2

)
be such

that

df = 0 in Ω and
∫

Ω

〈f ;χ〉 = 0, ∀χ ∈ HN
(
Ω; Λ2

)
.

Given a matrix D ∈ Rn×n we denote by σD the linear map which to x ∈ Rn associates Dx ∈ Rn.

Theorem 6 (A global theorem under a smallness assumption) Let D ∈ Rn×n and B ∈
Cr,a

(
Ω;Rn×n

)
be both invertible and such that the symmetric part of DBJm is definite with

constant e = e (DBJm) . Let C ∈ Cr,a
(
Ω;Rn

)
. Then there exist ε, γ, c > 0 depending only on

(r, a, e,Ω) such that if
‖f − σ∗D (ωm)‖C0,a/2 ≤ ε

then there exists ϕ ∈ Diffr+1,a
(
Ω;ϕ

(
Ω
))
satisfying, in Ω,

ϕ∗ (ωm) = f and
〈
Bt;∇ (ϕ− σD)

〉
+ 〈C; (ϕ− σD)〉 = 0 (16)

and {
‖ϕ− σD‖Cr+1,a ≤ c ‖f − σ∗D (ωm)‖Cr,a
‖ϕ− σD‖C1,a/2 ≤ c ‖f − σ∗D (ωm)‖C0,a/2

(17)

|〈[∇ϕ (x)B (x) Jm] ξ; ξ〉| ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ Ω. (18)

Furthermore the system (16), restricted to maps satisfying (18), is elliptic. If, moreover,

div (Bj) =

n∑
i=1

(
Bij
)
xi
∈ Cr,a

(
Ω
)
, 1 ≤ j ≤ n (19)

then there exists ϕ ∈ Diffr+1,a
(
Ω;ϕ

(
Ω
))
satisfying (17), (18) and{

ϕ∗ (ωm) = f and δ (B (ϕ− σD)) = 0 in Ω

ν y (B (ϕ− σD)) = 0 on ∂Ω;

such a ϕ is unique if Ω is simply connected.

Remark 7 Theorem 6 is particularly interesting if we further assume that B is skew symmetric.
Indeed, in that case let β ∈ Cr,a

(
Ω; Λ2

)
be the differential form associated to B and assume

δβ ∈ Cr,a
(
Ω; Λ1

)
. If C = −δβ, then (13) holds and the theorem asserts the existence of ϕ such

that {
ϕ∗ (ωm) = f and δ ((ϕ− σD) yβ) = 0 in Ω

ν y ((ϕ− σD) yβ) = 0 on ∂Ω.

9



Corollary 8 There exist ε, γ, c > 0 depending only on (r, a,Ω) such that if

‖f − ωm‖C0,a/2 ≤ ε,

then there exists ϕ ∈ Diffr+1,a
(
Ω;ϕ

(
Ω
))
satisfying{

ϕ∗ (ωm) = f and dϕ yωm = 0 in Ω

ν y ((ϕ− id) yωm) = 0 on ∂Ω;
(20)

and such that {
‖ϕ− id‖Cr+1,a ≤ c ‖f − ωm‖Cr,a

|〈[∇ϕ (x)] ξ; ξ〉| ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ Ω.
(21)

Furthermore the system (20) is elliptic when restricted to maps satisfying the second inequality in
(21) and if, in addition, Ω is simply connected, then such a ϕ is unique.

Remark 9 The following variant of Corollary 8 can easily be proved. There is ϕ such that{
ϕ∗ (ωm) = f and dϕ y f−1 = 0 in Ω

ν y
(
(ϕ− id) y f−1

)
= 0 on ∂Ω.

Corollary 8, as well as Theorem 12 below, can be written as second order systems, which is the
counterpart of Monge-Ampère equation when n = 2 and so, f is a volume form.

Corollary 10 (Second order Darboux theorem) Let Ω ⊂ Rn be a bounded contractible open
smooth set. Then there exists ε = ε (r, a,Ω) such that if f ∈ Cr,a

(
Ω; Λ2

)
is closed and

‖f − ωm‖C0,a/2 ≤ ε,

then there exists an unique Φ ∈ Cr+2,a
(
Ω; Λ2

)
satisfying the elliptic system

(δΦ yωm)
∗

(ωm) = f and dΦ = 0

∇ (δΦ yωm) + (∇ (δΦ yωm))
t
> 0

in Ω

ν yΦ = −ν yH on ∂Ω.

Here H is such that δH = id yωm .

Remark 11 (i) Writing
Φ =

∑
i<j

Φijdxi ∧ dxj

and similarly for f we have that (δΦ yωm)
∗

(ωm) = f reads as (recalling that Φij = −Φji)

m∑
l=1

2m∑
s,t=1

[
Φs(2l−1)
xsxi Φt(2l)xtxj − Φs(2l−1)

xsxj Φt(2l)xtxi

]
= f ij , 1 ≤ i < j ≤ n (22)

while dΦ = 0 means that

Φijxk − Φikxj + Φjkxi = 0, 1 ≤ i < j < k ≤ n.

Note that when n = 2 the equation dΦ = 0 is trivially fulfilled, while (22) is exactly Monge-Ampère
equation.
(ii) The form H can be taken, for example, as

H =

m∑
i=1

(x2i−1)
2

+ (x2i)
2

2
dx2i−1 ∧ dx2i.

10



Proof (Corollary 10). Step 1. Using Corollary 8, we have{
ϕ∗ (ωm) = f, δ (ϕ yωm) = 0, ∇ϕ+ (∇ϕ)

t definite in Ω

ν y (ϕ yωm) = ν y (id yωm) = ν y δH on ∂Ω.

Since Ω is contractible (thus HN
(
Ω; Λ1

)
= {0}) and δ (ϕ yωm) = 0, we can find Φ verifying

(cf. Theorem 7.4 in [8]) {
δΦ = − (ϕ yωm) and dΦ = 0 in Ω

ν yΦ = −ν yH on ∂Ω

and thus ϕ = δΦ yωm , showing the existence part. For the uniqueness we let Φ and Ψ be two
solutions. From Proposition 16 (applied to α = β = ωm , u = δΦ yωm and v = δΨ yωm , recalling
that ν yΦ = ν yΨ implies ν y δΦ = ν y δΨ), we get that δΦ = δΨ and hence{

δ (Φ−Ψ) = 0 and d (Φ−Ψ) = 0 in Ω

ν y (Φ−Ψ) = 0 on ∂Ω

and since HN
(
Ω; Λ2

)
= {0} , we get that Φ ≡ Ψ.

Step 2. We now discuss the ellipticity of the system. Strictly speaking our system does not
fit into the definition of ellipticity we give in the Appendix, because the equations are not of the
same order (some being of the second and some of the first order). To make it of the same order
we consider the equivalent system

(δΦ yωm)
∗

(ωm) = f and ∇ (dΦ) = 0.

We first linearize the system (δΦ yωm)
∗

(ωm) = f. From

(δΦ yωm)
∗

(ωm) =

m∑
p=1

[
d
[
(δΦ yωm)

2p−1
]
∧ d
[
(δΦ yωm)

2p
]]

we get that the algebraic system that should lead to λ = 0 ∈ Λ2 is

m∑
p=1


[
ξ ∧ ((ξ yλ) yωm)

2p−1
]
∧ d
[
(δΦ yωm)

2p
]

+ d
[
(δΦ yωm)

2p−1
]
∧
[
ξ ∧ ((ξ yλ) yωm)

2p
]
 = 0.

This can be rewritten as

ξ ∧

 m∑
p=1

 ((ξ yλ) yωm)
2p−1

d
[
(δΦ yωm)

2p
]

− ((ξ yλ) yωm)
2p
d
[
(δΦ yωm)

2p−1
]
 = 0

or equivalently

ξ ∧
(

m∑
p=1

[
(ξ yλ)

2p
d (δΦ yωm)

2p
+ ((ξ yλ))

2p−1
d (δΦ yωm)

2p−1
])

= 0.

