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Abstract

These notes contain a series of lectures given by the first author in the 2008 GNAMPA–
INDAM School in Pisa. It is based on recent results by both authors who initiated a study
of an infinite dimensional weak KAM theory. While some of the results presented here have
already appeared in their joint work [16], the core of this manuscript, section 3, has never
been submitted for publication anywhere. The current manuscript should be regarded as a
companion to [16].

In [16] it is shown that asymptotic behaviour of a class of Vlasov systems can be studied
via a cell problem (C): H(M, c +∇U) = H̄(c). (C) is to be satisfied in the sense of viscosity
on what will be referred to as the L2(0, 1)–torus (cf. (10)), a quotient space of the Hilbert
space L2(0, 1). More importantly, existence of solutions U for (C) and existence of calibrated
curves associated to U are obtained by studying the limit as ǫ tend to zero of Hamilton-Jacobi
equations of the form (HJE)ǫ: ǫV + H(M, c + ∇V ) = 0. The purpose of these lectures is
to show that if H satisfies appropriate invariance properties, a Galerkin type approximation
method can be used to establish existence of solutions for (HJE)ǫ. This result is in contrast
with [8], where it is shown that Galerkin type methods are not expected to provide solutions
for (HJE)ǫ. We could have identified the largest class of Hamiltonians for which the results
in these notes hold. We chose not to work in the greatest generality for two reasons: first
of all, our study was motivated by the Vlasov systems appearing in kinetic theory and we
restrict ourselves to Hamiltonians corresponding to these PDEs. Secondly, we tried to keep
the computations as simple as possible to separate the main ideas from technical details.

1 Introduction

To understand the subtlety of the so-called cell problem appearing in the KAM and the Weak
KAM theories, let us start with a very simple Hamiltonian. Consider the one-dimensional
Hamiltonian h(x, p) = |p|2 − sin2(πx) for x, p ∈ IR. As done in the KAM theory let us proceed
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with the exercise of searching for real numbers λ and functions s ∈ C1(IR) such that s′ is Z-
periodic and satisfies the equation h(x, s′(x)) = λ. Since every function s ∈ C1(IR) such that s′

is Z-periodic can be decomposed as the sum of a Z-periodic function u ∈ C1(IR) and a linear
function x → cx, the problem at hand is to find two reals numbers λ, c and a Z-periodic function
u ∈ C1(IR) such that

h(x, c + u′(x)) = λ (1)

has a solution. For such a simple Hamiltonian, at a first glance, (1) might look like a simple
problem. It is wrong to think that existence of solutions depends mainly on whether or not
λ is in the range of h. If c = 0 or |c| = 2/π one readily checks that unless λ = 0 there is no
Z-periodic function u ∈ C1(IR) satisfying (1). If 0 < |c| < 2/π then (1) has no Z–periodic
solution u ∈ C1(IR). In the Weak KAM theory one seeks for real numbers λ and Z-periodic
Lipschitz functions u ∈ C(IR) viscosity solutions of (1). For c ∈ IR prescribed it is well-known
that (1) admits a periodic viscosity solution for exactly one value of λ denoted h̄(c). This is one
way of defining the effective Hamiltonian h̄ which can be explicitly computed as a function of
c [18]. The so-called cell problem (1) plays a central role in understanding the dynamics of the
Hamiltonian flow of h. Especially as we are dealing with a Hamiltonian defined on the cotangent
bundle to a one-dimensional manifold, (1) can be used to identify periodic solutions of the flow
associated h (cfr. [22]).

The purpose of [16] has been to extend techniques of the Weak KAM theory– proven to be
a powerful tool for understanding finite dimensional Hamiltonian systems– to some classes of
PDEs viewed as infinite dimensional Hamiltonian systems. In these notes, we show that the
infinite dimensional analogue of (1) can be obtained by studying finite dimensional Hamiltonian
systems. In order to explain the link between the existing (finite dimensional) Weak KAM
theory and our approach let us fix a Z-periodic function W ∈ C2(IR). For each positive integer
n consider the evolutive system





ẋi = npi

ṗi = − 1
n2

∑n
j=1 W ′(xi − xj)

xi(0) = x̄i, pi(0) = p̄i.

