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Abstract. In this manuscript we extend De Giorgi’s interpolation method to a class of para-
bolic equations which are not gradient flows but possess an entropy functional and an underlying
Lagrangian. The new fact in the study is that not only the Lagrangian may depend on spatial vari-
ables, but it does not induce a metric. Assuming the initial condition to be a density function, not
necessarily smooth, but solely of bounded first moments and finite “entropy”, we use a variational
scheme to discretize the equation in time and construct approximate solutions. Then De Giorgi’s
interpolation method reveals to be a powerful tool for proving convergence of our algorithm. Finally
we show uniqueness and stability in L1 of our solutions.

1. Introduction

In the theory of existence of solutions of ordinary differential equations on a metric space, curves
of maximal slope and minimizing movements play an important role. The minimizing movements in
general are obtained via a discrete scheme. They have the advantage of providing an approximate
solution of the differential equation by discretizing in time while not requiring the initial condition to
be smooth. Then a cleaver interpolation method introduced by De Giorgi [7, 6] ensures compactness
for the family of approximate solutions. Many recent works [3, 14] have used minimizing movement
methods as a powerful tool for proving existence of solution for some classes of partial differential
equations (PDEs). So far, most of these studies concern PDEs which can be interpreted as gradient
flow of an entropy functional with respect to a metric on the space of probability measures. This
paper extends the minimizing movements and De Giorgi’s interpolation method to include PDEs
which are not gradient flows, but possess an entropy functional and an underlying Lagrangian which
may be dependent of the spatial variables.

In the current manuscript X ⊂ Rd is an open set whose boundary is of zero measure. We denote
by Pα(X) the set of Borel probability measures on Rd of bounded α-moments, endowed with the
α-Wasserstein distance Wα (cfr. subsection 2.2). Let Pac

α (X) be the set of probability densities %
such that %Ld belongs to Pα(X). We consider distributional solutions of a class of PDEs of the
form

(1.1) ∂t%t + div(%tVt) = 0, in D′((0, T )× Rd)

(this implicitly means that we have imposed Neumann boundary condition), with

%tVt := %t∇pH
(
x,−%−1

t ∇[P (%t)]
)

on (0, T )×X

and
t 7→ %t ∈ AC1(0, T ;Pac

1 (X)) ⊂ C([0, T ];P1(X)).
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The space to which the curve t 7→ %t belongs ensures that %t converges to %0 in Pac
1 (X) as t tends

to 0. By abuse of notation, %t will denote at the same time the solution at time t and the function
(t, x) 7→ %t(x) defined over (0, T ) ×X. (It will be clear for the context which one we are referring
to.)

We only consider solutions such that ∇[P (%t)] ∈ L1((0, T )×X), and is absolutely continuous with
respect to %t. If %t satisfies additional conditions which will soon comment on, then t → U(%t) :=∫
X U(%t)dx is absolutely continuous, monotone nonincreasing, and

(1.2)
d

dt
U(%t) = −

∫

X
〈∇[P (%t)], Vt〉dx.

We recall that the unknown %t is nonnegative, and can be interpreted as the density of a fluid,
whose pressure is P (%t). Here, the data H, U and P satisfy specific properties, which are stated in
subsection 2.1.

Solutions of our equation can be viewed as curves of maximal slope on a metric space contained
in P1(X). They include the so-called minimizing movements (cfr. [3] for a precised definition)
obtained by many authors in case the Lagrangian does not depend on spatial variables (e.g. [13]
when H(p) = 1/2|p|2, [1, 3] when H(x, p) ≡ H(p)). These studies have been very recently extended
to a special class of Lagrangian depending on spatial variables where the Hamiltonian assume the
form H(x, p) = 〈A∗(x)p, p〉 [14]. In their pioneering work Alt and Luckhaus [2] consider differential
equations similar to (1.1), imposing some assumptions not very comparable to ours. Their method
of proof is very different from the ones used in the above cited references and is based on a Galerking
type approximation method.

Let us describe the strategy of the proof of our results. The first step is the existence part. Let
L(x, ·) be the Legendre transform of H(x, ·), to which we refer as a Lagrangian. For a time step
h > 0, let ch(x, y), the cost for moving a unit mass from a point x to a point y, be the minimal
action minσ

∫ h
0 L(σ, σ̇)dt. Here, the minimum is performed over the set of all paths (not necessarily

contained in X) such that σ(0) = x and σ(h) = y. The cost ch provides a way of defining the
minimal total work Ch(%0, %) (cfr. (2.8)) for moving a mass of distribution %0 to another mass of
distribution % in X. For measures which are absolutely continuous, the recent papers [4, 8, 9] give
uniqueness of a minimizer in (2.8), which is concentrated on the graph of a function Th : Rd → Rd.
Furthermore, Ch provides a natural way of interpolating between these measures: there exists a
unique density %̄s such that Ch(%0, %h) = Cs(%0, %̄s) + Ch−s(%̄s, %h) for s ∈ (0, h).

Assume for a moment that X is bounded. For a given initial condition %0 ∈ Pac
1 (X) we inductively

construct {%h
nh}n in the following way: %(n+1)h is the unique minimum of Ch(%h

nh, %) +
∫
X U(%)dx

over Pac
1 (X). We refer to this minimization problem as the primal problem. Under the additional

condition that L(x, v) > L(x, 0) ≡ 0 for all x, v ∈ Rd such that v 6= 0, one has ch(x, x) < ch(x, y) for
x 6= y. As a consequence, under that condition the following maximum principle holds: if %0 ≤ M
then %h

nh ≤ M for all n ≥ 0.
We then study a problem, dual to the primal one, which provides us with a characterization and

some important regularity properties of the minimizer %(n+1)h. These properties would have been
harder to obtain studying only the primal problem. Having determined {%h

nh}n∈N, we consider two
interpolating paths. The first one is the path t → %̄h

t such that

Ch(%h
nh, %h

(n+1)h) = Cs(%h
nh, %̄h

nh+s) + Ch−s(%̄h
nh+s, %

h
(n+1)h), 0 < s < h.
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The second path t → %h
t is defined by

%h
nh+s := arg min

{
Cs(%h

nh, %) +
∫

X
U(%)dx

}
, 0 < s < h.

This interpolation was introduced by De Giorgi in the study of curves of maximal slopes when√Ch defines a metric. The path {%̄h
t } satisfies equation (3.28), which is a discrete analogue of the

differential equation (1.1). Then we write a discrete energy inequality in terms of both paths {%̄h
t }

and {%h
t }, and we prove that up to a subsequence both paths converge (in a sense to be made

precised) to the same path %t. Furthermore, %t satisfies the energy inequality

(1.3) U(%0)− U(%T ) ≥
∫ T

0
dt

∫

X

[
L

(
x, Vt

)
+ H

(
x,−%−1

t ∇[P (%t)]
)]

%t dx,

which thanks to the assumptions on H (cfr. subsection 2.1) implies for instance that ∇[P (%t)] ∈
L1((0, T )×X). The above inequality corresponds to what can be considered as one half of the chain
rule:

d

dt
U(%t) ≤

∫

X
〈Vt,∇[P (%t)]〉 dx.

Here Vt is a velocity associated to the path t 7→ %t, in the sense that equation (1.1) holds without
yet the knowledge that %tVt := %t∇pH

(
x,−%−1

t ∇[P (%t)]
)
. The current state of the art allows us to

establish the reverse inequality yielding to the whole chain rule only if we know that

(1.4)
∫ T

0
dt

∫

X
|Vt|α%t dx,

∫ T

0
dt

∫

X
|%−1

t ∇[P (%t)]|α′%t dx < +∞

for some α ∈ (1,∞), α′ = α/(α− 1). In that case, we can conclude that

%tVt := %t∇pH
(
x,−%−1

t ∇[P (%t)]
)

and
d

dt
U(%t) =

∫

X
〈Vt,∇[P (%t)]〉 dx.

In light of the energy inequality (3.29), a sufficient condition to have the inequality (1.4) is that
L(x, v) ∼ |v|α. This is what we later impose in this work.

Suppose now that X may be unbounded. As pointed out in remark 3.18, by a simple scaling
argument we can solve equation (1.1) for general nonnegative densities, not necessarily of unit mass.
Lemma 4.1 shows that if we impose the bound (4.1) on the negative part of U , then

∫
X U(%)dx is

well-defined for % ∈ Pac
1 (X). We assume that the initial condition %0 ∈ Pac

1 (X) and
∫
X |U(%0)|dx

is finite, and we start our approximation argument by replacing X by Xm := X ∩ Bm(0) and %0

by %m
0 := %0χBm(0). Here, Bm(0) is the open ball of radius m, centered at the origin. The previous

argument provides us with a solution of equation (1.1), starting at %m
0 , for which we show that

max
t∈[0,T ]

{∫

Xm

|x|%m
t dx +

∫

Xm

|U(%m
t )| dx

}

is bounded by a constant independent of m. Using the fact that for each m, %m satisfies the en-
ergy inequality (1.3), we obtain that a subsequence of {%m} converges to a solution of equation
(1.1) starting at %0. Moreover, as we will see, our approximation argument also allows to relax the
regularity assumptions on the Hamiltonian H. This shows a remarkable feature of the existence
scheme described before, as it allows to construct solutions of a highly nonlinear PDE as (1.1) by
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approximating at the same time the initial datum and the Hamiltonian (and the same strategy
could also be applied to relax the assumptions on U , cfr. section 4). This completes the existence
part.

In order to prove uniqueness of solution in equation (1.1) we make several additional assumptions
on P and H. First of all, we assume that L(x, v) > L(x, 0) for all x, v ∈ Rd such that v 6= 0 to ensure
that the maximum principle holds. Next, let Q denote the inverse of P and set u(t, ·) := P (%t).
Then equation (1.1) is equivalent to

(1.5) ∂tQ(u) = div a(x,Q(u),∇u) in D′((0, T )×X),

which is a quasilinear elliptic-parabolic equation. Here a is given by equation (5.2). The study in [15]
addresses contraction properties of solutions of equation (1.5) even when ∂tQ(u) is not a bounded
measure but is merely a distribution, as in our case. Our vector field a does not necessarily satisfy
the assumptions in [15]. (Indeed one can check that it violates drastically the strict monotonicity
condition of [15], for large Q(u).) For this reason, we only study uniqueness of solutions with bounded
initial conditions even if, for this class of solution, a is still not strictly monotone in the sense of [2]
or [15].

The strategy consists first in showing that there exists a Hamiltonian H̄ ≡ H̄(x, %, m) (cfr. equa-
tion (5.3)) such that for each x, −a(x, %,−m) is contained in the subdifferential of H̄(x, ·, ·) at
(%,m). Then, assuming H̄(x, ·, ·) convex and Q Lipschitz, we establish a contraction property for
bounded solutions of (1.1). As a by product we conclude uniqueness of bounded solutions.

The paper is structured as follows: in section 2 we start with some preliminaries and set up
the general framework for our study. The proof of the existence of solutions is then split into
two cases. Section 3 is concerned with the case where X is bounded, and we prove existence of
solutions of equations (1.1) by applying the discrete algorithm described before. In section 4 we
relax the assumption that X is bounded: under the hypotheses that %0 ∈ Pac

1 (X) and
∫
X |U(%0)|dx

is finite, we construct by approximation a solution of equation (1.1) as described above. Section 5
is concerned with uniqueness and stability in L1 of bounded solutions of equation (1.1) when Q is
Lipschitz. To achieve that goal, we impose the stronger condition (5.5) on the Hamiltonian H. We
avoid repeating known facts as much as possible, while trying to provide all the necessary details
for a complete proof.

2. Preliminaries, Notation and Definitions

2.1. Main assumptions. We fix a convex superlinear function θ : [0, +∞) → [0, +∞) such that
θ(0) = 0. The main examples we have in mind is a function θ which behaves like tα with α > 1 (for
more general behaviors, like t(ln t)+ or et, cfr. Remark 3.19). We consider a function L : Rd×Rd 7→ R
which we call Lagrangian. We assume that:

(L1) L ∈ C2(Rd × Rd), and L(x, 0) = 0 for all x ∈ Rd.
(L2) The matrix ∇vvL(x, v) is strictly positive definite for all x, v ∈ Rd.
(L3) There exist constants A∗, A∗, C∗ > 0 such that

C∗θ(|v|) + A∗ ≥ L(x, v) ≥ θ(|v|)−A∗ ∀x, v ∈ Rd.

Let us remark that the condition L(x, 0) = 0 is not restrictive, as we can always replace L by
L − L(x, 0), and this would not affect the study of the problem we are going to consider. We also
note that (L1), (L2) and (L3) ensure that L is a so-called Tonelli Lagrangian (cfr. for instance
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[8, Appendix B]). To prove a maximum principle for the solutions of (1.1), we will also need the
assumption:

(L4) L(x, v) ≥ L(x, 0) for all x, v ∈ Rd.

The global Legendre transform L : Rd × Rd → Rd × Rd of L is defined by

L(x, v) := (x,∇vL(x, v)) .