This last equation just means that

ξ ∧
[
(δΦ yωm)

∗
(ξ yλ)

]
= ξ ∧

[
(∇ (δΦ yωm))

t · (ξ yλ)
]

= 0.

11



Therefore there exists s ∈ R such that

(∇ (δΦ yωm))
t · (ξ yλ) = s ξ ⇔

[
(∇ (δΦ yωm))

t
Λ
]
ξ = s ξ

where Λ is the skew symmetric matrix associated to λ. Since the symmetric part of ∇ (δΦ yωm) is
definite, ∇ (δΦ yωm) is invertible and we deduce that

Λ ξ = s (∇ (δΦ yωm))
−t
ξ.

Λ being a skew symmetric matrix we obtain

0 = 〈Λ ξ; ξ〉 = s
〈

(∇ (δΦ yωm))
−t
ξ; ξ
〉
.

Using again that the symmetric part of ∇ (δΦ yωm) is definite and that ξ 6= 0, we infer that s = 0
and thus

Λ ξ = ξ yλ = 0.

The equation dΦ = 0 (or equivalently ∇ (dΦ) = 0) leads to

ξ ∧ λ = 0

and thus, if ξ 6= 0, we get that λ = 0 and the ellipticity is proved.

3.4 Proof of the main theorem
We now deal with the proof of Theorem 6.

Proof Steps 1 to 4 deal with the main statement, while Step 5 handles the extra result.
Step 1. We linearize the equation around σD and we let ϕ = σD + u. We immediately find

f = ϕ∗ (ωm) = (σD + u)
∗

(ωm) = σ∗D (ωm) + d
(
Dt (u yωm)

)
+ u∗ (ωm) .

Step 2. We solve by fixed point (more precisely Theorem 18.1 of [8]) the problem, in Ω,{
d [Dt (u yωm)] = d [(DtJm)u] = f − σ∗D (ωm)− u∗ (ωm)

〈Bt;∇u〉+ 〈C;u〉 = 0.

Let us check all the hypotheses of that theorem.

1) Set

X1 =
{
u ∈ C1,a/2

(
Ω;Rn

)
:
〈
Bt;∇u

〉
+ 〈C;u〉 = 0

}
X2 =

{
u ∈ Cr+1,a

(
Ω;Rn

)
:
〈
Bt;∇u

〉
+ 〈C;u〉 = 0

}
Y1 =

{
b ∈ C0,a/2

(
Ω; Λ2

)
: db = 0 in Ω and

∫
Ω

〈b;χ〉 = 0, ∀χ ∈ HN
}

Y2 =

{
b ∈ Cr,a

(
Ω; Λ2

)
: db = 0 in Ω and

∫
Ω

〈b;χ〉 = 0, ∀χ ∈ HN
}
.

It is easy to see (cf. Proposition 16.23 in [8]) that Hypothesis (HXY ) of Theorem 18.1 in [8] is
satisfied.

2) Consider next the linear operator L : Xi → Yi defined by

Lu = d
[(
DtJm

)
u
]
.

12



Noting that the symmetric part of B (DtJm)
−1 is definite if and only if that of DBJm is definite, we

can apply Theorem 4 (with A = DtJm). Therefore the operator has a right inverse L−1 : Y2 → X2

verifying, where C1 = C1 (r, a, e,Ω) is a constant,∥∥L−1b
∥∥
Xi
≤ C1 ‖b‖Yi for every b ∈ Y2 and i = 1, 2.

The Hypothesis (HL) of Theorem 18.1 in [8] is then also satisfied.

3) Let Q : X2 → Y2 be defined by Q(u) = u∗ (ωm) . Note that Q (0) = 0 and dQ(u) = 0 in Ω.
Moreover ∫

Ω

〈Q(u);χ〉 = 0, ∀χ ∈ HN
(
Ω; Λ2

)
since Q(u) is exact independently of the topology of Ω. This follows from (7) and the fact that

ωm = d

(
m∑
i=1

x2i−1dx
2i

)
⇒ Q(u) = d

[
u∗

(
m∑
i=1

x2i−1dx
2i

)]
.

It is easily verified (using Theorem 16.28 in [8]) that there exists a constant C2 = C2 (r, a,Ω) such
that, for every u, v ∈ Cr+1,a(Ω;Rn), the following estimates hold

‖Q(u)−Q(v)‖C0,a/2 ≤ C2(‖u‖C1,a/2 + ‖v‖C1,a/2) ‖u− v‖C1,a/2

and
‖Q(u)‖Cr,a ≤ C2 ‖u‖C1,a/2 ‖u‖Cr+1,a .

The Hypothesis (HQ) of Theorem 18.1 in [8] is therefore verified for ρ = 1,

c1 (r, s) = C2 (r + s) and c2 (r, s) = C2 r s.

4) Our problem then becomes

Lu = f − σ∗D (ωm)−Q (u) .

Step 3. Theorem 18.1 in [8] gives us the existence of a u ∈ X2 satisfying

Lu = f − σ∗D (ωm)−Q (u)

provided

‖f − σ∗D (ωm)‖C0,a/2 ≤ ε =
1

2C1 max{4C1C2 , 1}
.

Moreover there exists a constant c = c (r, a, e,Ω) such that

‖u‖Cr+1,a ≤ c ‖f − σ
∗
D (ωm)‖Cr,a and ‖u‖C1,a/2 ≤ c ‖f − σ∗D (ωm)‖C0,a/2 .

Step 4. Let R > 0 be suffi ciently large so that Ω ⊂ BR , the ball centered at 0 and of radius R.
Using Theorem 16.11 in [8], we extend u to BR so that the extension ũ satisfies

‖ũ‖C1,a/2(BR) ≤ c̃ ‖u‖C1,a/2(Ω) ≤ c̃ c ε

where c̃ = c̃ (r,Ω) > 0. From now on we ignore the difference between u and ũ. By choosing ε
smaller, if necessary, we can also ensure that there exists a constant γ > 0 such that (recall that
ϕ = σD + u)

|〈[∇ϕ (x)B (x) Jm] ξ; ξ〉| ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ BR .
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We therefore deduce (cf. Lemma 2) that ϕ ∈ Diffr+1,a
(
BR;ϕ

(
BR
))
restricted to Ω verifies the

conclusions of the theorem; while the ellipticity follows from Proposition 14.

Step 5. The statement with boundary datum follows as before considering now the spaces

X1 =
{
u ∈ C1,a/2

(
Ω;Rn

)
: δ (Bu) = 0 and ν y (Bu) = 0

}
X2 =

{
u ∈ Cr+1,a

(
Ω;Rn

)
: δ (Bu) = 0 and ν y (Bu) = 0

}
while Y1 and Y2 are unchanged; the proof being then identical. The uniqueness is shown in
Proposition 16.

3.5 Local Darboux theorem
We continue our analysis with the local case. The theorem is a refinement of a result of Bandyopadhyay-
Dacorogna [3] for Darboux theorem. The new statement here is that, not only there exists a solution
to ϕ∗ (ωm) = f with optimal regularity, but there is one which satisfies the additional constraint
dϕ yωm = 0 (which renders the system elliptic) and still preserves the optimal regularity.

In this subsection r ≥ 0 and n = 2m are integers, 0 < a < 1 and x0 ∈ Ω where Ω ⊂ Rn is a
bounded open set. Recall that (cf. Theorem 19 in [9]) since n = 2m, the condition rank [f (x0)] = n
is equivalent to the existence of an invertible symmetric matrix D ∈ Rn×n such that

σ∗D (ωm) = f (x0)

where σD (x) = D (x− x0) + x0 .