(2)

Here, x̄, p̄ ∈ IRn are prescribed. Clearly, (2) is a Hamiltonian system where the Hamiltonian
and the Lagrangian are defined on IRn × IRn by

h(x, p) =
n

2
|p|2 +

1

2n2

n∑

i,j=1

W (xi − xj), l(x, v) =
1

2n
|v|2 +

1

2n2

n∑

i,j=1

W (xi − xj). (3)

Let (x̄, p̄) be the initial conditions in (2). The Hamiltonian flow is φ defined by φt(x̄, p̄) =
(x(t), p(t)). Let Gn be the group of permutations of n letters. For τ ∈ Gn and k ∈ Zn we define

Pτ (x, p) = (xτ , pτ ), Tk(x, p) = (x + k, p)

where x, p ∈ IRn and xτ := (xτ(1), · · · , xτ(n)). Since h ◦ Pτ = h = h ◦ Tk we have

φt ◦ Pτ = φt = φt ◦ Tk. (4)

Thus, h can be viewed as a function defined on (Mn/Gn)×IRn and φ can be viewed as a flow on
the cotangent bundle of the n–symmetric product of the circle Mn/Gn, known to be a manifold
[23]. Here, Mn is the n–dimensional flat torus and we shall identify the cotangent bundle of
Mn/Gn with (Mn/Gn) × IRn.
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If a probability measure µ on the cotangent bundle T ∗Mn is invariant under the flow φ, then

∫

T ∗Mn

〈∇u(x),∇ph(x, p)〉dµ(x, p) =
d

dt

∫

T ∗M
f(φt(x, p))dµ(x, p)

∣∣∣
t=0

= 0, (5)

where f(x, p) = u(x) and u is continuous and Zn-periodic. We write u ∈ C1(Mn). Let F (x, p) =
(x,∇ph(x, p)) be the Legendre map associated to h. The push-forward of µ by F is the measure
ν := F#µ defined on the tangent bundle TMn by

ν(B) = µ
(
F−1(B)

)

for all Borel sets B ⊂ TMn. Note that (5) reads off

∫

TMn

〈∇u(x), v〉dν(x, v) = 0. (6)

One says that ν is weakly invariant under the flow φ, although the definition in (6) does not
involve h or φ. Suppose S ∈ C2(IRn) and ∇S is Zn-periodic. In other words, we are selecting a
closed one–form (x, ξ) ∈ Mn × IRn → Λx(ξ) of class C1 on Mn. One readily checks existence of
a ~c ∈ IRn (characterizing the cohomology class of Λ) such that

∫

Mn×IRn

〈∇S(x), v〉dν(x, v) = 〈~c,R(ν)〉.

Here,

R(ν) :=

∫

TMn

vdν(x, v)

and is referred to as the rotation number of ν.
In the Weak KAM theory one seeks for Borel measures on the tangent bundle TMn that

minimize the action

ν → An(ν) :=

∫

TMn

ldν.

The minimization is performed over the set of weakly invariant measures ν of prescribed rotation
vector ~r ∈ IRn. For a class of Lagrangians including those appearing in (3) such minimal
measures are known to exist and are supported by the subdifferentials of functions x → 〈~c, x〉+
u(x). Here u ∈ C(Mn) is a viscosity solutions of the cell problem

h(x,~c + ∇u) = h̄(~c) (7)

and ~c ∈ IRn is related to ~r. We have denoted by h̄ the effective Hamiltonian of h, defined by the
fact that h̄(~c) is the unique real number λ such that h(x,~c+∇u) = λ admits a viscosity solution
u ∈ C(Mn).