We denote by ΦL : Rd × Rd → Rd × Rd the Lagrangian flow defined by

(2.1)
{

d
dt

[∇vL
(
ΦL(t, x, v)

)]
= ∇xL

(
ΦL(t, x, v)

)
,

ΦL(0, x, v) = (x, v).

Furthermore, we denote by ΦL
1 : Rd × Rd → Rd the first component of the flow: ΦL

1 := π1 ◦ ΦL,
π1(x, v) := x.

The Legendre transform of L, called the Hamiltonian of L, is defined by

H(x, p) := sup
v∈Rd

{〈v, p〉 − L(x, v)
}
.

Moreover we define the Legendre transform of θ as

θ∗(s) := sup
t≥0

{
st− θ(t)

}
, s ∈ R.

It is well-known that L satisfies (L1), (L2) and (L3) if and only if H satisfies the following conditions:
(H1) H ∈ C2(Rd × Rd), and H(x, p) ≥ 0 for all x, p ∈ Rd.
(H2) The matrix ∇ppH(x, p) is strictly positive definite for all x, p ∈ Rd.
(H3) θ∗ : R→ [0, +∞) is convex, superlinear at +∞, and we have

−A∗ + C∗θ∗
( |p|

C∗

)
≤ H(x, p) ≤ θ∗(|p|) + A∗ ∀x, v ∈ Rd.

Moreover (L4) is equivalent to:
(H4) ∇pH(x, 0) = 0 for all x ∈ Rd.

We also introduce some weaker conditions on L, which combined with (L3) make it a weak Tonelli
Lagrangian:
(L1w) L ∈ C1(Rd × Rd), and L(x, 0) = 0 for all x ∈ Rd.
(L2w) For each x ∈ Rd, L(x, ·) is strictly convex.

Under (L1w), (L2w) and (L3), the global Legendre transform is an homeomorphism, and the Hamil-
tonian associated to L satisfies (H3) and
(H1w) H ∈ C1(Rd × Rd), and H(x, p) ≥ 0 for all x, p ∈ Rd.
(H2w) For each x ∈ Rd, H(x, ·) is strictly convex.
(Cfr. for instance [8, Appendix B].) In this paper we will mainly work assuming (L1), (L2) and
(L3), except in section 4 where we relax to assumptions on L (and correspondingly that on H) to
(L1w), (L2w) and (L3).

Let U : [0, +∞) → R be a given function such that

(2.2) U ∈ C2((0, +∞)) ∪ C([0,+∞)), U ′′ > 0,
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and

(2.3) U(0) = 0, lim
t→∞

U(t)
t

= +∞.

We set U(t) = +∞ for t ∈ (−∞, 0), so that U remains convex and lower-semicontinuous on the
whole R. We denote by U∗ the Legendre transform of U :

(2.4) U∗(s) := sup
t∈R

{
st− U(t)

}
= sup

t≥0

{
st− U(t)

}
.

When % is a Borel probability density of Rd such U−(%) ∈ L1(Rd), we define the internal energy

U(%) :=
∫

Rd

U(%) dx.

If % represents the density of a fluid, one interpretes P (%) as a pressure, where

(2.5) P (s) := U ′(s)s− U(s).

Note that P ′(s) = sU ′′(s), so that P is increasing on [0, +∞).

2.2. Notation and definitions.

If % is a probability density and α > 0, we write

Mα(%) :=
∫

Rd

|x|α%(x) dx

for its moment of order α. If X ⊂ Rd is a Borel set, we denote by Pac(X) the set of all Borel
probability densities on X. If % ∈ Pac(X), we tacitely identify it with its extension defined to be 0
outside X. We denote by P(X) the set of Borel probability measures µ on Rd that are concentrated
on X: µ(X) = 1. Finally, we denote by Pac

α (X) ⊂ Pac(X) the set of % probability density on X
such that Mα(%) is finite. When α ≥ 1, this is a metric space when endowed with the Wasserstein
distance Wα (cfr. equation (2.10) below).

Let u : X ⊂ Rd → R ∪ {±∞}. The set of points x such that u(x) ∈ R is called the domain of
u and denoted by domu. We denote by ∂−u(x) the subdifferential of u at x. Similarly, we denote
by ∂+u(x) the superdifferential of u at x. The set of point where u is differentiable is called the
domain of ∇u and is denoted by dom∇u.

Let u : Rd → R ∪ {+∞}. Its Legendre transform is u∗ : Rd → R ∪ {+∞} defined by

u∗(y) = sup
x∈X

{〈x, y〉 − u(x)
}
.

In case u : X ⊂ Rd → R ∪ {+∞}, its Legendre transform is defined by identifying u with its
extension which takes the value +∞ outside X.

Finally, for f : (a, b) → R, we set

d+f

dt
(t) := lim sup

h→0+

f(t + h)− f(t)
h

.



A VARIATIONAL METHOD FOR CLASS OF PARABOLIC PDES 7

Definition 2.1 (c-transform). Let X ⊂ Rd and let u, v : X → R ∪ {−∞}. The first c-transform of
u, uc : X → R ∪ {−∞}, and the second c-transform of v, vc : X → R ∪ {−∞}, are defined by

(2.6) uc(y) := inf
x∈X

{
c(x, y)− u(x)

}
, vc(x) := inf

y∈X

{
c(x, y)− v(y)}.

Definition 2.2 (c-convexity). We say that u : X → R ∪ {−∞} is first c-concave if there exists
v : X → R ∪ {−∞} such that u = vc. Similarly, v : X → R ∪ {−∞} is second c-concave if there
exists u : X → R ∪ {−∞} such that v = uc.

For simplicity we will omit the words “first” and “second” when referring to c-transform and
c-concavity.

For h > 0, we define the action Ah(σ) of an absolutely continuous curve σ : [0, h] → Rd as

Ah(σ) :=
∫ h

0
L(σ(τ), σ̇(τ)) dτ

and the cost function

(2.7) ch(x, y) := inf
σ

{
Ah(σ) : σ ∈ W 1,1(0, h;Rd), σ(0) = x, σ(h) = y

}
.

For µ0, µ1 ∈ P(Rd), let Γ(µ0, µ1) be the set of probability measures on Rd × Rd which have µ0 and
µ1 as marginals. Set

(2.8) Ch(µ0, µ1) := inf
γ

{∫

Rd×Rd

ch(x, y)dγ(x, y) : γ ∈ Γ(µ0, µ1)
}

and

(2.9) Wθ,h(µ0, µ1) := h inf
γ

{∫

Rd×Rd

θ

( |y − x|
h

)
dγ(x, y) : γ ∈ Γ(µ0, µ1)

}
.

We also recall the definition of the α-Wasserstein distance, α ≥ 1:

(2.10) Wα(µ0, µ1) := inf
γ

{∫

Rd×Rd

|y − x|α dγ(x, y) : γ ∈ Γ(µ0, µ1)
}1/α

.

It is well-known (cfr. for instance [3]) that Wα metrizes the weak∗ topology of measures on bounded
sets.

The following fact can be checked easily:

(2.11) Ch(µ0, µ2) ≤ Ch−t(µ0, µ1) + Ct(µ1, µ2)

for all t ∈ [0, h] and µ0, µ1, µ2 ∈ P(Rd).

2.3. Properties of enthalpy and pressure functionals. In this subsection, we assume that
(2.2) and (2.3) hold.

Lemma 2.3. The following properties hold:
(i) U ′ : [0, +∞) → R is strictly increasing, and so invertible. Its inverse is of class C1 and

limt→+∞ U ′(t) = +∞.
(ii) U∗ ∈ C1(R) is nonnegative, and (U∗)′(s) ≥ 0 for all s ∈ R.
(iii) lims→+∞(U∗)′(s) = +∞.
(iv) lims→+∞ U∗(s)/s = +∞.



8 A. FIGALLI, W. GANGBO, AND T. YOLCU

(v) P : [0,+∞) → [0, +∞) is strictly increasing, bijective, limt→+∞ P (t) = +∞, and its inverse
Q : [0, +∞) → [0,+∞) satisfies lims→+∞Q(s) = +∞.

Proof: (i) Since U is convex and U(0) = 0, we have U ′(t) ≥ U(t)/t. This and U ′′ > 0 easily imply
the result.
(ii) U∗ ≥ 0 follows from U(0) = 0. The remaining part is a consequence of (U∗)′(U ′(t)) = t for
t > 0, together with U∗(s) = 0 (and so (U∗)′(s) = 0) for s ≤ U ′(0+).
(iii) Follows from (i) and the identity (U∗)′(U ′(t)) = t for t > 0.
(iv) Since U∗ is convex and nonnegative we have U∗(s) ≥ s

2(U∗)′
(

s
2

)
, so that the result follows from

(iii).
(v) Observe that P (t) = U∗(U ′(t)) ≥ 0 by (ii). Since U ′ is monotone nondecreasing then for t < 1
we have P (t) ≤ tU ′(1)−U(t). We conclude that limt→0+ P (t) = 0. The remaining statements then
follow. ¤

Remark 2.4. Let X ⊂ Rd be a bounded set, and let % ∈ Pac(X) be a probability density. Recall that
we extend % outside X by setting its value to be 0 there. If R > 0 is such that X ⊂ BR(0), we have∫
Rd θ(|x|)%(x) dx ≤ θ(R). Moreover, since by convexity U(t) ≥ U(1)+U ′(1)(t−1) ≡ at+b for t ≥ 0,∫
Rd U−(%) dx is bounded on Pac(X) by |a|+ |b|Ld(X). Hence,

∫
Rd U(%) dx is always well-defined on

Pac(X), and is finite if and only if U+(%) ∈ L1(X).

The following lemma is a standard result of the calculus of variations, cfr. for instance [5] (for a
more general result on unbounded domains, cfr. section 4):

Lemma 2.5. Let X ⊂ Rd and suppose {%n}n∈N ⊂ Pac(X) converges weakly to % in L1(X). If
either X is bounded, or X is unbounded and U ≥ 0, then

lim inf
n→∞ U(%n) ≥ U(%).

2.4. Properties of H and the cost functions.

Lemma 2.6. The following properties hold:
(i) ch(x, x) ≤ 0 for all h > 0, x ∈ Rd.
(ii) For all h > 0, x, y ∈ Rd,

C∗h θ

( |x− y|
h

)
+ A∗h ≥ ch(x, y) ≥ h θ

( |x− y|
h

)
−A∗h ≥ −A∗h.

Proof: (i) Set σ(t) ≡ x for t ∈ [0, h] and recall that L(x, 0) = 0 to get ch(x, x) ≤ Ah(σ) = 0.
(ii) The first inequality is obtained using (L3), and ch(x, y) ≤ AT (σ) with σ(t) = (1−t/h)x+(t/h)y,
while the second one follows from Jensen’s inequality. ¤

The following proposition is classical (cfr. for instance [8, Appendix B]):

Proposition 2.7. Under the assumptions (L1), (L2) and (L3), (2.7) admits a minimizer σx,y for
any x, y ∈ Rd. We have that σx,y is of class C2([0, h]) and satisfies the Euler-Lagrange equation

(2.12) (σx,y(τ), σ̇x,y(τ)) = ΦL(τ, x, σ̇(0)) ∀τ ∈ [0, h],

where ΦL is the Lagrangian flow defined in equation (2.1). Moreover, for any h, r > 0, there exists
a constant kh(r), depending on h and r only, such that ||σx,y||C2([0,h]) ≤ kh(r) if |x|, |y| ≤ r.
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Remark 2.8. Let σ be a minimizer of the problem (2.7), and set

p(τ) := ∇vL
(
σ(τ), σ̇(τ)

)
.

(a) The Euler-Lagrange equation (2.12) implies that σ and p are of class C1 and satisfy the
ordinary differential equation

(2.13)
{

σ̇(τ) = ∇pH(σ(τ), p(τ)),
ṗ(t) = −∇xH(σ(τ), p(τ)).

(b) The Hamiltonian is constant along the integral curve (σ(τ), p(τ)), i.e. H(σ(τ), p(τ)) =
H(σ(0), p(0)) for τ ∈ [0, h].

The following lemma is standard (cfr. for instance [8, Appendix B]):

Lemma 2.9. Under the assumptions in proposition 2.7, let σ be a minimizer of (2.7), and define
pi := ∇vL(σ(i), σ̇(i)) for i = 0, h. For r,m > 0 there exists a constant lh(r,m), depending on h, r,m
only, such that if x, y ∈ Br(0) and w ∈ Bm(0), then:

(a) ch(x + w, y) ≤ ch(x, y)− 〈p0, w〉+ 1
2`h(r,m)|w|2;

(b) ch(x, y + w) ≤ ch(x, y) + 〈ph, w〉+ 1
2`h(r,m)|w|2.

Remark 2.10. This lemma says that −p0 ∈ ∂+ch(·, y)(x), and for y ∈ Br(0) the restriction of c(·, y)
to Br(0) is `h(r,m)-concave. Similarly, ph ∈ ∂+ch(x, ·)(y), and for x ∈ Br(0) the restriction of c(x, ·)
to Br(0) is `h(r,m)-concave.