Theorem 12 Let f ∈ Cr,a
(
Ω; Λ2

)
be closed and D ∈ Rn×n symmetric and invertible such that

σ∗D (ωm) = f (x0) .

Let λ ∈ Cr,a
(
Ω; Λ2

)
with the symmetric part of DΛJm definite, where Λ is the skew symmetric

matrix associated to λ. Then there exist a neighborhood U ⊂ Ω of x0 and ϕ ∈ Diffr+1,a (U ;ϕ (U))
such that ϕ (x0) = x0 ,

ϕ∗ (ωm) = f in U and dϕ yλ = 0 in U. (23)

Moreover there exists a constant γ > 0 such that

〈[∇ϕ (x) Λ (x) Jm] ξ; ξ〉 ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ U (24)

and the system (23) is elliptic when restricted to ϕ satisfying (24).

Remark 13 (i) The proof below will show that for every δ > 0, we can choose the neighborhood
U depending on δ so that

‖∇ϕ−D‖C0(U) ≤ δ if DΛJm > 0

‖∇ϕ+D‖C0(U) ≤ δ if DΛJm < 0.

(ii) If D = I (meaning that f (x0) = ωm) and λ = ωm , then the theorem reads as follows

ϕ∗ (ωm) = f, dϕ yωm = 0 and ∇ϕ+ (∇ϕ)
t
> 0.

Recall that

dϕ yωm = 〈∇ϕ; Jm〉 =

m∑
j=1

(
ϕ2j
x2j−1 − ϕ

2j−1
x2j

)
= 0

14



and, since ωm is a constant form, we also have

δ [ϕ yωm] = −dϕ yωm = 0.

(iii) Note that, in general, one cannot assume that dϕ = 0 (i.e.ϕ = ∇Φ ) as in the case of
volume forms. Indeed a slight change in Proposition 12 of [9] shows that if

f = (1 + x3) dx1 ∧ dx2 + x2 dx
1 ∧ dx3 + dx3 ∧ dx4,

then there exists no Φ ∈ C3(R4) such that near 0

(∇Φ)∗ (ωm) = f

although there exists a local C∞ diffeomorphism ϕ such that

ϕ∗ (ωm) = f.

Our theorem nevertheless proves that the map ϕ can be chosen so that

ϕ1
x2 − ϕ

2
x1 + ϕ3

x4 − ϕ
4
x3 = 0.

Proof (Theorem 12 and Remark 13 (i)). Step 1 (Theorem 12). We can assume, without loss of
generality, that x0 = 0. Let W be the unit ball centered at 0. For every 0 < ε < 1 suffi ciently small
define

f ε (x) = f (ε x) and λε (x) = λ (ε x) .

Observe that λε ∈ Cr,a
(
W ; Λ2

)
with the symmetric part of DΛεJm definite, f ε ∈ Cr,a

(
W ; Λ2

)
,

df ε = 0, f ε (0) = f (0) and

‖f ε − f (0)‖C0,a/2(W) → 0 as ε→ 0.

Applying Theorem 6 (toBt = Λε and C = 0) we find, for ε small enough, ψε ∈ Diffr+1,a(W ;ψε
(
W
)
)

satisfying
ψ∗ε (ωm) = f ε in W, 〈Λε;∇ (ψε − σD)〉 = 0 in W

and
|〈[∇ψε (x) Λε (x) Jm] ξ; ξ〉| ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈W.

Since D is symmetric and Λε is skew symmetric, we obtain

0 = 〈Λε;∇ (ψε − σD)〉 = 〈Λε;∇ψε −D〉 = 〈Λε;∇ψε〉 = dψε yλε.

Let
χε (x) =

x

ε
and ϕ = ε ψε ◦ χε .

The map x→ ϕ (x)−ϕ (0) and the set U = εW have all the desired properties with (24) replaced
by

|〈[∇ϕ (x) Λ (x) Jm] ξ; ξ〉| ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ U.
Finally note that, since U is connected, we have either 〈[∇ϕ (x) Λ (x) Jm] ξ; ξ〉 > 0 or 〈[∇ϕ (x) Λ (x) Jm] ξ; ξ〉 <
0. In the first case we have right away the claim, while in the second one we let

ϕ (x) = −ϕ (x)

and observe that ϕ has all the properties claimed in the theorem. The ellipticity following from
Proposition 14.
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Step 2 (Remark 13 (i)). It is clearly enough to prove only the case DΛJm > 0. Theorem 6 also
gives that

‖ψε − σD‖C1,a/2(W) ≤ c ‖f
ε − σ∗D (ωm)‖C0,a/2(W) .

Note that
‖∇ϕ−D‖C0(εW) = ‖∇ψε −D‖C0(W) ≤ c ‖f

ε − σ∗D (ωm)‖C0,a/2(W) .

and therefore, since

‖f ε − σ∗D (ωm)‖C0,a/2(W) = ‖f ε − f (0)‖C0,a/2(W) → 0 as ε→ 0,

we have proved Remark 13 (i).

3.6 Ellipticity and uniqueness
We now prove that the system considered in Darboux theorem, cf. Theorems 6 and 12, is indeed
elliptic (see the appendix).

Proposition 14 (Ellipticity of the Darboux system) Let n = 2m and Ω ⊂ Rn be a con-
nected open set. Let α ∈ C1

(
Rn; Λ2

)
be such that the associated skew symmetric matrix A is

invertible. Let B ∈ C1 (Ω;Rn×n) be invertible and C ∈ C1 (Ω;Rn) . Let f ∈ C1
(
Ω; Λ2

)
and

g ∈ C1 (Ω) . Let S be the set of maps u ∈ C1 (Ω;Rn) satisfying〈[
∇u (x)B (x)A−1 (u (x))

]
ξ; ξ
〉
6= 0 ∀ ξ ∈ Rn \ {0} and ∀x ∈ Ω.

Then the system
u∗ (α) = f and

〈
Bt;∇u

〉
+ 〈C;u〉 = g

is elliptic (over Ω and over S).

Remark 15 (i) Let β ∈ C1
(
Rn; Λ2

)
be such that the associated skew symmetric matrix B is

invertible. The proposition then includes as special cases the following two systems

u∗ (α) = f and δ [u yβ] = g

u∗ (α) = f and du yβ = g.

(ii) When α = β are constant forms, then BA−1 = I and we require therefore that

〈∇u (x) ξ; ξ〉 6= 0 ∀ ξ ∈ Rn \ {0} and ∀x ∈ Ω.

Proof (Proposition 14). Our system is{
u∗ (α) =

∑
p<q α

pq (u) dup ∧ duq = f

〈Bt;∇u〉 = g − 〈C;u〉 .

Differentiating with respect to xk the first equation we get, up to lower order terms that we write
as h (u,∇u) , { ∑

p<q α
pq (u)

[
dupxk ∧ du

q + dup ∧ duqxk
]

= fxk + h (u,∇u)

(〈Bt;∇u〉)xk = (g − 〈C;u〉)xk
and therefore the algebraic problem becomes (recalling that αpq = −αqp){

ξk

{∑
p<q α

pq (u) [λpξ ∧ duq − λqξ ∧ dup]
}

= ξk {ξ ∧ [u∗ (λ yα)]} = 0

ξk (〈Bt;λ⊗ ξ〉) = 0.
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where λ ∈ Λ1. Noting that 〈Bt;λ⊗ ξ〉 = 〈ξ;Bλ〉 , we get after simplification by ξk (recall that
ξ 6= 0),

ξ ∧ [u∗ (λ yα)] = 0 and 〈ξ;Bλ〉 = 0.

Step 2. Note that

u∗ (λ yα) = [∇u (x)]
t
(λ yα (u (x))) = [∇u (x)]

t
A (u (x))λ.