In these notes, not only are we interested in measures ν that minimize An over the set of
weakly invariant measures of precribed rotation number ~r, but we also require these measures
to be invariant under the action of the group Gn : Pτ#ν = ν for all τ ∈ Gn. The latter condition
yields that ~r must be parallel to (1, · · · , 1) ∈ IRn. It becomes natural to impose in (7) that ~c
must be parallel to (1, · · · , 1) ∈ IRn. As a matter of fact, only for these special ~c, were we able
to show that as we let n tend to infinity, the finite dimensional solutions of (7) converge to their
infinite dimensional analogue.

A formal explanation for restricting ourselves to ~c which are parallel to (1, · · · , 1) ∈ IRn is
based on the link between (2) and the Vlasov systems. The starting point is to view T ∗Mn as a
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subset of P2(IR
2), the set of Borel probability measures on IR2 of bounded second moments. The

embedding is given by (x̄, p̄) → 1/n
∑n

i=1 δ(x̄i,p̄i). Hence, to the path t → (x(t), p(t)) ∈ T ∗Mn

satisfying (2) we associate the path t → ft ∈ P2(IR
2) defined for each t ≥ 0 by

ft =
1

n

n∑

i=1

δ(xi(t),ẋi(t)).

Let ̺t be the first marginal of ft: ̺t = 1
n

∑n
i=1 δxi(t) and set Pt = ̺t∗W. The system of equations

(2) translates into the so-called Vlasov system





∂tft + v∂xft = ∂xPt ∂vft

Pt(x) =
∫
IR W (x − x̄)dρt(x)

f0 = f̄ := 1
n

∑n
i=1 δ(

x̄i,np̄i

).

(8)

The first equation in (8) must be understood in the sense of distributions. While (8) is a richer
system than (2) in the sense that it encompasses the case n = ∞, both systems coincide when
n < ∞. In the latter case both systems represents the evolution of n undistinguishable particles
of same mass. The fact that the particles are undistinguishable explains why the rotation vectors
of interest, from the point of view of the Vlasov systems, must be vectors whose components
are equal.

Gangbo [27] has noticed that (8) can be regarded as an infinite-dimensional Hamiltonian
ODE on the space of Borel probability measures on IR2 with finite second-order moments (cfr.
also [1] and [14]). Indeed, if

H(f) :=

∫ ∫

IR2

[
v2

2
+

1

2

∫ ∫

IR2

W (x − y)df(y,w)

]
df(x, v),

then one may regard (8) as
∂tf + div

[
J∇wH(f)f

]
= 0,

where J is the clockwise rotation matrix of angle π/2, and ∇w is the Wasserstein gradient [1].
In the current manuscript we look for some special solutions, which allow for a connection with
a more conventional way of regarding (8) as Hamiltonian. Assume the initial data is in the set
of probabilities on IR2 such that f0 = (M0,N0)#ν0, where ν0 is the Lebesgue measure on (0, 1)
and M0, N0 ∈ L2(0, 1). This means

∫

IR2

ϕ(x, v)df0(x, v) =

∫ 1

0
ϕ(M0(y),N0(y))dy for all ϕ ∈ Cc(IR

2).

Let us introduce the initial value problem

σ̈tz = −
∫ 1

0
W ′(σtz − σtw)dw, σ0 = M, σ̇0 = N. (9)

This is an evolutive system on the infinite dimensional manifold L2(0, 1), which is a separable
Hilbert space. We denote its inner product by 〈·, ·〉 and its norm by ‖ · ‖. The space L2(0, 1) has
a natural differential structure and at each M ∈ L2(0, 1) the tangent space at M is TML2(0, 1) =
L2(0, 1). Hence, the tangent bundle is T L2(0, 1) := L2(0, 1) × L2(0, 1) which we identify with
the cotangent bundle.
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Let L2
Z
(0, 1) be the set of M ∈ L2(0, 1) whose ranges are contained in Z. We define the

L2
Z
(0, 1)–torus by

T := L2(0, 1)/L2
Z
(0, 1). (10)