2.5. Total works and their properties. In this subsection, we assume that (2.2) and (2.3) hold.

Remark 2.11. By Remark 2.10 ch is continuous. In particular, there always exists a minimizer for
(2.8) (trivial if Ch is identically +∞ on Γ(%0, %1)). We denote the set of minimizers by Γh(%0, %1).
Similarly, there is a minimizer for (2.9), and we denote the set of its minimizers by Γθ

h(%0, %1).

Lemma 2.12. The following properties hold:

(i) For any µ ∈ P(Rd) we have Ch(µ, µ) ≤ 0. In particular, for any µ, µ̄ ∈ P(Rd), Ch̄(µ, µ̄) ≤
Ch(µ, µ̄) if h < h̄.

(ii) For any h > 0, µ, µ̄ ∈ P(Rd),

−A∗h ≤ −A∗h + Wθ,h(µ, µ̄) ≤ Ch(µ, µ̄) ≤ C∗Wθ,h(µ, µ̄) + A∗h.

(iii) For any K > 0 there exists a constant C(K) > 0 such that

(2.14) W1(µ, µ̄) ≤ 1
K

Wθ,h(µ, µ̄) +
C(K)

K
h ∀h > 0, µ, µ̄ ∈ P(Rd).

Proof: (i) The first part follows from ch(x, x) ≤ 0, while the second statement is a consequence of
the first one and Ch̄(µ, µ̄) ≤ Ch(µ, µ̄) + Ch̄−h(µ̄, µ̄).
(ii) It follows directly from Lemma 2.6(iii).
(iii) Thanks to the superlinearity of h, for any K > 0 there exists a constant C(K) > 0 such that

(2.15) θ(s) ≥ Ks− C(K) ∀ s ≥ 0.
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Let now γ ∈ Γθ
h(µ0, µ1). Then

W1(µ, µ̄) ≤
∫

Rd×Rd

|x− y| dγ(x, y)

≤ h

K

∫

Rd×Rd

[
K
|x− y|

h
− C(K)

]
dγ(x, y) +

C(K)
K

h

≤ 1
K

∫

Rd×Rd

θ

( |x− y|
h

)
dγ(x, y) +

C(K)
K

h =
1
K

Wθ,h(µ, µ̄) +
C(K)

K
h.

¤

Lemma 2.13. Let h > 0. Suppose that {%n}n∈N converges weakly to % in L1(Rd) and that {M1(%n)}n∈N
is bounded. Then M1(%) is finite, and we have

lim inf
n→∞ C2h(%̄, %n) ≥ C2h(%̄, %) ∀ %̄ ∈ Pac

1 (X).

Proof: The fact that M1(%) is finite follows from the weak lower-semicontinuity in L1(Rd) of M1.
Let now γn ∈ Γh(%̄, %n). Since {M1(%n)}n∈N is bounded

(2.16) sup
n∈N

∫

Rd

(
|x|+ |y|

)
γn(dx, dy) < +∞.

As |x| + |y| is coercive, equation (2.16) implies that {γn}n∈N admits a cluster point γ for the
topology of the narrow convergence. Furthermore, it is easy to see that γ ∈ Γ(%̄, %) and so, since
c2h is continuous and bounded below, we get

lim inf
n→∞ C2h(%̄, %n) = lim inf

n→∞

∫

Rd×Rd

c2h(x, y) dγn(x, y) ≥
∫

Rd×Rd

c2h(x, y) dγ(x, y) ≥ C2h(%̄, %).

¤

3. Existence of solutions in a bounded domain

Throughout this section, we assume that (2.2) and (2.3) hold. We recall that L satisfies (L1),
(L2) and (L3). We also assume that X ⊂ Rd is an open bounded set whose boundary ∂X is
of zero Lebesgue measure, and we denote by X its closure. The goal is to prove existence of
distributional solutions to equation (1.1) by using an approximation by discretization in time. More
precisely, in subsection 3.1 we construct approximate solutions at discrete times {h, 2h, 3h, . . .} by an
implicit Euler scheme, which involves the minimization of a functional. Then, in subsection 3.2 we
explicitly characterize the minimizer introducing a dual problem. We then study the properties of
an augmented action functional which allows to prove a priori bounds on the De Giorgi’s variational
and geodesic interpolations (cfr. subsection 3.4). Finally, using these bounds, we can take the limit
as h → 0, and prove existence of distributional solutions to equation (1.1) when θ behaves at infinity
like tα, α > 1.
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3.1. The discrete variational problem. We fix h > 0 a time step, and for simplicity of notation
we set c = ch. We fix %0 ∈ Pac(X), and we consider the variational problem

(3.1) inf
%∈Pac(X)

Ch(%0, %) + U(%).

Lemma 3.1. There exists a unique minimizer %∗ of problem (3.1). Suppose in addition that (L4)
holds. If M ∈ (0,∞) and %0 ≤ M , then %∗ ≤ M. In other words, we have a maximum principle.

Proof: Thanks to (L1) and (L4) one easily gets that ch(x, x) < ch(x, y) for all x, y ∈ X, x 6= y.
Thanks to this fact, the proof of the maximum principle is a folklore which can be found in [18].
Existence of a minimizer %∗ follows by classical methods in the calculus of variation, thanks to the
lower-semicontinuity of the functional % 7→ Ch(%0, %) + U(%) in the weak topology of measures and
to the superlinearity of U (which implies that any limit point of a minimizing sequence still belongs
to Pac(X)).

To prove uniqueness, let %1 and %2 be two minimizers, and take γ1 ∈ Γh(%0, %1), γ2 ∈ Γh(%0, %2)
(cfr. remark 2.11). Then γ1+γ2

2 ∈ Γ
(
%0,

%1+%2

2

)
, so that

Ch

(
%0,

%1 + %2

2

)
≤

∫

X×X
c(x, y) d

(
γ1 + γ2

2

)
=
Ch(%0, %1) + Ch(%0, %2)

2
.

Moreover, by strict convexity of U ,

U
(

%1 + %2

2

)
≤ U(%1) + U(%2)

2
,

with equality if and only if %1 = %2. This implies uniqueness. ¤

3.2. Characterization of minimizers via a dual problem. The aim of this paragraph is com-
pletely characterize the minimizer %∗ provided by Lemma 3.1. We are going to identify a problem,
dual to problem (3.1), and to use it to achieve that goal.

We define E ≡ Ec to be the set of pairs (u, v) ∈ C(X)×C(X) such that u(x) + v(y) ≤ c(x, y) for
all x, y ∈ X, and we write u⊕ v ≤ c. We consider the functional

J(u, v) :=
∫

X
u%0 dx−

∫

X
U∗(−v) dx.

To alleviate the notation, we have omitted to display the %0 dependence in J.
We recall some well-known results:

Lemma 3.2. Let u ∈ Cb(X). Then (uc)c ≥ u, (uc)c ≥ u,
(
(uc)c

)
c

= uc, and
(
(uc)c

)c = uc.
Moreover:

(i) If u = vc for some v ∈ C(X), then:
(a) There exists a constant A = A(c,X), independent of u, such that u is A-Lipschitz and

A-semiconcave.
(b) If x̄ ∈ X is a point of differentiability of u, ȳ ∈ X, and u(x̄) + v(ȳ) = c(x̄, ȳ), then

x̄ is a point of differentiability of c(·, ȳ) and ∇u(x̄) = ∇xc(x̄, ȳ). Furthermore ȳ =
ΦL

1

(
h, x̄,∇pH

(
x̄,−∇u(x̄)

))
, and in particular ȳ is uniquely determined.

(ii) If v = uc for some u ∈ C(X), then:
(a) There exists a constant A = A(c,X), independent of v, such that v is A-Lipschitz and

A-semiconcave.
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(b) If x̄ ∈ X, ȳ ∈ X is a point of differentiability of v, and u(x̄) + v(ȳ) = c(x̄, ȳ), then
ȳ is a point of differentiability of c(x̄, ·) and ∇v(ȳ) = ∇yc(x̄, ȳ). Furthermore, x̄ =
ΦL

1

(−h, y,∇pH
(
y,∇v(ȳ)

))
, and in particular ȳ is uniquely determined.

In particular, if K ⊂ R is bounded, the set {vc : v ∈ C(X), vc(X) ∩K 6= ∅} is compact in C(X),
and weak∗ compact in W 1,∞(X).

Proof: Despite the fact that the assertions made in the lemma are now part of the folklore of the
Monge-Kantorovich theory, we sketch the main steps of the proof.

The first part is classical, and can be found in [12, 16, 17].
Regarding (i)-(a), we observe that by remark 2.10 the functions c(·, y) are uniformly semiconcave

for y ∈ X, so that u is semiconcave as the infimum of uniformly semiconcave functions (cfr. for
instance [8, Appendix A]). In particular u is Lipschitz, with a Lipschitz constant bounded by
‖∇xc‖L∞(X×X).

To prove (i)-(b), we note that ∂−u(x̄) ⊂ ∂−c(·, ȳ)(x̄). Since by remark 2.10 ∂+c(·, ȳ)(x̄) is
nonempty, we conclude that c(·, ȳ) is differentiable at x̄ if u is. Hence,

∇u(x̄) = ∇xc(x̄, ȳ) = −∇vL(σ(0), σ̇(0))

where σ : [0, h] → X is (the unique curve) such that c(x̄, ȳ) =
∫ h
0 L(σ, σ̇)dt (cfr. [8, Section 4 and

Appendix B]). This together with equation (2.12) implies

(3.2) ȳ = ΦL
1

(
h, x,∇pH

(
x,−∇u(x̄)

))
.

The proof of (ii) is analogous. ¤

Remark 3.3. By lemma 3.2, if u = vc for some v ∈ Cb(X), we can uniquely define Ld-a.e. a map
T : dom∇u → X such that u(x) + v(Tx) = c(x, Tx). This map is continuous on dom∇u, and since
∇u can be extended to a Borel map on X we conclude that T can be extended to a Borel map on
X, too. Moreover we have ∇u(x) = ∇xc(x, Tx) Ld-a.e., and T is the unique optimal map pushing
a density % ∈ Pac(X) forward to µ̄ := T#(%Ld) ∈ P(X) (cfr. for instance [12, 16, 17]).

Lemma 3.4. If (u, v) ∈ E and % ∈ Pac(X), then J(u, v) ≤ Ch(%0, %) + U(%).

Proof: Let γ ∈ Γ(%0, %). Since U(%(x)) + U∗(−v(x)) ≥ −%(x)v(x) and (u, v) ∈ E , we have by
integration

(3.3)
∫

X

(
U(%(x)) + U∗(−v(x))

)
dx ≥ −

∫

X
%(x)v(x) dx ≥ −

∫

X×X
cdγ +

∫

X
%0(x)u(x) dx.

Rearranging the expressions in equation (3.3), and optimizing over Γ(%0, %), we obtain the result.
¤

Lemma 3.5. There exists (u∗, v∗) ∈ E maximizing J(u, v) over E and satisfying uc∗ = v∗ and
(v∗)c = u∗. Furthermore:

(i) u∗ and v∗ are Lipschitz with a Lipschitz constant bounded by ||∇c||L∞(X×X).
(ii) We have that %v∗ := (U∗)′(−v∗) is a probability density on X, and the optimal map T

associated to u∗ (cfr. remark 3.3) pushes %0Ld forward to %v∗Ld.
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Proof: Note that if uc∗ = v∗ and (v∗)c = u∗, then (i) is a direct consequence of lemma 3.2.
Before proving the first statement of the lemma, let us show that it implies (ii). Let ϕ ∈ C(X)

and set
vε := v∗ + εϕ, uε := (vε)c.

Remark 3.3 says that for Ld-a.e. x ∈ X, the equation u∗(x) + v∗(y) = c(x, y) admits a unique
solution Tx. As done in [10] (cfr. also [11]) we have that

|uε − u∗|∞ ≤ ε‖ϕ‖∞, lim
ε→0

uε(x)− u∗(x)
ε

= ϕ(Tx)

for Ld-a.e. x ∈ X. Hence by the Lebesgue dominated convergence theorem

(3.4) lim
ε→0

∫

X

uε(x)− u∗(x)
ε

%0(x) dx = −
∫

X
ϕ(Tx)%0(x) dx.

Since (u∗, v∗) maximizes J over E , by equation (3.4) we obtain

0 = lim
ε→0

J(uε, vε)− J(u∗, v∗)
ε

= −
∫

X
ϕ(Tx)%0(x) dx +

∫

X
(U∗)′(−v∗(x))ϕ(x) dx.

Therefore

(3.5)
∫

X
ϕ(Tx)%0(x) dx =

∫

X
(U∗)′(−v∗(x))ϕ(x) dx.

Choosing ϕ ≡ 1 in equation (3.5) and recalling that (U∗)′ ≥ 0 (cfr. lemma 2.3(ii)), we discover
that %v∗ := (U∗)′(−v∗) is a probability density on X. Moreover equation (3.5) means that T pushes
%0Ld forward to %v∗Ld. This proves (ii).