The equation ξ ∧ [u∗ (λ yα)] = 0 and the fact that ξ 6= 0 lead to the existence of s ∈ R \ {0} such
that

ξ = s [∇u (x)]
t
A (u (x))λ.

Therefore the equation 〈ξ;Bλ〉 = 0 implies that

s
〈

[∇u (x)]
t
A (u (x))λ;B (x)λ

〉
= s 〈A (u (x))λ;∇u (x)B (x)λ〉 = 0.

Since s 6= 0 and the symmetric part of ∇u (x)B (x)A−1 (u (x)) is definite, we deduce that indeed
λ = 0 and the ellipticity is proved.

Proposition 16 (An uniqueness result) Let n = 2m and Ω ⊂ Rn be a bounded open smooth
simply connected set. Let α be a constant 2−form and β ∈ C1

(
Ω; Λ2

)
. Let A ∈ Rn×n and

B ∈ C1
(
Ω;Rn×n

)
be the associated skew symmetric matrices to α and β, which are assumed to be

invertible. Let u, v ∈ C1
(
Ω;Rn

)
satisfy, ∀ ξ 6= 0 and ∀x ∈ Ω,〈[

∇u (x)B (x)A−1
]
ξ; ξ
〉
·
〈[
∇v (x)B (x)A−1

]
ξ; ξ
〉
> 0 (25)

and such that {
u∗ (α) = v∗ (α) and δ [u yβ] = δ [v yβ] in Ω

ν y (u yβ) = ν y (v yβ) on ∂Ω.

Then
u ≡ v.

Remark 17 (i) The condition ν y (u yβ) = ν y (v yβ) is equivalent (cf. Proposition 2.16 in [8]) to

(u ∧ ν) yβ = (v ∧ ν) yβ ⇔ 〈u ∧ ν;β〉 = 〈v ∧ ν;β〉 .

Therefore the uniqueness is obtained under a much weaker hypothesis than the Dirichlet condition
u ∧ ν = v ∧ ν; which is precisely the condition under which uniqueness is obtained for the Monge-
Ampère equation (written under a system of first order equations, cf. Example 31 (ii)).

(ii) In fact the hypothesis (25) can be weakened, it suffi ces to require that, if z = u+ v, then∣∣〈[∇z (x)B (x)A−1
]
ξ; ξ
〉∣∣ > 0, ∀ ξ 6= 0 and ∀x ∈ Ω.

This is interesting, because we get then uniqueness if, for example,〈[
∇uBA−1

]
ξ; ξ
〉
> 0 and

〈[
∇v BA−1

]
ξ; ξ
〉
≥ 0.

Proof (Proposition 16). Step 1. Set

w =
v − u

2
and z =

v + u

2
.
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The equation u∗ (α) = v∗ (α) becomes then∑
p<q

αpq [(dzp − dwp) ∧ (dzq − dwq)] =
∑
p<q

αpq [(dzp + dwp) ∧ (dzq + dwq)] .

After simplification we obtain∑
p<q

αpq [(dzp ∧ dwq) + (dwp ∧ dzq)] = 0

and thus, since αpq = −αqp, we find

0 =
∑
p,q

αpq (dwp ∧ dzq) = d

[∑
p,q

αpqwpdzq

]
= d

[∑
p,q,r

αpqwpzqxrdx
r

]
= d

[
(∇z)t (w yα)

]
= d

[
(∇z)t Aw

]
.

Step 2. The problem under consideration is then{
d
[
(∇z)t Aw

]
= 0 and δ [Bw] = 0 in Ω

ν y (Bw) = 0 on ∂Ω.

Observe next that since (25) holds, then
∣∣〈[∇z B A−1

]
ξ; ξ
〉∣∣ > 0 and thus∣∣∣〈[BA−1 (∇z)−t

]
ξ; ξ
〉∣∣∣ > 0.

The uniqueness follows then from Theorem 4.

4 Corollaries: the symplectic factorization
Recall that the polar factorization (cf. [5] or [15]) tells us that if u is a map satisfying some non-
degeneracy condition, then u can be written as the composition of χ = ∇Φ, where Φ is a convex
function, with a measure preserving map ψ, i.e.

u = χ ◦ ψ.

A natural question is to see if such a factorization exists in the symplectic context (we then call
it the symplectic factorization), i.e. try to prove that a map u : R2m → R2m with appropriate
regularity assumptions can be written as u = χ ◦ ψ where

∇χ+ (∇χ)
t
> 0, dχ yωm = 0, ψ∗ (ωm) = ωm

where ωm is the standard symplectic form, namely

ωm =

m∑
i=1

dx2i−1 ∧ dx2i.

Or, more generally, replacing ωm by any general symplectic form ω try to write u as u = χ ◦ ψ
where (note that ω−1

m = −ωm)

∇χ+ (∇χ)
t
> 0, dχ yω−1 = 0 and ψ∗ (ω) = ω.
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We indeed give some evidences of the existence of the symplectic factorization. We prove it in
two cases (cf. Corollaries 18 and 21) and formally in Remark 24 (i). We also formally show that
the symplectic factorization implies the Hodge decomposition.

But before entering into details, we would like to point out that in the linear case, i.e. when
u (x) = Ax for some constant matrix A, the situation is better, since (cf. Theorem 20 in [9]) for
any invertible matrix A ∈ Rn×n, there exists S ∈ Rn×n such that StJmS = Jm (i.e.S preserves
the standard symplectic matrix Jm) and a symmetric matrix B such that

A = S B.

By inversion, one directly obtains the factorization in the reverse order. Using the language of
differential forms, the previous result reads as follows: any map u (x) = Ax can be written as
u = χ ◦ ψ where ψ (x) = Sx preserves ωm and where χ (x) = Bx is the gradient of the function

x→ 〈Bx;x〉
2

.

4.1 The local case
We have the following local result. In this subsection we let r ≥ 1 and n = 2m be integers,
0 < a < 1, Ω ⊂ Rn be open and x0 ∈ Ω. We recall that for any invertible skew symmetric matrix
F there exists an invertible symmetric matrix D ∈ Rn×n (cf. Theorem 19 in [9]) such that

F = DJmD.

We also recall that

dχ yωm = 〈∇χ; Jm〉 =

m∑
j=1

(
χ2j
x2j−1 − χ

2j−1
x2j

)
= 0.

Corollary 18 (Local symplectic factorization) Let D ∈ Rn×n be symmetric and definite. Let
u ∈ Diffr,a (Ω;u (Ω)) be such that(

u−1
)∗

(ωm) (u (x0)) = σ∗D (ωm) with σD (y) = D (y − u (x0)) + u (x0) .

Then there exist a neighborhood U of x0 ,

ψ ∈ Diffr,a (U ;ψ (U)) and χ ∈ Diffr,a (ψ (U) ;χ (ψ (U)))

such that ψ (x0) = u (x0) and for x ∈ U

ψ∗ (ωm) (x) = ωm , [dχ yωm] (ψ (x)) = 0 and u = χ ◦ ψ.

Moreover there exists a constant γ > 0 such that

〈∇χ (ψ (x)) ξ; ξ〉 ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ U.

Remark 19 (i) The condition
(
u−1

)∗
(ωm) (u (x0)) = σ∗D (ωm) is equivalent to

(σD ◦ u)
∗

(ωm) (x0) = ωm .

So, in particular, if
u∗ (ωm) (x0) = ωm

we can take D = I and the factorization holds.
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(ii) In a completely analogous way, we can prove the symplectic factorization in the reverse
order, namely there exist a neighborhood U of x0 ,

χ ∈ Diffr,a (U ;χ (U)) and ψ ∈ Diffr,a (χ (U) ;ψ (χ (U)))

such that χ (x0) = x0 and for x ∈ U

ψ∗ (ωm) (χ (x)) = ωm , [dχ yωm] (x) = 0 and u = ψ ◦ χ.