We say that W : L2(0, 1) → IR is L2
Z
(0, 1)-periodic W(M + Z) = W(M) for all M ∈ L2(0, 1)

and all Z ∈ L2
Z
(I). We view W as a function defined on the T. If, in addition, W is continuous,

we write W ∈ C(T).
Suppose Λ is a L2

Z
(0, 1)-periodic, differentiable, closed one-form on L2(0, 1) in the sense

of [16] section 5. Suppose that M → ΛM (M) is Lipschitz and rearrangement invariant and
L2

Z
(0, 1)-periodic. Suppose the second moment of γ, a Borel probability on T L2(0, 1), is finite:

∫

T L2(0,1)
l2(N)dγ(M,N) < ∞, l2(N) := ‖N‖2

L2(0,1).

By a rearrangement invariant map U defined on L2(0, 1) we understand a map satisfying U(M) =
U(N) for all M, N ∈ L2(0, 1) such that M#ν0 = N#ν0. Then there exists a real number c and
a Lipschitz function U ∈ C1(T) such that

ΛM (N) = c + dUM (N)

for M,N ∈ L2(0, 1). If γ is a Borel measure on T L2(0, 1) invariant under the flow Ψ in the sense
that Ψt #γ = γ for all t > 0 we use arguments similar to those appearing in (5) to obtain that

∫

T L2(0,1)
ΛM (N)dγ(M,N) = R(γ) c,

where

R(γ) :=

∫

T L2(0,1)
l(N)dγ(M,N) l(N) :=

∫ 1

0
Ndν0.

We refer to R(γ) as the rotation number of γ.
If W ∈ C1,1(IR), we apply the Cauchy-Lipschitz-Picard Theorem [4] to obtain that for

any initial data (M̄, N̄ ) ∈ L2(0, 1) × L2(0, 1) the problem (9) admits a unique solution σ ∈
H2(0,∞;L2(0, 1)). We define the Eulerian flow

Ψ(t,M,N) = (Ψ1(t,M,N),Ψ2(t,M,N)) = (σt, σ̇t). (11)

We can then easily check that

ft := (M(t, ·), Ṁ (t, ·))#χ(0,1) with f0 = (M0,N0)#χ(0,1)

satisfies (8). Note that (9) is Hamiltonian and the energy E(t) := H(Ψ(t,M,N)) is conserved:
E(0) = E(t). Here, the Hamiltonian and the Lagrangian H,L : L2(0, 1) × L2(0, 1) → IR are
given by

H(M,N) =
1

2
‖N‖2 +

1

2
W(M), L(M,N) =

1

2
‖N‖2

ν0
− 1

2
W(M) (12)

where

W(M) :=

∫

(0,1)2
W (Mz − Mw)dzdw.

It is not a loss of generality to assume that W (0) = 0 and W is even. Indeed, we may substitute
W by W −W (0) without altering (9). Also, substituting W by z → [W (z)+ W (−z)]/2 will not
alter W. In order to make some computations simpler, we further assume that

W (z) = W (−z) ≤ W (0) = 0 for all z ∈ IR. (13)
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The only restrictive assumption here is that the maximum of W is attained at 0.
Let G be the set of bijections G : [0, 1] → [0, 1] such that G, G−1 are Borel and push ν0

forward to itself. The group G acts on L2(0, 1) : (G,M) ∈ G × L2(I) → M ◦ G. It also acts
on the topological subspace L2

Z
(0, 1) and so, induces a natural action on T and on the tangent

bundle L2(0, 1) × L2(0, 1). Note that L and H are invariant under the action of G.
Our goal is to prove the following result: for each fixed positive integer n, let Cn be the set of

real valued functions M on [0, 1], constant on each subinterval In
i := ((i−1)/n, i/n), i = 1, · · · , n.