We eventually proceed with the proof of the first statement. Observe that the functional J is
linear, and so it is continuous on E , which is a closed subset of C(X)×C(X). Thus it suffices to show
the existence of a compact set E ′ ⊂ E such that E ′ ⊂ {(u, v) : uc = v, vc = u} and supE J = supE ′ J.

If (u, v) ∈ E then u ≤ vc, and so J(u, v) ≤ J(vc, v). But, as pointed out in lemma 3.2, v ≤ (vc)c,
and since by lemma 2.3(ii) U∗ ∈ C1(R) is monotone nondecreasing, we have J(u, v) ≤ J(vc, v) ≤
J(vc, (vc)c). Set ū = vc and v̄ = (vc)c. By lemma 3.2, ū = v̄c and v̄ = ūc.

As U∗ ∈ C1(R) and (U∗)′ ≥ 0, the functional λ 7→ e(λ) :=
∫
X U∗(−v̄(x) + λ) dx is differentiable,

and

e′(λ) =
∫

X
(U∗)′(−v̄(x) + λ) dx ≥ 0.

Since by lemma 2.3(iv) U∗ grows superlinearly at infinity, so does e(λ). Hence

(3.6) lim
λ→+∞

J(ū + λ, v̄ − λ) = lim
λ→+∞

∫

X
ū%0dx + λ− e(λ) = −∞.

Moreover, as U∗ ≥ 0 (cfr. lemma 2.3(ii)),

(3.7) lim
λ→−∞

J(ū + λ, v̄ − λ) ≤ lim
λ→−∞

∫

X
ū%0dx + λ = −∞.

Since λ → J(ū + λ, v̄ − λ) is differentiable, by equations (3.6) and (3.7) J(ū + λ, v̄ − λ) achieves its
maximum at a certain λ̄ which satisfies 1 = e′(λ̄). Therefore we have

(ũ, ṽ) := (ū + λ̄, v̄ − λ̄) ∈ E , J(ū, v̄) ≤ J(ũ, ṽ), and
∫

X
(U∗)′(−ṽ) dx = 1.
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This last inequality and the fact that (U∗)′(−ṽ) is continuous on the compact set X ensure the
existence of a point x ∈ X such that −ṽ(x) = U ′(1/Ld(X)

)
. In light of lemma 3.2 and the above

reasoning, we have established that the set

E ′ := {(u, v) : (u, v) ∈ E , uc = v, vc = u, v(x) = −U ′(1/Ld(X)
)

for some x ∈ X}
satisfies the required conditions. ¤

Set
φ(%) := Ch(%0, %) + U(%).

Lemma 3.6. Let %∗ be the unique minimizer of φ provided by lemma 3.1, and let (u∗, v∗) be a
maximizer of J obtained in lemma 3.5. Then %∗ = (U∗)′(−v∗), and

max
E

J = J(u∗, v∗) = φ(%∗) = min
Pac(X)

φ.

Proof: Let T be as in lemma 3.5(ii), and define %v∗ := (U∗)′(−v∗). Note that since T pushes %0Ld

forward to %v∗Ld, we have that (id×T )#(%0Ld) ∈ Γ(%0, %v∗). Therefore, as c(x, Tx) = u∗(x)+v∗(Tx)
for %0Ld-a.e. x ∈ X,

Ch(%0, %v∗) ≤
∫

X
c(x, Tx)%0(x) dx =

∫

X

(
u∗(x) + v∗(Tx)

)
%0(x) dx

=
∫

X
u∗(x)%0(x) dx +

∫

X
v∗(x)%v∗(x) dx.(3.8)

Since
Ch(%0, %v∗) ≥

∫

X
u∗(x)%0(x) dx +

∫

X
v∗(x)%v∗(x) dx

trivially holds (as u⊕ v ≤ c), the inequality (3.8) is in fact an equality, and so

(3.9) Ch(%0, %v∗) + U(%v∗) =
∫

X
u∗(x)%0(x) dx +

∫

X

(
v∗(x)%v∗(x) + U(%v∗)

)
dx.

Combining the equality −v∗%v∗ = U(%v∗) + U∗(−v∗) (which follows from %v∗ = (U∗)′(−v∗)) with
equation (3.9) we get

Ch(%0, %∗) + U(%∗) = J(u∗, v∗),
which together with lemma 3.4 gives that %v∗ minimizes φ over Pac(X) and supE J = φ(%v∗). Since
the minimizer of φ over Pac(X) is unique (cfr. lemma 3.1), this concludes the proof. ¤

Remark 3.7. Thanks to lemma 3.2, on dom∇v∗ we can uniquely define a map S by u∗(Sy)+v∗(y) =
c(Sy, y), and we have ∇v∗(y) = ∇yc(Sy, y). This map is the inverse of T up to a set of zero measure,
it pushes %∗Ld forward to %0Ld, and

Sy = ΦL
1

(−h, y,∇pH
(
y,∇v∗(y)

))
.

Moreover, thanks to lemma 3.6, U ′(%∗) = −v∗ is Lipschitz, and

−∇v∗(y) = ∇[U ′(%∗)](y).

In particular Sy = ΦL
1

(−h, y,∇pH
(
y,−∇[U ′(%∗)](y)

))
.

We observe that the duality method allows to deduce in an easy way the Euler-Lagrange equa-
tion associated to the functional φ, by-passing many technical problems due to regularity issues.
Moreover it also gives ∇yc(Sy, y) = −∇[U ′(%∗)](y) Ld-a.e. in X (and not only %∗Ld-a.e.).
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3.3. Augmented actions. We now introduce the functional

Φ(τ, %0, %) := Cτ (%0, %) + U(%) %0, % ∈ Pac(X),

and we define
φτ (%0) := inf

%∈Pac(X)
Φ(τ, %0, %).

The goal of this subsection is to study the properties of Φ and φτ , in the same spirit as in [3, Chapter
3].

In the sequel, we fix %0 ∈ Pac(X). Lemma 3.6 provides existence of a unique minimizer of
Φ(τ, %0, %) over Pac(X), which we call %τ .

Lemma 3.8. The function τ 7→ φτ (%0) is nonincreasing, and satisfies

(3.10)
φτ1(%0)− φτ0(%0)

τ1 − τ0
≤ Cτ1(%0, %τ0)− Cτ0(%0, %τ0)

τ1 − τ0
∀ 0 ≤ τ0 ≤ τ1.

In particular d+φτ (%0)
dτ (τ) ≤ 0 for all τ ≥ 0, d+φτ (%0)

dτ ∈ L1
loc([0,+∞)), and

(3.11) φτ1(%0)− φτ0(%0) ≤
∫ τ1

τ0

d+φτ (%0)
dτ

(τ) dτ ∀ 0 ≤ τ0 ≤ τ1.

Proof: It is an immediate consequence of the definition of φτ and %τ that, for all τ0, τ1 > 0,

Cτ1(%0, %τ0)− Cτ0(%0, %τ0) ≥ φτ1(%0)− φτ0(%0).

This gives equation (3.10), which together with lemma 2.12(i) implies that τ 7→ φτ (%0) is non-
increasing. The last part of the lemma follows from the general fact that, if f : [a, b] → R is a
nonincreasing function, then d+f

dt ≤ 0, d+f
dt ∈ L1(a, b), and

∥∥d+f
dt

∥∥
L1(a,b)

≤ f(a) − f(b) (cfr. for
instance [18]). ¤

For h > 0, we denote by Th the optimal map that pushes %0Ld forward to %hLd as provided by
the last paragraph. We have

Thx = ΦL
1

(
h, x,∇pH

(
x,−∇uh(x̄)

))
,

with (uh, vh) a maximizer of (u, v) → ∫
X %0udx − ∫

X U∗(−v) dx. We recall that (U∗)′(−vh) = %h

(cfr. lemma 3.6). Moreover, if we define the interpolation map between %0 and %h by

(3.12) T s
hx := ΦL

1

(
s, x,∇pH

(
x,−∇uh(x̄)

))
, s ∈ [0, h],

we have

(3.13) ch(x, Thx) =
∫ h

0
L

(
σx

0 (s), σ̇x
0 (s)

)
ds, with σx

0 (s) := T s
hx.

Finally, since vh = −U ′(%h), denoting by Sh the inverse of Th we also have

(3.14) ∇ych(Shy, y) = −∇[U ′(%h)](y) = ∇vL
(
σShy

0 (h), σ̇Shy
0 (h)

)
for Ld-a.e. y ∈ X.

Lemma 3.9. We have ∫

X
H

(
y,−∇[U ′(%h)](y)

)
%h(y) dy ≤ −d+φt(%0)

dt
(h).
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Proof: For s ∈ [0, h + ε] we define

σx
ε (s) := F1

(
s

s + ε
, x,∇pH

(
x,−∇uh(x)

))
.

Since σx
ε (0) = x and σε(h + ε) = Thx, by the definition of Ch+ε we get

Ch+ε(%0, %h) ≤
∫

X
%0(x)

∫ h+ε

0
L

(
σx

ε , σ̇x
ε

)
ds dx(3.15)

=
h + ε

h

∫

X
%0(x)

∫ h

0
L

(
σx

0 ,
h

h + ε
σ̇x

0

)
ds dx.

Moreover, since L(x, ·) is convex,

(3.16) L
(
σx

0 , σ̇x
0

) ≥ L
(
σx

0 ,
h

h + ε
σ̇x

0

)
+

ε

h + ε

〈
∇vL

(
σx

0 ,
h

h + ε
σ̇x

0

)
, σ̇x

0

〉
.

Therefore, recalling that
〈
∇vL

(
σx

0 ,
h

h + ε
σ̇x

0

)
, σ̇x

0

〉
= L

(
σx

0 ,
h

h + ε
σ̇x

0

)
+ H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
,

combining equations (3.15) and (3.16) we obtain

Ch+ε(%0, %h) ≤
(

1− ε2

h(h + ε)

)
Ch(%0, %h)

− ε

h + ε

∫

X
%0(x)

∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
ds dx.

Hence, as H ≥ 0 by (H1), by Fatou’s lemma we get

(3.17) lim sup
ε→0+

Ch+ε(%0, %h)− Ch(%0, %h)
ε

≤ −1
h

∫

X
%0(x)

∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 , σ̇x
0

))
ds dx.

Thanks to the conservation of the Hamiltonian H recalled in remark 2.8(ii), by equations (3.10)
and (3.17) we obtain

d+φt(%0)
dt

(h) ≤ −
∫

X
H

(
σx

0 (h),∇vL
(
σx

0 (h), σ̇x
0 (h)

))
%0(x) dx,

and recalling that σx
0 (h) = Thx pushes %0Ld forward to %hLd, the desired result follows from equation

(3.14). ¤

Remark 3.10. Note that φτ (%0) ≤ Φ(τ, %0, %0) ≤ U(%0) (since Cτ (%0, %0) ≤ 0, cfr. lemma 2.6).
Therefore setting φ0(%0) = U(%0) ensures that τ 7→ φτ remains monotone nonincreasing on [0,∞),
and we have

U(%0)− U(%h) = φ0(%0)− φh(%h) + Ch(%0, %h).
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3.4. De Giorgi’s variational and geodesic interpolations. We fix %0 ∈ Pac(X) and a time
step h > 0, and set %h

0 = %0. We consider %h ∈ P r(X) the (unique) minimizer of Φ(τ, %0, ·) provided
by lemma 3.1, and we interpolate between %h

0 and %h
h along paths minimizing the action Ah: thanks

to [8, Theorem 5.1] there exists a the unique solution %̄h
s ∈ Pac(X) of

Cs

(
%h
0 , %̄h

s

)
+ Ch−s

(
%̄h

s , %h
h

)
= Ch

(
%h
0 , %h

h

)
,

which is also given by
%̄h

sLd := (T s
h)#%0Ld, 0 ≤ s ≤ h.

Moreover [8, Theorem 5.1] ensures that T s
h is invertible %̄s-a.e., so that in particular there exists a

unique vector field V h
s defined on the measure theoretical support of %̄s such that

V h
s (T s

h) = ∂sT
s
h %̄s-a.e.

Recall that by lemma 3.5(i) ||∇uh||L∞(X) ≤ ||∇ch||L∞(X×X). Exploiting equation (3.12) and the
fact that ∂sΦL maps bounded subsets of Rd × Rd onto bounded subsets Rd × Rd, we obtain that
sup0≤s≤h ||∂sT

s
h ||L∞(%̄s) < +∞. Therefore sup0≤s≤h ||V h

s ||L∞(%̄s) < +∞. Finally a direct computation
gives that

(3.18) ∂s%̄
h
s + div(%̄h

sV h
s ) = 0

in the sense of distribution on (0, h)× Rd. Observe that %̄h
0 = %0 and %̄h

h = %h
h.

Remark 3.11. Note that although the range of Th is contained in X, that of T s
h may fail to be in

that set.

We set
%s := argmin

{
Cs(%0, %) + U(%) : % ∈ Pac(X)

}
, 0 ≤ s ≤ h.