Moreover there exists a constant γ > 0 such that

〈∇χ (x) ξ; ξ〉 ≥ γ |ξ|2 , ∀ ξ ∈ Rn and ∀x ∈ U.

Proof (Corollary 18). With no loss of generality we can assume that D > 0, since

σ∗D (ωm) = σ∗−D (ωm) .

We let f (y) =
(
u−1

)∗
(ωm) (y) (and F be its associated skew symmetric matrix) which is a Cr−1,a

symplectic form. Note that
σ∗D (ωm) = f (u (x0))

and therefore
DF−1 (u (x0)) Jm = D [DJmD]

−1
Jm = J tmD

−1Jm .

Moreover DF−1 (u (x0)) Jm > 0, since the right-hand side is positive definite since D > 0 (and
thus D−1 > 0). Hence, by continuity, we have that DF−1Jm > 0 in a small enough neigh-
borhood of u (x0) . Appealing to Theorem 12, we find a neighborhood V ⊂ u (Ω) of u (x0) and
ϕ ∈ Diffr,a (V ;ϕ (V )) such that ϕ (u (x0)) = u (x0) and, for y ∈ V,

ϕ∗ (ωm) (y) = f (y) ,
[
dϕ y f−1

]
(y) = 0

and, in view of Remark 13 (i) restricting, if necessary, the neighborhood V, we have that ∇ϕ +

(∇ϕ)
t
> 0 on V. We then claim that χ = ϕ−1, ψ = ϕ ◦ u and U = u−1 (V ) have all the desired

properties. Indeed we immediately have ψ∗ (ωm) = ωm . The condition dχ yωm = 0 follows from
Lemma 20, since

0 =
[
dϕ y f−1

]
(y) =

[
dϕ y (ϕ∗ (ωm))−1

]
(y) = −

[
d
(
ϕ−1

)
yω−1

m

]
(ϕ (y))

= [dχ yωm]
(
χ−1 (y)

)
.

Finally the conclusion ∇χ+ (∇χ)
t
> 0 holds, since ∇ϕ+ (∇ϕ)

t
> 0. This completes the proof.

In the above considerations, as well as in (30) of Proposition 23, we use the following lemma.

Lemma 20 Let n = 2m and ω ∈ C0
(
Rn; Λ2

)
be such that

rank [ω (x)] = n, for every x.

Let ϕ ∈ C1 (Rn;Rn) . Then, for every x ∈ Rn, the following holds[
dϕ y (ϕ∗(ω))−1

]
(x) = −

[
d
(
ϕ−1

)
yω−1

]
(ϕ (x)) .

Proof (Lemma 20). We let ω ∈ Rn×n be the skew symmetric matrix associated to ω ∈ Λ2. On
one hand we have[

dϕ y (ϕ∗(ω))−1
]

(x) =

〈
∇ϕ (x) ;

{
(∇ϕ)

t
(x) · ω(ϕ (x)) · ∇ϕ (x)

}−1
〉

=
〈
∇ϕ (x) ; (∇ϕ)

−1
(x) · (ω)−1(ϕ (x)) · (∇ϕ)

−t
(x)
〉
.
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On the other hand we get[
d
(
ϕ−1

)
yω−1

]
(ϕ (x)) =

〈
∇
(
ϕ−1

)
(ϕ (x)) ; (ω)−1 (ϕ (x))

〉
=
〈

(∇ϕ)
−1

(x) ; (ω)−1 (ϕ (x))
〉
.

Observe that, for any invertible matrices A,B ∈ Rn×n with B skew symmetric, we have〈
ABAt;A−1

〉
=
〈
A;A−1ABt

〉
= −〈A;B〉 .

Taking A = (∇ϕ)
−1

(x) and B = (ω)
−1

(ϕ (x)) , we obtain the lemma.

4.2 The global case for small data
We now show the symplectic factorization under a smallness assumption. We let r ≥ 1 and n = 2m
be integers, 0 < a < 1, Ω ⊂ Rn be a bounded connected open smooth set and ωm be the standard
symplectic form. For D ∈ Rn×n we set

σD (x) = Dx.

Corollary 21 (Global symplectic factorization for small data) Let D ∈ Rn×n be symmet-
ric and positive definite. Then there exists δ = δ (r, a,D,Ω) > 0 such that for every u ∈
Diffr,a

(
Ω;u

(
Ω
))
with

‖u− σD‖C1,a/2 ≤ δ
there exist

ψ ∈ Diffr,a
(
Ω;ψ

(
Ω
))

and χ ∈ Diffr,a
(
ψ
(
Ω
)

;u
(
Ω
))

such that u = χ ◦ ψ and

∇χ+ (∇χ)
t
> 0, dχ yωm = 0, ψ∗ (ωm) = ωm .

Moreover if Ω is contractible, there exists a closed 2−form Φ such that χ = δΦ yωm .

Remark 22 (Reverse order symplectic factorization) The proof below can be adapted to
prove a variant of the above symplectic factorization in the reverse order, namely u = ψ ◦χ where

∇χ+ (∇χ)
t
> 0, dχ yωm = 0, ψ∗ (ωm) = ωm .

Proof (Corollary 21). Step 1. Let f be the Cr−1,a symplectic form defined on u
(
Ω
)
by f =(

u−1
)∗

(ωm) and let F be its associated skew symmetric matrix. Observe that

F−t (u (x)) =
[(
∇u−1 (u (x))

)t
Jm
(
∇u−1 (u (x))

)]−t
= (∇u (x)) Jm (∇u (x))

t

and thus (recalling that D is symmetric)

D−1F−tJm = D−1 (∇u) Jm (∇u)
t
Jm = JmD

tJm +O (δ)

where we used the fact that ‖∇u−D‖C0 ≤ δ with δ small.
Step 2. We apply Theorem 6 to D−1, Bt = F−1, C = 0 and f. Choosing δ small enough, we

can ensure (by Step 1) that the symmetric part of D−1BJm is definite (since D > 0) and

‖f − σ∗D−1 (ωm)‖C0,a/2 =
∥∥∥(u−1

)∗
(ωm)− σ∗D−1 (ωm)

∥∥∥
C0,a/2

≤ ε
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where ε is as in Theorem 6 (note that the condition of orthogonality with the harmonic forms is
here automatically satisfied since f is exact). We therefore find ϕ ∈ Diffr,a

(
Ω;ϕ

(
Ω
))
satisfying

ϕ∗ (ωm) = f,
〈
F−1;∇ (ϕ− σD−1)

〉
= 0

which implies, since D−1 is symmetric and F−1 is skew symmetric, that

ϕ∗ (ωm) = f, dϕ y f−1 = 0.

We furthermore have
‖ϕ− σD−1‖C1,a/2 ≤ c ‖f − σ∗D−1 (ωm)‖C0,a/2 .

Choosing δ even smaller if necessary, we deduce from the previous inequality that ∇ϕ+(∇ϕ)
t
> 0,

since D−1 > 0. Letting χ = ϕ−1 and ψ = ϕ ◦ u we have shown the corollary (appealing to Lemma
20).