Let Ln ∈ C2(IRn × IRn) and Hn ∈ C2(IRn × IRn) be the Lagrangian and Hamiltonian defined in
(25) and (26). We fix c ∈ IR. The standard Hamilton-Jacobi theory provides us with an explicit
way for constructing un(·; c) ∈ C(IRn), Zn-periodic viscosity solutions of Hn(x,∇un(x; c)+cn) =
c2/2 in IRn, where cn := (c, c, ..., c) ∈ IRn. Let us introduce the notation

Lc(M,N) := L(M,N) − c

∫ 1

0
Mdx. (14)

Theorem 1.1. There exists a rearrangement invariant U(·; c), Lipschitz continuous in the strong
L2(0, 1)-topology satisfying the following properties: for all n ≥ 1 integer and x ∈ IRn, un(x; c) =
U

(∑n
i=1 xiχIn

i
; c

)
. Furthermore, U(·; c) is a viscosity solution for

H(M,∇L2U(M ; c) + c) =
c2

2
(15)

and U(M ; c) ∈ C(T). Similarly, there exists a rearrangement invariant U∗(·; c) Lipschitz con-
tinuous in the strong L2(0, 1)–topology which satisfies the following conditions: for each non-
decreasing M ∈ L2(0, 1) there exists a so-called calibrated curve σc associated to U∗(·; c) in the
sense that σc ∈ H2(0,∞;L2(0, 1)), σc

0 = M and whenever T > 0,

U∗(σ
c
T ; c) =

∫ T

0
Lc(σ

c
t , σ̇

c
t )dt + U∗(M ; c) +

1

2
c2T.

Furthermore, for all σ ∈ H2(0,∞;L2(0, 1)) we have

U∗(σT ; c) ≤
∫ T

0
Lc(σt, σ̇t)dt + U∗(σ0; c) +

1

2
c2T.

It is proven in [16] that the following corollaries are direct consequences of theorem 1.1.

Corollary 1.2. For each c ∈ IR and each M ∈ L2(0, 1) which is monotone nondecreasing, there
exists N ∈ L2(I) such that

sup
t>0

√
t
∥∥∥Ψ1(t,M,N)

t
− c

∥∥∥
ν0

< ∞, lim
t→∞

Ψ2(t,M,N) = c.

Corollary 1.3. Given c ∈ IR and a Borel probability measure µ on IR of bounded second moment,
there exists a path t → ρt ∈ AC2

loc(0,∞;P2(IR)) and u : (0,∞) × IR → IR Borel satisfying the
following properties: ut ∈ L2(ρt) for L1–almost every t > 0, and ρ0 = µ. The pair (ρ, u) satisfies
the Euler system 




∂t(ρtut) + ∂x(ρtu
2
t ) = −ρt∂xPt

∂tρt + ∂x(ρtut) = 0
Pt(x) =

∫
IR W (x − y)dρt(y).

(16)

Furthermore,
sup
t>0

√
t‖id/t − c‖ρt < ∞, lim

t→∞
‖ut − c‖ρt = 0. (17)
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We have chosen the Vlasov system as a simple model to illustrate the use of the weak KAM
theory for understanding qualitative behavior of PDEs appearing in kinetic theory, for several
reasons. Firstly, they provide a simple link between finite and infinite dimensional systems.
Secondly, they are one of the most frequently used kinetic models in statistical mechanics.
Existence and uniqueness of global solutions for the initial value problem are well understood
[3], [9], [19]. In this paper we have searched for special solutions which allow for a connection
with a more conventional way of regarding (8) as Hamiltonian. We assume the initial data to
be of the form f0 = (M,N)#ν0 where M, N ∈ L2(X) so that the unique solution of (8) retains
the same structure.

2 Effective Hamiltonian

In this section we define the effective Hamiltonian H̄ in our infinite-dimensional setting and
compute H̄(c). The choice of constant functions as “rotation numbers” in this context is fully
justified in [16].