In a metric space (S, dist) with sCs = dist2, the interpolation s 7→ %s is due to De Giorgi [6] (cfr.
also [3, 7]).

Theorem 3.12. We have the energy inequality

U(%0)− U(%h) ≥
∫ h

0
ds

∫

Rd

L(y, Vs)%̄s dy +
∫ h

0
ds

∫

X
H

(
x,−∇U ′(%s)

)
%s dx.

Proof: We combine lemmas 3.8 and 3.9 with remark 3.10 to conclude that∫ h

0
dt

∫

X
H

(
x,−∇[U ′(%s)]

)
%s dx ≤ φ0(%0)− φh(%h) = U(%0)− U(%h)− Ch(%0, %h)

= U(%0)− U(%h)−
∫ h

0
dt

∫

X
L(T s

h(x), ∂sT
s
h(x))%0(x) dx

= U(%0)− U(%h)−
∫ h

0
dt

∫

Rd

L(y, Vs(y))%̄s(y) dy.

(We remark that the last integral has to be taken on the whole Rd, as we do not know in general
that the measures %̄s are concentrated on X, cfr. remark 3.11). ¤

We now iterate the argument above: lemma 3.6 ensures existence of a sequence {%h
kh}∞k=0 ⊂Pac(X) such that

%h
(k+1)h := argmin

{
Ch(%h

kh, %) + U(%) : % ∈ Pac(X)
}

.
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As above, we define

%h
kh+s := argmin

{
Cs(%h

kh, %) + U(%) : % ∈ Pac
1

}
, 0 ≤ s ≤ h.

By the same argument as before applied to (%kh, %(k+1)h) in place of (%0, %h), we obtain a unique
map Tkh : X → X such that (id × Tkh)#(%khLd) ∈ Γh(%kh, %(k+1)h). Moreover, for s ∈ (0, h) we
define %̄h

kh+s to be the interpolation along paths minimizing the action Ah, that is %̄kh+s is the
unique solution of

Cs

(
%h

kh, %̄h
kh+s

)
+ Ch−s

(
%̄h

kh+s, %
h
(k+1)h

)
= Ch

(
%h

kh, %h
(k+1)h

)
.

We denote by (uh
kh+s, v

h
kh+s) the solution to the dual problem provided by lemma 3.5, and we define

V h
kh+s by V h

kh+s(T
s
kh) = ∂sT

s
kh, with T s

kh the interpolation map: (T s
kh)#%h

kh = %h
kh+s.

Corollary 3.13. For h > 0, for any j ≤ k ∈ N, we have

U(%h
jh)− U(%h

kh) ≥
∫ kh

jh
ds

∫

Rd

L(y, V h
s )%̄h

s dy +
∫ kh

jh
ds

∫

X
H

(
x,−∇[U ′(%h

s )]
)
%h

s dx.

Proof: The proof is a direct consequence of theorem 3.12. ¤

3.5. Stability property and existence of solutions. We fix T > 0 and we want to prove
existence of solutions to equation (1.1) on [0, T ]. Recall that by lemma 2.12(i) Cs(%, %) ≤ 0 for any
s ≥ 0, % ∈ Pac

1 . This, together with the definition of %h
kh+s, yields

Ch

(
%h

kh, %h
kh+s

)
+ U(

%h
kh+s

) ≤ U(
%h

kh

)
, 0 ≤ s ≤ h.

By adding over k ∈ N the above inequality, thanks to remark 2.4 we get

(3.19)
∞∑

k=0

Ch

(
%h

kh, %h
(k+1)h

) ≤ U(
%h
0

)− lim inf
n→+∞ U(

%h
nh

) ≤ U(
%h
0

)
+ |a|+ |b|Ld(X).

We also recall that vh
t : X → R is a Lipschitz function (cfr. lemma 3.5(i)) which satisfies vh

t =
−U ′(%h

t ), so that setting
βh

t := U∗(−vh
t ) = P (%h

t )
we have

(3.20) %h
t∇[U ′(%h

t )] = −(U∗)′(−vh
t )∇vh

t = ∇[U∗(−vh
t )] = ∇[P (%h

t )] = ∇βh
t Ld-a.e.

We start with the following:

Lemma 3.14. We have

(3.21) U(%h
t ) ≤ U(%0) + A∗t.

Moreover, for any K > 0 there exists a constant C(K) > 0 such that, for any h ∈ (0, 1],

(3.22) W1(%̄h
t , %h

t ) ≤ C0

K
+ 2

A∗ + C(K)
K

h ∀ t ∈ [0, T ],

(3.23) W1(%̄h
t , %h

kh) ≤ C0

K
+

A∗ + C(K)
K

h ∀ t ∈ [kh, (k + 1)h], k ∈ N,

(3.24) W1

(
%h

t , %h
s

) ≤ C0

K
+ 2

A∗ + C(K)
K

[(t− s) + h] ∀ 0 ≤ s ≤ t,
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(3.25) W1

(
%̄h

t , %̄h
s

) ≤ C0

K
+

A∗ + C(K)
K

[(t− s) + h] ∀ 0 ≤ s ≤ t.

Here C0 is a positive constant independent of t, K, and h ∈ (0, 1].

Proof: Let t ∈ [kh, (k + 1)h] for some k ∈ N. Then by lemma 2.12(ii) we have

(3.26) U(%h
t )−A∗(t− kh) ≤ U(%h

t ) + Ct−kh(%h
t , %h

kh) ≤ U(%h
kh).

In particular U(%h
(k+1)h) ≤ U(%h

kh) + A∗h for all k ∈ N, and so adding over k we get

U(%h
t ) ≤ U(%h

kh) + A∗(t− kh) ≤ U(%h
(k−1)h) + A∗[h + (t− kh)]

≤ . . . ≤ U(%0) + A∗[kh + (t− kh)] = U(%0) + A∗t.

This proves equation (3.21).
Now, since Ch ≤ Ct−kh (cfr. lemma 2.12(i)), we have

Ch(%h
kh, %h

t ) ≤ U(%h
kh)− U(%h

t ) ∀ t ∈ [kh, (k + 1)h].

which combined with equation (3.26) and remark 2.4 gives

(3.27) Ch(%h
kh, %h

t ) ≤ U(%0) + A∗h + |a|+ |b|Ld(X) ∀ t ∈ [kh, (k + 1)h].

Moreover, as %h
kh = %̄h

kh for any k ∈ N, using again lemma 2.12(ii) we get

Ch(%h
kh, %h

(k+1)h) = Ct−kh(%h
kh, %̄h

t ) + C(k+1)h−t(%̄
h
t , %h

(k+1)h)

≥ Ct−kh(%h
kh, %̄h

t )−A∗h ≥ Ch(%h
kh, %̄h

t )−A∗h.

Thanks to lemma 2.12(ii)-(iii), for any K > 0 there exists a constant C(K) > 0 such that

W1(%h
kh, %h

t ) ≤ 1
K
Ch(%h

kh, %h
t ) +

A∗ + C(K)
K

h,

W1(%h
kh, %̄h

t ) ≤ 1
K
Ch(%h

kh, %̄h
t ) +

A∗ + C(K)
K

h,

which combined with the above estimates and the triangle inequality proves equations (3.22) and
(3.23).

Finally, to prove equations (3.24) and (3.25), we observe that equation (3.19) combined with
lemma 2.12(iii) gives

W1

(
%h

Nh, %h
Mh

) ≤
N−1∑

j=M

W1

(
%h
(j+1)h, %h

jh

)

≤ 1
K

N−1∑

j=M

Ch(%h
(j+1)h, %h

jh) +
A∗ + C(K)

K
h(N −M)

≤ 1
K

[U(
%h
0

)
+ |a|+ |b|Ld(X)

]
+

A∗ + C(K)
K

h(N −M).

Combining this estimate with equations (3.22) and (3.23), we obtain the desired result. ¤

We can now prove the compactness of our discrete solutions.

Proposition 3.15. There exists a sequence hn → 0, a density % ∈ Pac([0, T ] × X), and a Borel
function V : [0, T ]×X → Rd such that:
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(i) The measure valued curves t 7→ %hn
t ∈ Pac(X) and t 7→ %̄hn

t ∈ Pac(Rd) converge uniformly
(locally in time) to the curve t 7→ %t := %(t, ·), and this curve is uniformly continuous with
respect to the narrow topology. Moreover w∗-limt→0+ %t = %0.

(ii) The vector-valued measures %̄n
t (x)V hn

t (x)dx dt converge narrowly to %t(x)Vt(x)dx dt, where
Vt := V (t, ·).

(iii) ∂t%t + div(%tVt) = 0 holds on (0, T )×X in the sense of distribution.

Proof: Thanks to equations (3.24) and (3.25), as K > 0 is arbitrary it is easy to see that the
curves t 7→ %h

t and t 7→ %̄h
t are equicontinuous with respect to the 1-Wasserstein distance. Since

bounded sets with respect to W1 are precompact with respect to the narrow topology on Rd (cfr.
for instance [3, Chapter 7]), by Ascoli-Arzelà Theorem we can find a sequence hn → 0 such that
t 7→ %hn

t ∈ Pac(X) and t 7→ %̄hn
t ∈ Pac(Rd) converge uniformly (locally in time) to a narrow-

continuous curve t 7→ µt ∈ P(X) (which is the same for both %hn
t and %̄hn

t thanks to equation (3.22)).
Moreover t 7→ µt is supported in X as so is %hn

t , and the initial condition w∗-limt→0+ %̄hn
t = %0 holds

in the limit.
Concerning the vector-valued measure V h

t %h
t , recalling that H ≥ 0, thanks to corollary 3.13 and

remark 2.4 we have ∫ T

0
dt

∫

Rd

L(x, V h
t )%̄h

t dx ≤ U(%0) + |a|+ |b|Ld(X).

By (L3) this gives
∫ T

0
dt

∫

Rd

θ(|V h
t |)%̄h

t dx ≤ U(%0) + |a|+ |b|Ld(X) + A∗T =: C1.

The above inequality, together with the superlinearity of θ and the uniform convergence of %̄h to µt,
implies easily that the vector-valued measure V h

t %̄h have a limit point λ, which is concentrated on
[0, T ]×X. Moreover, the superlinearity and the convexity of θ insure that λ ¿ µ, and there exists
a µ-measurable vector field V : [0, T ]×X → Rd such that λ = V µ, and

∫ T

0
dt

∫

X
θ(|Vt|) dµt ≤ C1.

To conclude the proof of (i) and (ii), we have to show that µ ¿ Ld+1. We observe that thanks to
equation (3.21) ∫ T

0
dt

∫

X
U(%hn

t ) dx =
∫ T

0
U(%hn

t ) dt ≤ TU(%0) + A∗
T 2

2
,

so that by the superlinearity of U any limit point of %hn is absolutely continuous. Hence µ = %Ld,
and (i) and (ii) are proved.
Finally, from equation (3.18) we deduce that

(3.28) ∂t%̄
hn
t + div(%̄hn

t V hn
t ) = 0 on (0, T )×X

in the sense of distribution, so that (iii) follows taking the limit as n → +∞. ¤

Remark 3.16. In the proof of the above lemma we have seen that each curve t 7→ %̄hn
t , t 7→ %hn

t ∈
Pac(X) admits a representative which is uniformly continuous on [0, T ] with respect to the weak∗



A VARIATIONAL METHOD FOR CLASS OF PARABOLIC PDES 21

topology. We will always implicitly refer to such representative, so that in particular %̄hn
t is well-

defined for every t ∈ [0, T ]. Moreover we also obtain that both %̄hn
t and %hn

t converge weakly∗ to %t

for every fixed t ∈ [0, T ].

We are now ready to prove the following existence result. To simplify the notation, given two
nonnegative functions f and g, we write f & g if there exists two nonnegative constants c0, c1 such
that c0f + c1 ≥ g. If both & and . holds, we write f ∼ g.

Theorem 3.17. Let X ⊂ Rd be an open bounded set whose boundary is of zero Lebesgue measure,
and assume that H satisfies (H1), (H2) and (H3). Let %t and Vt be as in proposition 3.15. Then
we have P (%t) ∈ L1(0, T ; W 1,1(X)), ∇[P (%t)] is absolutely continuous with respect to %t, and

(3.29) U(%0)− U(%T ) ≥
∫ T

0
dt

∫

X

[
L

(
x, Vt

)
+ H

(
x,−%−1

t ∇[P (%t)]
)]

%t dx.

Furthermore, if θ(t) ∼ tα for some α > 1 and U satisfies the doubling condition

(3.30) U(t + s) ≤ C(U(t) + U(s) + 1) ∀ t, s ≥ 0,

then %t ∈ ACα(0, T ;Pac
α (X)),

(3.31) U(%T1)− U(%T2) = −
∫ T2

T1

dt

∫

X

〈∇[P (%t)], Vt

〉
dx,

for T1, T2 ∈ [0, T ]. In particular

Vt(x) = ∇pH
(
x,−%−1

t ∇[P (%t)]
)

%t-a.e.,

and %t is a distributional solution of equation (1.1) starting from %0.
Suppose in addition that (H4) holds. If %0 ≤ M for some M ≥ 0, then %t ≤ M for every t ∈ (0, T )
(maximum principle).