4.3 Hodge decomposition via symplectic factorization
We now prove that whenever the symplectic factorization is true, we can then derive, at least
formally, the classical Hodge decomposition (cf., for example, [8]) by linearization. Indeed, let
h be any regular map. Formally at least, for any real ε, the symplectic factorization reads off
id +ε h = χε ◦ ψε where

ψ∗ε (ωm) = ωm and dχε yωm = 0. (26)

We can assume (since we are only at the formal level) that χε and ψε can be written as

χε = id +ε v + o (ε) and ψε = id +εw + o (ε)

for some regular maps v and w. Note that

id +ε h = χε ◦ ψε = ψε + ε v ◦ ψε + o (ε)

= id +ε (v + w) + o (ε)

which implies h = v + w or equivalently

h yωm = v yωm + w yωm . (27)

An immediate calculation (as in Step 1 of the proof of Theorem 6) tells us that the first equation
in (26) reads as

d (w yωm) = 0. (28)

Moreover the second equation in (26) directly gives dv yωm = 0, or, which amounts to the same
(cf. (6)),

δ (v yωm) = 0. (29)

Combining (27), (28) and (29) we obtain (here we assume that Ω is contractible) the Hodge
decomposition for h yωm , namely

h yωm = dα+ δβ.

We therefore have obtained the same decomposition for any form g, choosing h = −g yωm in the
above equation and recalling that g = (−g yωm) yωm .
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5 Optimal transport and the symplectic factorization

Let n = 2m, Ω be a bounded connected smooth open set in R2m and u ∈ Diff1
(
Ω;u

(
Ω
))
. Let

h ∈ C1
(
Ω; Λ2

)
be a symplectic form on Ω and f be the symplectic form on u

(
Ω
)
defined by

u∗ (f) = h. Set
S =

{
χ ∈ Diff1

(
Ω;u

(
Ω
))

: χ∗ (f) = h
}

and consider

(P ) inf
χ∈S

{∫
Ω

|χ (y)− y|2 ρ (y) dy

}
where ρ is the volume form (which, by abuse of notations, is identified with a function) associated
to h i.e.

ρ dx1 ∧ · · · ∧ dx2m =
1

m!
hm ⇔ ρ =

1

m!
(∗hm) .

Proposition 23 Assume that there exists a minimizer χ ∈ S of (P ) . Then

dχ yh−1 = 0, in Ω (30)

and
〈[∇χ (x)] ξ; ξ〉 ≥ 0, ∀ ξ ∈ Rn and ∀x ∈ Ω . (31)

Remark 24 (i) Proposition 23 is then related to the discussion made in the introduction of Section
4. Indeed we have our desired factorization (with semi-definiteness of the symmetric part of ∇χ
instead of definiteness), namely, letting ψ = χ−1 ◦ u, we obtain

ψ∗ (h) = h, dχ yh−1 = 0 and u = χ ◦ ψ. (32)

(ii) Note that, by (6) and Proposition 1,

δ
[
χ yh−1ρ

]
= −dχ yh−1ρ .

Hence (30) means that χ yh−1ρ is co-closed. In particular, assuming that Ω is contractible, we
have if h = ωm , since ω−1

m = −ωm and ρ ≡ 1, that there exists a closed 2−form Φ such that
χ = δΦ yωm . By (31), (32) and the above remark, we get

u = (δΦ yωm) ◦ ψ, ψ∗ (ωm) = ωm , dΦ = 0 and ∇ (δΦ yωm) + (∇ (δΦ yωm))
t ≥ 0.

(iii) We could have proceeded in a completely analogous way considering the minimization
problem

(P ) inf
ψ∈Sh

{∫
Ω

|ψ (x)− u (x)|2 ρ (x) dx

}
where

Sh =
{
ψ ∈ Diff1

(
Ω; Ω

)
: ψ∗ (h) = h

}
.

Note that every ψ ∈ Sh satisfies

ψ∗ (hm) = hm or equivalently ρ (ψ) det∇ψ = ρ.

We would have found that χ = u ◦ ψ−1 ∈ S and satisfies (31) and (32).
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Proof (Proposition 23). Step 1. For every v : Ω→ Rn of the form

v = ∇a yh−1

where a ∈ C∞0 (Ω) define Svt by

d

dt
Svt = v (Svt ) and Sv0 = id .

Since v ∈ C∞0 (Ω;Rn) classical results show that

Svt ∈ Diff∞
(
Ω; Ω

)
and supp (Svt − id) ⊂ Ω .

Moreover noticing that
d (v yh) = 0 in Ω

then, again by classical methods (cf. Theorems 12.5 and 12.7 in [8]),

(Svt )
∗

(h) = h , for every t.

This in turn implies that, for every t,

(Svt )
∗

(hm) = hm ⇔ ρ (Svt ) det∇Svt = ρ. (33)

Let χ be a minimizer of (P ) . Since, for every t, (χ ◦ Svt )
∗

(f) = h , the functional J : R→ R defined
by

J (t) =

∫
Ω

|χ ◦ Svt − id|2 ρ

attains its minimum at t = 0. Changing the variables and using (33) we get

J (t) =

∫
Ω

∣∣χ− Sv−t∣∣2 ρ =

∫
Ω

(
|χ|2 + |id|2

)
ρ−

∫
Ω

2
〈
χ;Sv−t

〉
ρ.

Hence J is smooth and thus J ′ (0) = 0 and J ′′ (0) ≥ 0. A direct computation leads to

J ′ (t) = 2

∫
Ω

〈
χ; v

(
Sv−t

)〉
ρ = 2

∫
Ω

〈χ (Svt ) ; v〉 ρ

and

J ′′ (t) = 2

∫
Ω

〈∇χ (Svt ) · v (Svt ) ; v〉 ρ

Therefore J ′ (0) = 0 and J ′′ (0) ≥ 0 read as∫
Ω

〈χ; v〉 ρ = 0 and
∫

Ω

〈∇χ · v; v〉 ρ ≥ 0

Step 2. We now prove (30). From the definition of v, J ′ (0) = 0 can be rewritten as∫
Ω

〈
χ;∇a yh−1

〉
ρ = 0.

Since h−1 is skew-symmetric the above equation is equivalent to∫
Ω

〈
χ y ρh−1;∇a

〉
= 0,

24



yielding, since a ∈ C∞0 (Ω) is arbitrary,

δ
(
χ y ρh−1

)
= 0.

Using (6) and Proposition 1 we directly deduce (30) since ρ > 0 in Ω.

Step 3. We finally show (31). From J ′′ (0) ≥ 0 we know that, for every a ∈ C∞0 (Ω) ,∫
Ω

〈
∇χ · ∇a yh−1;∇a yh−1

〉
ρ ≥ 0

and get at once (31) from Lemma 25. This ends the proof.

In the proof of the previous proposition we have used the following lemma.

Lemma 25 Let n = 2m, Ω ⊂ Rn be a bounded open set, ρ ∈ C0
(
Ω
)
with ρ > 0, A ∈ C0

(
Ω;Rn×n

)
and ω ∈ C0

(
Ω; Λ2

)
be such that

rank [ω (x)] = n, for every x ∈ Ω.

Assume that ∫
Ω

〈
A · (∇a yω−1);∇a yω−1

〉
ρ ≥ 0, for every a ∈ C∞0 (Ω) .

Then
〈A (x) ξ; ξ〉 ≥ 0, ∀ ξ ∈ Rn and ∀x ∈ Ω. (34)

Proof Let B = (ω)
−1 ∈ C0

(
Ω;Rn×n

)
, where ω is the skew symmetric matrix associated to ω.

We have by assumption that∫
Ω

〈(
Bt ·A ·B

)
∇a;∇a

〉
ρ ≥ 0, for every a ∈ C∞0 (Ω). (35)

Fix a ∈ C∞0 (Ω) and x0 ∈ Ω. Using the test functions (extending a by 0 outside Ω and taking ε
small enough)

aε (x) =
1

εm−1
a (x0 + (x− x0) /ε)

in (35) and letting ε tend to 0, a simple calculation gives∫
Ω

〈[(
Bt ·A ·B

)
(x0)

]
· ∇a (y) ;∇a (y)

〉
ρ (x0) dy ≥ 0.

Finally using test functions of the form

aν(x) = g (x) sin (ν 〈ξ;x〉)

in the previous inequality where ξ ∈ Rn and g ∈ C∞0 (Ω) is not identically 0 are both fixed, a direct
calculation gives that, for ν large enough,〈[(

Bt ·A ·B
)

(x0)
]
ξ; ξ
〉
≥ 0.

Since ξ is arbitrary and B (x0) is invertible, the last inequality implies directly that

〈A (x0) ξ; ξ〉 ≥ 0, for every ξ ∈ Rn

which implies (34) up to the boundary by continuity.
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6 Appendix: on the definition of ellipticity
Although the definition of ellipticity that we use is standard (see [1], [2], [17] and [18]) and is, in
some more geometrical context, called right-ellipticity, we think that, for the ease of the reader
and for fixing the notations, it might be appropriate to recall it. We proceed in three steps, first
discussing the linear case, then the quasilinear one and finally the fully nonlinear case.

6.1 The linear case
Let us first introduce some notations.

(i) Let n,N,m and M be integers and let Ω ⊂ Rn be open and connected.
(ii) Let

u : Ω→ RN , u = u (x) = u (x1, · · · , xn) =
(
u1, · · · , uN

)
and thus ∇mu ∈ RN×nm (seen as a vector) i.e.

∇mu =
(
ujxi1 ···xim

)1≤j≤N

1≤i1,··· ,im≤n
where ujxi1 ···xim =

∂muj

∂xi1 · · · ∂xim
.

(iii) Let A ∈ RM×(N×nm) be a matrix, that can also depend on x, be such that

A = A (x) =
(
Aj;ki1···im (x)

)1≤j≤N ;1≤k≤M

1≤i1,··· ,im≤n

with
Aj;k (x) 6= 0, for every 1 ≤ j ≤ N, 1 ≤ k ≤M and for every x ∈ Ω.

Consider the linear operator

A : Cm
(
Ω;RN

)
→ C0

(
Ω;RM

)
be defined, for x ∈ Ω, by

A (u) (x) =

 n∑
i1,··· ,im=1

N∑
j=1

Aj;1i1···im u
j
xi1 ···xim

, · · · ,
n∑

i1,··· ,im=1

N∑
j=1

Aj;Mi1···im u
j
xi1 ···xim


which we write, for x ∈ Ω, as

A (u) (x) = A (x) · ∇mu (x)

where the right-hand side can be seen as a [M × (N × nm)] matrix A applied to the [N × nm]
vector ∇mu leading to a M vector.

(iv) We denote by
ξ⊗

m

= ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
m times

= (ξi1 · · · ξim)1≤i1,··· ,im≤n ,

where ⊗ stands for the tensor product of vectors in Rn; for example

ξ ⊗ ξ = (ξiξj)1≤i,j≤n =


(ξ1)

2
ξ1ξ2 · · · ξ1ξn

ξ1ξ2 (ξ2)
2 · · · ξ2ξn

...
...

. . .
...

ξ1ξn ξ2ξn · · · (ξn)
2

 .
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To the differential operator A we associate in a natural way a linear (algebraic) operator.
Namely for x ∈ Ω and ξ ∈ Rn fixed, we define

Ax,ξ : RN → RM

through

Ax,ξ (λ) = A (x) ·
(
λ⊗ ξ⊗

m
)
.

Definition 26 We say that the system

A (u) (x) = A (x) · ∇mu (x) = f (x) , x ∈ Ω

is elliptic (over Ω) if ∀x ∈ Ω and ∀ ξ ∈ Rn \ {0} , then λ = 0 ∈ RN is the only solution of

Ax,ξ (λ) = 0.

Remark 27 In other words, the definition states that, for every x ∈ Ω and ξ 6= 0, the operator
Ax,ξ is one to one. This definition is, sometimes, called "right-ellipticity". Classically one also
specifies the range of the operator, which is usually the whole of RM , as in Example 28 (i) and
(ii); however this is not always the case as seen in Example 28 (iii).
- Let us first examine this particular example. Indeed in this last case the range of the operator

cannot be the whole of RM ' Λk+1 × Λk−1. Since dd = 0 and δδ = 0, it is necessary that

df1 = 0 and δf2 = 0.

The range of the operator is then

X =
{
µ =

(
µ1, µ2

)
∈ Λk+1 × Λk−1 : ξ ∧ µ1 = 0 and ξ yµ2 = 0

}
.

- More generally when there are natural conditions that restricts the space, this should be taken
into account. Indeed if we consider the system

A · ∇mu = f

where the data satisfy the constraint
B · ∇lf = 0

where B ∈ RL×(M×nl), the range of the operator is then

X =
{
µ ∈ RM : B ·

(
µ⊗ ξ⊗

l
)

= 0
}
.

Therefore we require that ∀ ξ ∈ Rn \ {0} and ∀µ ∈ X, there exists a unique λ ∈ RN such that

A ·
(
λ⊗ ξ⊗

m
)

= µ.

But in order not to burden too much the technicalities, we have adopted the less restrictive defin-
ition of ellipticity where we do not specify the range.

Here are some examples showing that the definition corresponds to the classical ones. We start
with a single equation.
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Example 28 (i) The equation (here N = M = 1 and m = 2)

n∑
i,j=1

aij uxixj = f

is elliptic if, for every ξ 6= 0,
n∑

i,j=1

aij ξiξj 6= 0.

(ii) Let (here N = M and m = 2)

N∑
i=1

n∑
α,β=1

aijαβ u
i
xαxβ

= f j , j = 1, · · · , N

our definition of ellipticity gives (which is essentially the Legendre-Hadamard condition)

N∑
i,j=1

n∑
α,β=1

aijαβ η
iηjξαξβ 6= 0, ∀ ξ ∈ Rn \ {0} , ∀ η ∈ RN \ {0} .

(iii) Let u be a k−form, d denotes the exterior derivative and δ the co-differential (here N =
(
n
k

)
,

M =
(
n
k+1

)
+
(
n
k−1

)
and m = 1). Consider the system

du = f1 and δu = f2

which is indeed easily seen to be elliptic.

6.2 The nonlinear case
We now turn to quasilinear systems. Besides the above notations we adopt the following ones.

(i) Let S ⊂ Cm
(
Ω;RN

)
, for instance

S =
{
u ∈ C1 (Ω;u (Ω)) : 〈∇u (x) ξ; ξ〉 6= 0, ∀ ξ ∈ Rn \ {0} , ∀x ∈ Ω

}
as in Proposition 14 (when A = B are constant matrices) or, as in Example 31 (i),

S =
{
u ∈ C2 (Ω) :

〈
∇2u (x) ξ; ξ

〉
6= 0, ∀ ξ ∈ Rn \ {0} , ∀x ∈ Ω

}
.

(ii) For u ∈ Cm−1
(
Ω;RN

)
, we let

U (x) =
(
x, u (x) ,∇u (x) , · · · ,∇m−1u (x)

)
∈ Ω× RN × RN×n × · · · × RN×n

m−1
.

(iii) Let A ∈ RM×(N×n) be such that

A = A (U (x)) =
(
Aj;ki1···im (U (x))

)1≤j≤N ;1≤k≤M

1≤i1,··· ,im≤n

with, for every x ∈ Ω and u ∈ S,

Aj;k (U (x)) 6= 0, for every 1 ≤ j ≤ N, 1 ≤ k ≤M.

We then let
A (u) (x) = A (U (x)) · ∇mu (x) .
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Note that
A (u) (x) ∈ RM .

(iv) We let f ∈ RM that may also depend on U (x) and

f [u] (x) = f (U (x)) ∈ RM .