Proof: The maximum principle is a direct consequence of lemma 3.1. We first remark that the
last part of the statement is a simple consequence of equations (3.29) and (3.31) combined with
proposition 3.15(i)-(iii). So it suffices to prove to prove equations (3.29) and (3.31).
We first prove (3.29). Corollary 3.13 implies that, if T ∈ [khn, (k + 1)hn] for some k ∈ N, since
L ≥ −A∗ and H ≥ 0 we have

U(%hn
0 )− U(%hn

(k+1)hn
) ≥

∫ T

0
dt

∫

Rd

[
L(x, V hn

t )%̄hn
t + H

(
x,−∇[U ′(%hn

t )]
)
%hn

t

]
dx −A∗hn.

We now consider two continuous functions w, w̄ : [0, T ]× Rd → Rd with compact support. Then
∫ T

0
dt

∫

Rd

[
L(x, V hn

t )%̄hn
t + H

(
x,−∇[U ′(%hn

t )]
)
%hn

t

]
dx

≥
∫ T

0
dt

∫

Rd

[
〈V hn

t , w̄(t, x)〉%̄hn
t −H(x, w̄(t, x))%̄hn

t

]
dx

+
∫ T

0
dt

∫

X

[
〈−∇[U ′(%hn

t )], w(t, x)〉%hn
t − L(x,w(t, x))%hn

t

]
dx.
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Thanks to proposition 3.15(i)-(ii) we immediately get

lim
n→+∞

∫ T

0
dt

∫

Rd

[
〈V hn

t , w̄(t, x)〉%̄hn
t −H(x, w̄(t, x))%̄hn

t

]
dx

=
∫ T

0
dt

∫

Rd

[
〈Vt, w̄(t, x)〉%t −H(x, w̄(t, x))%t

]
dx,

so that taking the supremum among all continuous functions w̄ : [0, T ] × Rd → Rd with compact
support we obtain

lim inf
n→+∞

∫ T

0
dt

∫

Rd

L(x, V hn
t )%̄hn

t dx ≥
∫ T

0
dt

∫

Rd

L(x, Vt)%t dx.

Concerning the other term, we observe that, thanks to remark 2.4, as L ≥ −A∗ we have that
∫ T

0
dt

∫

Rd

H
(
x,−∇[U ′(%hn

t )]
)
%hn

t dx

is uniformly bounded. In particular, since by (H3) H(x, p) ≥ |p| −C1 for some constant C1, thanks
to equation (3.20) we get that

∫ T

0
dt

∫

Rd

|∇[P (%hn
t )]| dx =

∫ T

0
dt

∫

Rd

|∇[U ′(%hn
t )]|%hn

t dx

is uniformly bounded. This implies that, up to a subsequence, the vector-valued measures∇[P (%hn
t )] dx dt

converges weakly to a measure ν of finite total mass. Therefore we obtain

+∞ > lim inf
n→∞

∫ T

0
dt

∫

Rd

H
(
x,−∇[U ′(%hn

t )]
)
%hn

t dx

≥ lim
n→+∞

∫ T

0
dt

∫

X

[
〈−∇[U ′(%hn

t )], w(t, x)〉%hn
t − L(x, w(t, x))%hn

t

]
dx

=
∫ T

0
dt

∫

X
−〈w(t, x), ν(dt, dx)〉 −

∫ T

0
dt

∫

X
L(x,w(t, x))%t dx.

By the arbitrariness of w we easily get that the measure ν(dt, dx) is absolutely continuous with
respect to %t dx dt, so that ν(dt, dx) = et(x)%t(x) dx dt for some Borel function e : [0, T ]×X → Rd.
We now observe that by Fatou Lemma we also have

∫ T

0

(
lim inf
n→+∞

∫

Rd

|∇[P (%hn
t )]| dx

)
dt < +∞,

which gives

(3.32) lim inf
n→+∞

∫

Rd

|∇[P (%hn
t )]| dx < +∞ for t ∈ [0, T ] \ N ,

with L1(N ) = 0. This fact easily implies that, for any t ∈ [0, T ] \ N , there exists a subsequence

%
hnk(t)

t such that

lim inf
n→+∞

∫

Rd

|∇[P (%hn
t )]| dx = lim

k→+∞

∫

Rd

|∇[P (%
hnk(t)

t )]| dx,
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and P (%
hnk(t)

t ) converges weakly in BV (X) and Ld-a.e. to a function βt. As a consequence Dβt =

et%tLd, so that βt ∈ W 1,1(X). Since Q is continuous, we deduce that %
hnk(t)

t = Q
(
P (%

hnk(t)

t )
)

converges Ld-a.e. to Q(βt). Recalling that %
hnk(t)

t also converges weakly to %t, we obtain Q(βt) = %t,
that is βt = P (%t). Moreover, from the equality ∇βt = et%t, we get ∇[P (%t)] = et%t. We have
proved that P (%t) ∈ L1(0, T ;W 1,1(X)) and ∇[P (%t)] is absolutely continuous with respect to %t.

Finally %hn

(k+1)hn
converges weakly∗ to %T , and the term U(%hn

T ) is lower-semicontinuous under weak∗

convergence, and this concludes the proof of equation (3.29).
We now prove equation (3.31). Let us recall that by assumption θ ∼ tα, which implies that

L(x, v) & |v|α and H(x, p) & |p|α′ , where α′ = α/(α − 1). Let us observe that, thanks to equation
(3.29), we have

(3.33) +∞ >

∫ T

0
dt

∫

X
L(x, Vt)%t dx &

∫ T

0
||Vt||αLα(%t)

dt

and

(3.34) +∞ >

∫ T

0
dt

∫

X
H(x,−et)%t dx &

∫ T

0
||et||α′Lα′ (%t)

dt.

Since
∂t%t + div

(
%tVt

)
= 0,

equation (3.33) implies that the curve t → %t is absolutely continuous with values in the α-
Wasserstein space Pα(X), and we denote by V̄ its velocity of minimal norm (cfr. [3, Chapter
8]). Moreover, thanks to equation (3.34), et ∈ Lα′(%t) for a.e. t ∈ (0, T ).

Denoting by |%′| the metric derivative of the curve t → %t (with respect to the α-Wasserstein
distance, cfr. equation (2.10)), by equation (3.33) and [3, theorem 8.3.1] we have that

(3.35) |%′|(t) ≤ ||V̄t||Lα(%t) ≤ ||Vt||Lα(%t) < +∞.

Since et%t = ∇P (%t) with P (%t) ∈ W 1,1(X) for a.e. t, we can apply [3, Theorem 10.4.6] to conclude
that, for L1-a.e. t, U has a finite slope at %Ld, |∂U|(%t) = ||et||Lα′ (%t)

and et = ∂oU(%t). The last
statement means that et is the element of minimal norm of the convex set ∂U(%t) and so, it belongs
to the closure of {∇ϕ : ϕ ∈ C∞

c (X)} in Lα′(%t). Let Λ ⊂ (0, T ) be the set of t such that
(a) ∂U(%t) 6= ∅;
(b) U is approximately differentiable at t;
(c) (8.4.6) of [3] holds.

We use equations (3.34), (3.35), and the fact that |∂U|(%t) = ||et||Lα′ (%t)
for L1-a.e. t ∈ (0, T ), to

conclude that

(3.36)
∫ T

0
|∂U|(%t)|%′|(t)dt ≤ 1

α′

∫ T

0
||et||α′Lα′ (%t)

dt +
1
α

∫ T

0
||Vt||αLα(%t)

dt < +∞.

By [3, Proposition 9.3.9] U is convex along α-Wasserstein geodesics, and so exploiting equation
(3.36) and invoking [3, Proposition 10.3.18] we obtain that L1

(
(0, T ) \ Λ

)
= 0 and t 7→ U(%t)

is absolutely continuous. Thus its pointwise, distributional, and approximate derivatives coincide
almost everywhere, and by [3, Proposition 10.3.18] and the fact that et ∈ ∂U(%t) we get

(3.37)
d

dt
U(%t) =

∫

X
〈et, V̄t〉%tdx.
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Because V and V̄ are velocities for % we have
∫

X
〈∇φ, Vt − V̄t〉%tdx = 0

for all φ ∈ C∞
c (X) for L1-a.e. t ∈ (0, T ), and since et belongs to the closure of {∇ϕ : ϕ ∈ C∞

c (X)}
in Lα′(%t), by a density argument we conclude that

∫

X
〈et, Vt − V̄t〉%tdx = 0

for L1-a.e. t ∈ (0, T ). This, together with equation (3.37), finally yields

(3.38) U(%T1)− U(%T2) = −
∫ T2

T1

dt

∫

X
〈et, V̄t〉%tdx = −

∫ T2

T1

dt

∫

X
〈et, Vt〉%tdx,

as desired. ¤

Remark 3.18. If %0 is a general nonnegative integrable function on X which does not necessarily have
unit mass, we can still prove existence of solutions to equation (1.1). Indeed, defining c :=

∫
X %0 dx,

we consider %c
t ∈ Pac(X) a solution of equation (1.1) for the Hamiltonian Hc(x, p) := cH(x, p/c)

and the internal energy U c(t) := U(ct), starting from %c
0 := %0/c. Then %t := c%c

t solves equation
(1.1). Moreover, using this scaling argument also at a discrete level, we can also construct discrete
solutions starting from %0.

Remark 3.19. We believe that the above existence result could be extend to more general functions
θ by introducing some Orlicz-type spaces as follows: for θ : [0, +∞) → [0, +∞) convex, superlinear,
and such that θ(0) = 0, we define the Orlicz-Wasserstein distance

Wθ(µ0, µ1) := inf
{

λ > 0 : inf
γ∈Γ(µ0,µ1)

∫

X×X
θ

( |x− y|
λ

)
dγ ≤ 1

}
.

We also define the Orlicz-type norm

‖f‖θ,µ := inf
{

λ > 0 :
∫

X
θ

( |f |
λ

)
dµ(x) ≤ 1

}
.

It is not difficult to prove that the following dynamical formulation of the Orlicz-Wasserstein distance
holds:

(3.39) Wθ(µ0, µ1) = inf
{∫ 1

0
‖Vt‖θ,µt dt : ∂tµt + div(µtVt) = 0

}
.

Now, in order to prove the identity (3.31) of the previous theorem in the case where θ does not
necessarily behave as a power function, one should extend the results of [3] to a more general setting.
We believe such an extension to be reachable although not straightforward. This kind of effort goes
beyond the scope of this paper.
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4. Existence of solutions in unbounded domains for weak Tonelli Lagrangians

The aim of this section is to extend the existence result proved in the previous section to
unbounded domains X, using an approximation argument where we construct our solutions in
X ∩ Bm(0) for smoothed Lagrangians Lm, and then we let m → +∞. In order to be able to pass
to the limit in the estimates and find a solution, we need to impose that there exists c > 0 and
a ∈ (

d
d+1 , 1

)
such that

(4.1) U−(t) = max{−U(t), 0} ≤ cta ∀ t ≥ 0.

The above assumption, together with (2.2) and (2.3), are satisfied by positive multiples of the
following functions: t ln t, or tα with α > 1. Under this additional assumption, we now prove
some lemmas and proposition which easily allow to construct our solution as a limit of solutions in
bounded domains (cfr. subsection 4.2).

Thanks to assumption (4.1), we can prove that if M1(%) is finite, then
∫
Rd U−(%) dx is finite, and

so
∫
Rd U(%) dx is well-defined.

Lemma 4.1. There exists C ≡ C(d, a) such that U−(%) ≤ C(M1(%)a + 1). Consequently U(%) is
well defined whenever M1(%) is finite. Furthermore C can be chosen so that

∫

BR(0)c

U−(%) dx ≤ CM1(%)aRd(1−a)−a ∀R ≥ 0.

Proof: We use assumption (4.1) to obtain
∫

BR(0)c

U−(%) dx ≤ c

∫

BR(0)c

%adx = c

∫

BR(0)c

(|x|%)a 1
|x|a dx

≤ c
(∫

BR(0)c

|x|%dx
)a(∫

BR(0)c

|x|−a/(1−a)dx
)1−a

≤ cM1(%)a
(∫ ∞

R
r(d−1− a

1−a)dr
)1−a

=: c1(d, a)M1(%)aRd(1−a)−a.(4.2)

This proves the second statement of the lemma. Observing that

(4.3)
∫

BR(0)
U−(%) dx ≤ c

∫

BR(0)
%adx ≤ c

∫

BR(0)
(1 + %) dx ≤ c

(Ld(BR(0)) + 1
)

= c̃Rd + c.

We use equations (4.2) and (4.3) conclude the proof. ¤

We now prove a lower-semicontinuity result.

Proposition 4.2. Suppose that {%n}n∈N ⊂ Pac
1 (Rd) converges weakly in L1(Rd) to %, and that

supn∈NM1(%n) < +∞. Then % ∈ Pac
1 (Rd), and lim infn→∞ U(%n) ≥ U(%).

Proof: The fact that % ∈ Pac
1 (Rd) follows from the lower-semicontinuity with respect to the weak

L1-topology of the first moment.
We now suppose without loss of generality that lim infn→∞ U(%n) is finite. Fix ε > 0. We have

to prove that lim infn→∞ U(%n) ≥ U(%)− ε. By lemma 4.1 we can find R > 0 such that

(4.4) sup
n∈N

∫

BR(0)c

U−(%n) dx ≤ ε.
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By lemma 2.5 and the fact that U and U+ ≥ 0 are convex we get
(4.5)

lim inf
n→∞

∫

BR(0)
U(%n) dx ≥

∫

BR(0)
U(%) dx, lim inf

n→∞

∫

BR(0)c

U+(%n) dx ≥
∫

BR(0)c

U+(%) dx,

Combining equations (4.4) and (4.5) we obtain lim infn→∞ U(%n) ≥ U(%) − ε. This concludes the
proof. ¤

We remark that, thanks to the above results, it is easy to see that lemma 3.4 holds assuming
% ∈ Pac

1 (Rd).

4.1. Properties on moments in the unbounded case. Fix T > 0, and for any h > 0 we
suppose that is given a sequence {%h

k}0≤k≤T/h ⊂ Pac
1 such that

(4.6) Ch(%h
k , %h

k+1) + U(%h
k+1) ≤ U(%h

k).

Assume that

(4.7) m∗(1) := sup
h

{
M1(%h

0) +
∫

Rd

|U(%h
0)|dx

}
< +∞.

For instance, if %h
0 = %0 for all h > 0, equation (4.7) holds if M1(%0) and

∫
Rd |U(%0)|dx are both

finite.
By equations (2.11) and (4.6)

(4.8) Clh(%h
0 , %h

l ) ≤
l−1∑

k=0

Ch(%h
k , %h

k+1) ≤ U(%h
0) + U−(%h

l )− U+(%h
l ),

which together with lemma 2.12(ii), implies

(4.9) −A∗hl + Wθ,lh(%h
0 , %h

l ) + U+(%h
l ) ≤ U(%h

0) + U−(%h
l ).

Lemma 4.3. If %, %̄ ∈ Pac
1 , then

M1(%̄) ≤ [A∗ + C(1)]h + Ch(%, %̄) + M1(%) ∀h > 0,

where C(1) is the constant provided by lemma 2.12(iii).

Proof: We have
|y| ≤ |y − x|+ |x|

so that integrating the above inequality with respect to γ ∈ Γ(%, %̄) we obtain

(4.10) M1(%̄) ≤
∫

Rd×Rd

|y − x| dγ(x, y) + M1(%),

and since γ ∈ Γ(%, %̄) is arbitrary we conclude that

M1(%̄) ≤ W1(%, %̄) + M1(%).

This together with lemma 2.12(ii)-(iii) gives the desired estimate. ¤

The following proposition shows that M1(%h
k) is uniformly bounded for kh ≤ T , provided that it

is bounded for k = 0.
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Proposition 4.4. There exists a constant C̄, depending on m∗(1) and T only, such that the fol-
lowing holds:

M1(%h
k) +

∫

Rd

|U(%h
k)| dx ≤ C̄ ∀ k, h, with kh ≤ T.

Proof: We recall that by assumption %h
k ∈ Pac

1 for all k, h, so that M1(%h
k) < +∞.

To alleviate the notation, we drop the superscript h. Suppose kh ≤ T . By lemma 4.3 and by
equation (4.8)

(4.11) M1(%k) ≤ Ckh(%0, %k) + [A∗+ C(1)]hk + M1(%0) ≤ U(%0)−U(%k) + [A∗+ C(1)]hk + M1(%0).

Let C be the constant provided by lemma 4.1. We use that lemma and equation (4.11) to obtain

(4.12) M1(%k) + U+(%k) ≤ U+(%0) + C
(
1 + Ma

1 (%k)
)

+ [A∗ + C(1)]hk + M1(%0).

Define for t ≥ 0
f(t) := sup

m≥0
{m : m− C(ma + 1) ≤ t}.

Observe that f(t) ≥ t, and f is nondecreasing. Thus, recalling that M1(%k) < +∞, by equation
(4.12) we get

(4.13) M1(%k) ≤ f
(
U+(%0) + [A∗ + C(1)]T + M1(%0)

)
:= f0

and
U+(%k) ≤ U+(%0) + C

(
1 + Ma

1 (%k)
)

+ [A∗ + C(1)]T + M1(%0).

By lemma 4.1 and (4.13)
U−(%k) ≤ C̃

(
fa
0 + 1

)
for kh ≤ T,

where C̃ depend on C, T , m∗(1), A∗ and C(1) only. This concludes the proof. ¤

Remark 4.5. It is easy to check that the estimates proved in this subsection depend on L only
through the function θ and the constants A∗, A∗, C∗ appearing in (L3). Hence such estimates are
uniform if {Lm}m∈N is a sequence of Lagrangians satisfying (L1), (L2) and (L3) with the same
function θ and the same constants A∗, A∗, C∗.

4.2. Existence of solutions. In this paragraph we briefly sketch how to prove existence of solutions
in the case when X is not necessarily bounded and L satisfies (L1w), (L2w) and (L3), leaving the
details to the interested reader. We remark that our approximation argument could also be used to
relax some of the assumptions on U .

Let X ⊂ Rd be an open set whose boundary has zero Lebesgue measure. We fix %0 ∈ Pac(X), and
we assume that M1(%0) and

∫
X |U(%0)|dx are both finite. Assuming that L satisfies (L1w), (L2w)

and (L3), we consider a sequence of Lagrangians {Lm}m∈N converging to L in C1(Rd×Rd) and which
satisfy (L1), (L2) and (L3) with the same function θ as for L and constants A∗+1, A∗+1, C∗+1 (we
slightly increase the constants of L to ensure that one can construct such a sequence). We denote
by Hm the Hamiltonians associated to Lm. Consider now the increasing sequence of bounded sets
Xm defined as

Xm := X ∩Bm(0),
and observe that, for each m ∈ N, the set Xm is open and its boundary has zero Lebesgue measure
(since ∂Xm ⊂ ∂X ∪ ∂Bm(0)). We now apply the variational scheme in Xm starting from %m

0 :=
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%0χBm(0) (cfr. remark 3.18) with Lagrangian Lm. In this way we construct approximate discrete
solutions {%h,m

kh } on Xm which satisfy the discrete energy inequality

U(ρm
0 )− U(ρh,m

(k+1)h) ≥
∫ T

0

∫

Rd

[
Lm(x, V h,m

t )%̄h,m
t + Hm

(
x,−∇[U ′(%h,m

t )]
)
%h,m

t

]
dx dt−A∗h.

Moreover, thanks to proposition 4.4 (cfr. remark 4.5), we obtain that the measures {%h,m
kh } have

uniformly bounded first moments for all k, h,m, with kh ≤ T . This fact, together with lemma
4.1, implies that also U−(%h,m

kh ) is uniformly bounded. Therefore, taking the limit as h → 0 (cfr.
subsection 3.5), we obtain that a family of curves t 7→ %m

t satisfying the energy bound (3.29) and
such that

sup
m∈N, t∈[0,T ]

{
M1(%m

t ) +
∫

Rd

|U(%m
t )| dx

}
< +∞.

(Indeed U−(%m
t ) are uniformly bounded, and t 7→ U(%m

t ) is bounded too, cfr. equation (3.21).)
Moreover

∂t%
m
t + div(ρm

t V m
t ) = 0 on (0, T )× Rd,

with

sup
m∈N

∫ T

0

∫

Rd

θ(|V m
t |)%m

t dx dt < +∞
(by equation (3.29)), which implies a uniform continuity in time of the curves [0, T ] 3 t 7→ %m

t .
Thanks to these bounds, it is not difficult to take the limit as m → +∞ (cfr. the arguments in
subsection 3.5), and to find a uniform continuous curve t 7→ %t which satisfies

∂t%t + div(%tVt) = 0 on (0, T )× Rd

in the sense of distributions, and

U(ρ0)− U(ρT ) ≥
∫ T

0

∫

Rd

[
L(x, Vt)%t + H

(
x,−∇[U ′(%t)]

)
%t

]
dx dt

(here we used U(ρm
0 ) → U(ρ0) and proposition 4.2). Once this estimate is established, the proof of

equation (3.31) is the same as in the bounded case. Hence we obtain:

Theorem 4.6. Let X ⊂ Rd be an open set whose boundary is of zero Lebesgue measure, and assume
that H satisfies (H1w), (H2w) and (H3). Let %0 ∈ Pac

1 (X) be such that
∫
X |U(%0)|dx < +∞,

and assume the U satisfies (2.2), (2.3), (4.1). Then there exists a narrowly continuous curve
t 7→ %t ∈ Pac

1 (X) on [0, T ], starting from %0, such that M1(%t) is bounded on [0, T ] (so that in
particular U−(ρt) is bounded),

∂t%t + div(%tVt) = 0 on (0, T )× Rd

in the sense of distributions, and equation (3.29) holds. We have ∇[P (%)] ∈ L1(0, T ; L1(X)) and
∇[P (%)] is absolutely continuous with respect to %.

Furthermore, if θ(t) ∼ tα for some α > 1 and U satisfies the doubling condition (3.30) then % and
is a solution of equation (1.1) starting from %0, satisfying equation (1.2). In other words, equation
(3.31) holds and

Vt(x) = ∇pH
(
x,−%−1

t (x)∇[P (%t(x))]
)

%-a.e..
If %0 ∈ Pα(X) then % ∈ ACα(0, T ;Pα(X)).
Suppose in addition that (H4) holds. If %0 ≤ M for some M ≥ 0, then %t ≤ M for all t ∈ [0, T ]
(maximum principle).
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Remark 4.7. When θ(t) ∼ tα with α > 1, it is not difficult to see that if
∫
X |x|α%0 dx is finite so is∫

X |x|α%t dx (here %t is any limit curve constructed using the minimizing movement scheme). Hence
one can generalize lemma 4.1 proving that the α-moment of % controls U−(ρ) assuming only that
condition (4.1) holds for some a ∈ ( d

d+α , 1), and the above theorem still holds under this weaker
assumption on U .

Remark 4.8 (Extension to manifolds). The above existence theorem can be easily extended to
Riemannian manifolds. Indeed in the compact case the proof is more or less exactly the same, while
in the noncompact case one has to replace the first moment by

∫
X d(x, x0)%t dvol(x), where x0 is

any (fixed) point in M , d denotes the Riemannian distance, and vol is the volume measure.

5. Uniqueness of solutions

Throughout this section, we assume that H satisfies (H1), (H2w), (H3) and (H4). We assume
that U satisfies (2.2), (2.3). X ⊂ Rd is an open whose boundary ∂X is of zero Lebesgue measure,
and we denote by X its closure. We suppose that either X is bounded or X is unbounded but
condition (4.1) holds. We suppose that θ(t) ∼ tα for some α > 1 and U satisfies the doubling
condition (3.30). Our goal is to prove uniqueness of distributional solutions of equation (1.1) when
the initial condition %0 is bounded. The ellipticity conditions we impose seems to be different from
what is usually imposed in the literature. Our proof of uniqueness of solution follows the same line
as that of [15], except that most of our assumptions are not always comparable with the ones there.
In the sequel

Ω := (0, T )×X, Ω̃ := (0, T )× Ω.

5.1. A new Hamiltonian. We consider the density function %t of equation (1.1) provided by
theorem 4.6, which satisfies the property that ∇[P (%t)] ∈ L1(Ω) and is absolutely continuous with
respect to %. If we set u(t, ·) := P (%t) we have

(5.1) ∂tQ(u) = div a(x, Q(u),∇u) in D′(Ω),

where

(5.2) a(x, s, m) :=
{ −∇mH̄(x, s,−m) if s > 0

0 if s = 0,m = ~0,

and H̄ : Rd × [0,+∞)× Rd → [0, +∞) is defined by

(5.3) H̄(x, s, m) :=





s2H(x, m
s ) if s > 0

0 if s = 0,m = ~0
+∞ if s = 0,m 6= ~0

Here, ~0 := (0, . . . , 0).
For each x ∈ Rd, H̄(x, ·, ·) is of class C2((0,+∞)×Rd), and the gradient of H̄(x, ·, ·) at (s, m) is

given by

∇H̄(x, s, m) =
(

2sH(x, m
s )− s

〈∇pH(x, m
s ), m

s

〉
s∇pH(x, m

s )

)

for s > 0 and m ∈ Rd. Observe that

(5.4) ∇2H̄(x, ·, ·) =
(

2H − 2
〈∇pH, m

s

〉
+ 〈∇ppH · m

s , m
s 〉 ∇pH −∇ppH · m

s∇pH −∇ppH · m
s ∇ppH

)
.
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Here H,∇pH,∇ppH are all evaluated at
(
x, m

s

)
. Since H(x, ·) is convex we have that

〈∇2H̄(x, ·, ·)(0, λ), (0, λ)〉 = 〈∇ppH · λ, λ〉 ≥ 0.

for λ ∈ Rd. Hence, the matrix in equation (5.4) is nonnegative definite if and only if for every
λ ∈ Rd

0 ≤ 〈∇2H̄(x, ·, ·)(1, λ), (1, λ)〉
= 2H − 〈∇pH,

m

s
〉+ 〈∇ppH · m

s
,
m

s
〉+ 2〈∇pH,λ〉 − 2〈∇ppH · m

s
, λ〉+ 〈∇ppH · λ, λ〉

= 2H − 2
〈∇pH,λ− m

s

〉
+ 〈∇ppH · (λ− m

s

)
, λ− m

s
〉.