(v) To the differential operator A we associate, as above, a linear (algebraic) operator. Namely
for x ∈ Ω, ξ ∈ Rn and u ∈ S fixed, we define

Ax,ξ,u : RN → RM

through

Ax,ξ,u (λ) = A (U (x)) ·
(
λ⊗ ξ⊗

m
)
.

Definition 29 The system
A (u) (x) = f [u] (x) , x ∈ Ω

is said to be elliptic (over Ω and over S) if ∀x ∈ Ω, ∀ ξ ∈ Rn \ {0} and ∀u ∈ S, then λ = 0 ∈ RN
is the only solution of

Ax,ξ,u (λ) = 0.

In the fully nonlinear case we proceed in the classical way. We reduce the system to a quasilinear
one by differentiating with respect to all variables according to the definition below. Here we add
the following notations.

(i) Let
F : Ω× RN × RN×n × · · · × RN×n

m−1
× RN×n

m

→ RM

with
F =

(
F 1 (U, z) , · · · , FM (U, z)

)
where U ∈ Rn × RN × RN×n × · · · × RN×nm−1

and z =
(
zji1···im

)
∈ RN×nm .

(ii) Let, for k = 1, · · · ,M and α = 1, · · · , n,

F̃ (x, z) = F (U (x) , z) and F̃ kxα =
∂F̃ k

∂xα
.

(iii) We consider the system

F [u] (x) = F (U (x) ,∇mu (x)) = 0, x ∈ Ω.

Differentiating the system with respect to xα (in case one of the equations is already in a quasilinear
form, there is no need to differentiate it, since the algebraic system is the same before or after
differentiation), we get

n∑
i1,··· ,im=1

N∑
j=1

[
F k
zji1···im

(U (x) ,∇mu (x))
∂m+1uj

∂xα∂xi1 · · · ∂xim

]
= −F̃ kxα (x,∇mu (x))

for every k = 1, · · · ,M and α = 1, · · · , n. It is therefore a quasilinear problem of the type considered
in Definition 29. Hence the algebraic problem for which we have to prove that λ = 0 is the only
solution is

n∑
i1,··· ,im=1

N∑
j=1

[
F k
zji1···im

(U (x) ,∇mu (x))λj ξα ξi1 · · · ξim
]

= 0.
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Since ξ 6= 0, we deduce that the algebraic problem has been reduced to

n∑
i1,··· ,im=1

N∑
j=1

[
F k
zji1···im

(U (x) ,∇mu (x))λj ξi1 · · · ξim
]

= 0

for every 1 ≤ k ≤M.

(iv) We then set A = A (U (x) ,∇mu (x)) be defined by

A =

(
Aj;ki1···im = F k

zji1···im

)1≤j≤N ;1≤k≤M

1≤i1,··· ,im≤n
∈ RM×(N×nm)

and we make the hypothesis that

Aj;k = F kzj 6= 0, for every 1 ≤ j ≤ N and 1 ≤ k ≤M.

(v) We finally define, for x ∈ Ω, ξ ∈ Rn and u ∈ S fixed,

Ax,ξ,u : RN → RM

through

Ax,ξ,u (λ) = A ·
(
λ⊗ ξ⊗

m
)
.

Definition 30 The system
F [u] (x) = 0, x ∈ Ω

is said to be elliptic (over Ω and over S) if ∀x ∈ Ω, ∀ ξ ∈ Rn \ {0} and ∀u ∈ S, then λ = 0 ∈ RN
is the only solution of

Ax,ξ,u (λ) = 0.

We now give two examples, starting with the Monge-Ampère equation in dimension 2.

Example 31 (i) Consider (here N = M = 1 and n = m = 2)

ux1x1ux2x2 − (ux1x2)
2

= f.

We find that the algebraic system is reduced to

λ
(
ux2x2ξ

2
1 − 2ux1x2ξ1ξ2 + ux1x1ξ

2
2

)
= 0

which has λ = 0 as the unique solution, for every ξ 6= 0, if and only if

ux2x2ξ
2
1 − 2ux1x2ξ1ξ2 + ux1x1ξ

2
2 6= 0 ⇔

〈
∇2u (x) ξ; ξ

〉
6= 0. (36)

Therefore if
S =

{
u ∈ C2 (Ω) :

〈
∇2u (x) ξ; ξ

〉
6= 0, ∀ ξ ∈ Rn \ {0} , ∀x ∈ Ω

}
we see that the equation is elliptic (over Ω and over S). Note that on S the functions are either
strictly convex or strictly concave.

(ii) It is interesting to make again the above computation but considering the problem as a
first order system, namely

det∇v = v1
x1v

2
x2 − v

1
x2v

2
x1 = f and curl v = v1

x2 − v
2
x1 = 0.
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After differentiation we get (here N = n = M = m = 2) that the algebraic problem is then
ξ1
[
λ1
(
ξ1v

2
x2 − ξ2v

2
x1

)
+ λ2

(
ξ2v

1
x1 − ξ1v

1
x2

)]
= 0

ξ2
[
λ1
(
ξ1v

2
x2 − ξ2v

2
x1

)
+ λ2

(
ξ2v

1
x1 − ξ1v

1
x2

)]
= 0

ξ1
(
λ1ξ2 − λ2ξ1

)
= ξ2

(
λ1ξ2 − λ2ξ1

)
= 0.

We therefore obtain that

λ1
[
ξ2
1v

2
x2 − ξ1ξ2

(
v2
x1 + v1

x2

)
+ ξ2

2v
1
x1

]
= 0 and λ2

[
ξ2
1v

2
x2 − ξ1ξ2

(
v2
x1 + v1

x2

)
+ ξ2

2v
1
x1

]
= 0.

The system thus has λ = 0 as a unique solution, for every ξ 6= 0, if and only if

ξ2
1v

2
x2 − ξ1ξ2

(
v2
x1 + v1

x2

)
+ ξ2

2v
1
x1 6= 0 ⇔ 〈∇v (x) ξ; ξ〉 6= 0.

Therefore if

S =
{
v ∈ C1

(
Ω;R2

)
: 〈∇v (x) ξ; ξ〉 6= 0, ∀ ξ ∈ Rn \ {0} , ∀x ∈ Ω

}
we see that the system is elliptic (over Ω and over S). Note that on S the symmetric part of the
gradient of the map is definite (either positive or negative).

We now turn to the most general nonlinear equation.

Example 32 Consider a single equation (here N = M = 1)

F [u] (x) = F (U (x) ,∇mu (x)) = 0 in Ω

where
U (x) =

(
x, u (x) ,∇u (x) , · · · ,∇m−1u (x)

)
∈ Ω× R× Rn × · · · × Rn

m−1
.

The condition Ax,ξ,u (λ) = 0 becomes now

λ

n∑
i1,··· ,im=1

Fzi1···im ξi1 · · · ξim = 0 where Fzi1···im = Fzi1···im (U (x) ,∇mu (x)) .

It has λ = 0, for ξ 6= 0, as the only solution if and only if
n∑

i1,··· ,im=1

Fzi1···im ξi1 · · · ξim 6= 0, ∀x ∈ Ω and ∀ ξ ∈ Rn \ {0} . (37)

Therefore if
S = {u ∈ Cm (Ω) verifying (37)}

we see that the equation is elliptic (over Ω and over S). In the special case m = 2 (which is the
one of Monge-Ampère equation, in this case F (z) = det z) we get that (37) reads as

〈Fz [u] (x) · ξ; ξ〉 =

n∑
i,j=1

Fzij
(
x, u (x) ,∇u (x) ,∇2u (x)

)
ξiξj 6= 0, (38)

∀x ∈ Ω and ∀ ξ ∈ Rn \ {0} . This is indeed the classical definition of ellipticity for fully nonlinear
equations of the second order. When we consider Monge-Ampère equation in dimension 2, we see
that (38) is nothing else than (36).
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