Hence H̄(x, ·, ·) is convex on (0,∞)× Rd if and only if

(5.5) 2H − 2〈∇pH, w〉+ 〈∇ppH · w, w〉 ≥ 0 ∀w ∈ Rd.

This is what we assume in the sequel.

Remark 5.1. H(x, p) = |p|r satisfies condition (5.5) if and only if r ≥ 2. If A(x) is a symmetric non-
negative definite matrix then H(x, p) = 〈A(x)p, p〉 satisfies condition (5.5). Moreover, by linearity,
if H1 and H2 satisfy condition (5.5) so does H1 + H2.

Remark 5.2. Suppose assumption (5.5) holds.
(a) Since H̄ ≥ 0 we have that (0,~0) belongs to the subdifferential of H̄(x, ·, ·) at (0,~0). In other

words, −a(x, 0,~0) belongs to the subdifferential of H̄(x, ·, ·) at (0,~0).
(b) The convexity of H̄(x, ·, ·) is equivalent to

〈a(x, s1,m1)− a(x, s2,m2),m1 −m2〉 ≥ −(s1 − s2)
{

2
(
s1H

(
x,−m1

s1

)− s2H
(
x,−m2

s2

))

+
〈∇pH

(
x,−m1

s1

)
,m1

〉− 〈∇pH
(
x,−m2

s2

)
,m2

〉}

5.2. Additional properties satisfied by bounded solutions. We assume that (5.5) holds. Let
%t ∈ AC1(0, T ;Pac

1 (X)) be a solution of equation (1.1) satisfying (1.2) such that t → ∫
Rd U(%t)dx is

absolutely continuous, monotone nonincreasing, and ∇[P (%t)] ∈ L1(Ω) and is absolutely continuous
with respect to %t. Observe that %t satisfies in fact equation (3.29) and the inequality there becomes
an equality. Suppose there exists M > 0 such that %t ≤ M. Because θ(t) ∼ tα, (H3) implies that,
for c̄ > 0 sufficiently small,

c̄
(∣∣%−1

t ∇[P (%)]
∣∣α′ − 1

)
≤ H(x,−%−1

t ∇[P (%t)])

and so, multiplying by both sides of the inequality by %t we have

(5.6) c̄
(
M1−α′∣∣∇[P (%t)]

∣∣α′ − %t

)
≤ %tH(x,−%−1

t ∇[P (%t)])

Taking c̄ > 0 small enough, (L3) ensures

(5.7) c̄(%t|Vt|α − %t) ≤ %tL(x, Vt), c̄|%tVt|α ≤ Mα−1%t

(
c̄ + L(x, Vt)

)
.

We use the fact that equality holds in equation (3.29), exploit equations (5.6) and (5.7) to obtain
existence of a constant CM , which depends only on M and θ, such that

(5.8)
∫ T

0
dt

∫

X

∣∣∣∇[P (%t)]
∣∣∣
α′

dx,

∫ T

0
dt

∫

X
%|Vt|α%t dx,

∫ T

0

∫

X
|%tVt|α%tdx ≤ CM
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where Vt := ∇pH
(
x,−%−1

t ∇[P (%t)]
)
. Also, choosing CM large enough and using (L3), (H3) and

equation (5.8), we have

(5.9)
∫ T

0
dt

∫

X
%t

∣∣H(x,−%−1
t ∇[P (%t)])

∣∣ dx,

∫ T

0
dt

∫

X
%t

∣∣L(x, Vt)
∣∣ dx ≤ CM .

Remark 5.3. Because %t ∈ AC1(0, T ;Pac
1 (X)), U is strictly convex, and t → ∫

Rd U(%t)dx is absolutely
continuous, we obtain that % ∈ C([0, T ];L1(X)).

Observe that, by equation (5.8), u(t, cdot) = P (%t) satisfies ∇u ∈ Lα′(Ω), while the last inequality
in (5.8) reads off a(·, Q(u),∇u) ∈ Lα(Ω). Since %t satisfies equation (1.1), by an approximation
argument and thanks to remark 5.3 we have

(5.10)
∫

Ω
Q(u)∂tE =

∫

Ω
〈a(x,Q(u),∇u),∇E〉

for any E ∈ W 1,α′(Ω) such that E(t, ·) ≡ 0 for t near 0 and T .
As in [15], for η ∈ C2(R) convex monotone nondecreasing such that η′ and η′′ are bounded, we

define qη, η∗ : R2 → R by

qη(z, zo) =
∫ z

zo

η′(s− zo)Q′(s)ds, z, zo ∈ R

η∗(w, zo) = sup
z∈R

{η′(z − zo)(w −Q(z)) + qη(z, zo)}, w, zo ∈ R.

Lemma 5.4. Suppose vo ∈ W 1,α′(X) ∩ L∞(X) and γ ∈ C∞
c ((0, T )× Rd) is nonnegative. Then

(5.11)
∫

Ω
−qη(u, vo)∂tγ + 〈a(x,Q(u),∇u),∇[η′(u− vo)γ]〉 ≤ 0.

Proof: The proof is identical to that of [15, Lemma 1]. ¤

5.3. Uniqueness of bounded solutions. In this subsection, for i = 1, 2, we consider %i
t ∈

AC1(0, T ;Pac
1 (X)) solutions of equation (1.1) satisfying (1.2) and such that t → ∫

Rd U(%i
t)dx is

absolutely continuous monotone nonincreasing. We impose that ∇[P (%i
t)] ∈ L1(Ω) is absolutely

continuous with respect to %i
t. We further assume existence of an M > 0 such that %i

t ≤ M . The
goal of the subsection is to show that

t →
∫

X
|%1

t − %2
t |dx is monotone nondecreasing.

Once such an estimate is proved, it extends immediately to solutions whose initial datum belongs
to L1 and has bounded first moment, and which are constructed by approximation (cfr. section 4)
as a limit of solutions with bounded initial data.

We define u1, u2 on Ω̃ by

u1(t1, t2, x) := P (%1(t1, x)), u2(t1, t2, x) := P (%2(t2, x)).

If r ∈ R we set r+ = max{0, r} and r− = max{0, r}.
To achieve the main goal of this subsection, we first prove a lemma whose proof is more or less a

repetition of the arguments presented on [15, pages 31-33]. Since a does not satisfy the assumptions
imposed in that paper, we felt the need to show that the arguments there go through.
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Lemma 5.5. If min[0,M ] P
′ > 0 and γ̃ ∈ C∞

c ((0, T )2) is nonnegative, then

(5.12) −
∫

Ω̃

(
Q(u1)−Q(u2)

)+(∂t1 γ̃ + ∂t2 γ̃) ≤ 0.

Proof: Let fn ∈ C∞
c (Rd) be such that 0 ≤ fn ≤ 1, fn(x) = 1 for |x| ≤ n, fn(x) = 0 for |x| ≥ n + 2,

and |∇fn| ≤ 1. Let η ∈ C2(R) be a convex nonnegative function such that η(z) = 0 for z ≤ 0,
η(z) = z − 1/2 for z ≥ 1. Set

η+
δ (z) = δη

(z

δ

)
, η−δ (z) = δη

(
−z

δ

)
, q±δ = qη±δ

so that

(5.13) (η−δ )′(z) = −(η+
δ )′(−z).

We fix t2 and apply lemma 5.4 to

vo = u2(·, t2, ·) ≡ u2(t2, ·), η = η+
δ , γ = γ̃(·, t2)fn.

Then, we integrate the subsequent inequality with respect to t2 over (0, T ) to obtain

(5.14)
∫

Ω̃
−q+

δ (u1, u2)∂t1(γ̃fn) +
〈
a(x,Q(u1),∇u1),∇[(η+

δ )′(u1 − u2)γ̃fn]
〉
≤ 0.

Similarly,

(5.15)
∫

Ω̃
−q−δ (u2, u1)∂t2(γ̃fn) +

〈
a(x,Q(u2),∇u2),∇[(η−δ )′(u2 − u1)γ̃fn]

〉
≤ 0.

We exploit equations (5.13), (5.14) and (5.15) to obtain
∫

Ω̃
γ̃
〈
a(x,Q(u1),∇u1)− a(x,Q(u2),∇u2), (∇u1 −∇u2)(η+

δ )′′(u1 − u2)fn + (η+
δ )′(u1 − u2)∇fn

〉

≤
∫

Ω̃

(
q+
δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃

)
fn

This, together with remark 5.2 (b), yields
(5.16)∫

Ω̃
fn(η+

δ )′′(u1 − u2)(Q(u2)−Q(u1))(E1 − E2)γ̃ +
∫

Ω̃
R1

n ≤
∫

Ω̃
(q+

δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃)fn.

Here,

R1
n := γ̃

〈
a(x,Q(u1),∇u1)− a(x,Q(u2),∇u2), (η+

δ )′(u1 − u2)∇fn

〉
.

Ei(t1, t2, x) := %i(ti, x)
(
2H(x,−ei(ti, x)) +

〈
∇pH

(
x,−ei(ti, x)

)
, ei(ti, x)

〉)
, i = 1, 2,

with %i(ti, x)ei(ti, x) := ∇[P (%i)](ti, x). We observe that, by exploiting equation (5.9), one obtains
E1, E2 ∈ L1(Ω̃).

The second inequality (5.8) gives that

V 1
t := ∇pH

(
x,−(%1

t )
−1∇[P (%1

t )]
) ∈ Lα(%1

t ) ⊂ L1(%1
t )

and so, a(x,Q(u1),∇u1) ∈ L1(Ω̃). Similarly, a(x,Q(u2),∇u2) ∈ L1(Ω̃). Hence

|R1
n| ≤ A1|∇fn| ≤ A1
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where A1 ∈ L1(Ω̃). Because |∇fn| → 0 as n → +∞, we use the dominated convergence theorem to
conclude that

∫
Ω̃ T 1

n → 0 as n → +∞. Since u1 and u2 are bounded, we may apply the Lebesgue
dominated convergence theorem to the first expression at the left hand side of equation (5.16) and
the one at its right hand side, to conclude that

(5.17) −
∫

Ω̃
(η+

δ )′′(u1 − u2)|Q(u1)−Q(u2)||E1 − E2|γ̃ ≤
∫

Ω̃

(
q+
δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃

)
.

Recall that u1 and u2 have their ranges contained in the compact set [0, P (M)]. Because min[0,M ] P
′ >

0 we conclude that Q is Lipschitz on [0, P (M)]. Let C̄M be its Lipschitz constant there. By equation
(5.17)

(5.18) −C̄M

∫

Ω̃
(η+

δ )′′(u1 − u2)|u1 − u2||E1 − E2|γ̃ ≤
∫

Ω̃

(
q+
δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃

)
.

Recall that

(5.19) |q±δ (z, zo)| ≤ (Q(z)−Q(zo))±, |(η+
δ )′(z)| ≤ z+, |z(η+

δ )′′(z)| ≤ sup
a∈R

|aη′′(a)|

and that, as δ → 0+,

(5.20) q±δ (z, zo) → (Q(z)−Q(zo))±, (η+
δ )′(z) → z+, z(η+

δ )′′(z) → 0.

We can now conclude the proof of the lemma by combining equations (5.18), (5.19) and (5.20). ¤

Theorem 5.6. Suppose H satisfies (H1), (H2w), (H3) and (H4). Suppose U satisfies (2.2), (2.3)
and the doubling condition (3.30). Assume min[0,M ] P

′ > 0 for any M > 0, X ⊂ Rd is an open
set whose boundary ∂X is of zero Lebesgue measure and θ(t) ∼ tα with α > 1. Suppose for
i = 1, 2 that %i

t ∈ ACα(0, T ;Pac
α (X)) are solutions of equation (1.1) satisfying (1.2). Assume

further t → ∫
Rd U(%i

t)dx is absolutely continuous, monotone nonincreasing, and ∇[P (%i
t)] ∈ L1(Ω)

and is absolutely continuous with respect to %i
t. If %1

0, %
2
0 are bounded, then t → ∫

X |%1
t − %2

t |dx is
monotone nondecreasing.

Proof: As shown in [15] this theorem is a direct consequence of equation (5.12). ¤
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