We begin by recalling some results from [17], adapted to our setting. In [17] we proved
the existence of an infinite-dimensional effective Lagrangian under the following assumption:
suppose L is a Lagrangian on L2(0, 1) × L2(0, 1) satisfying the growth conditions

c‖N‖2 ≤ L(M,N) ≤ C
(
1 + ‖N‖2

)
, for all (M,N) ∈ [L2(X)]2, (18)

where c, C are given positive constants. Assume L is L2
Z
(0, 1)–periodic in M , i.e.

L(M + Z,N) = L(M,N) for all Z ∈ L2
Z
(0, 1), M, N ∈ L2(0, 1). (19)

Assume further that there exists Λ > 0 such that

L(M,N1) − L(M,N2) ≤ Λ

∫

{N1 6=N2}
|N1|2dx (20)

for all M, N1, N2 ∈ L2(0, 1). Also, it satisfies, for some continuous, nondecreasing ω : IR → IR
such that ω(0) = 0,

|L(M1, N) − L(M2,N)| ≤ ω
(
L1

(
{M1 6= M2}

))
(21)

for all M1, M2, N ∈ L2(0, 1). Fix T > 0 and consider H := H1(0, T ;L2(0, 1)) endowed with
the topology τ given by

Mn
τ→ M ⇐⇒ ‖Mn − M‖L2((0,T )×Ω) → 0 and {Ṁn} is bounded in L2((0, T ) × X) (22)

for every Ω ⊂⊂ X. By following mostly the techniques in [10], we have proved in [17] (in even
more generality) that ∫ T

0
L̄(σ̇)dt = Γ(τ) lim

ε→0

∫ T

0
L

(
σ

ε
, σ̇

)
dt

for

L̄(N) := lim inf
T→∞

inf
φ∈H0

−
∫ T

0
L(tN + φ(t),N + φ̇(t))dt, (23)

where Γ(τ) denotes the Γ-convergence with respect to the topology τ . The set H0 represents all
functions in H with null trace. The continuity of the map L̄ with respect to the strong L2(0, 1)
topology was obtained as a consequence of its convexity and local boundedness.
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Definition 2.1. The map L̄ is called the effective Lagrangian corresponding to L. Its Legendre
transform defined for ζ ∈ L2(0, 1) by

H̄(ζ) = sup
ξ∈L2(0,1)

{
〈ξ, ζ〉L2(X) − L̄(ξ)

}

is called the effective Hamiltonian associated to H (the Legendre transform of L).

We proved in [17] that the viscosity solutions (given by the Lax-Oleinik variational formula)
for the evolutionary Hamilton-Jacobi equations with oscillating Hamiltonians H(·/ǫ, ·) converge
to the Hopf-Lax solution of the Hamilton-Jacobi equation with the effective H̄. In the classical
but unpublished paper [18] the authors arrived to the effective Hamiltonian by performing this
homogenization. They showed that for every P ∈ IRn (rotation vector) there exists a unique
λ ∈ IR such that the cell problem

H(x,∇u(x) + P ) = λ

admits a periodic viscosity solution; then H̄ was defined by λ = H̄(P ). E [10] showed that if
H(x, p) is convex in p, then one can use Lax-Oleinik’s representation for the viscosity solutions
to obtain the homogenization result in [18]. Indeed, in his approach, L̄ is obtained first as an
object giving the Γ-limit of oscillating integral functionals. Note that in [17] we followed E’s
approach and arrived to the effective Hamiltonian by means of the Legendre transform of the
effective Lagrangian.

We now return to L : L2(0, 1)×L2(0, 1) → IR given by (12). For c ∈ IR, not only are we able
to compute H̄(c) explicitly, but we will see in the next section that its discrete counterparts have
precisely the same value. This feature turns out to be crucial for our analysis, as our approach
is of the finite-to-infinite-dimensions kind.

Proposition 2.2. If we identify c ∈ IR with the constant function f ≡ c over (0, 1), then

L̄(c) = H̄(c) =
1

2
c2 for all c ∈ IR. (24)

Proof: Since W ≤ 0, (12) implies L(M,N) ≥ ‖N‖2/2 for all M, N ∈ L2(0, 1). From (23) we
deduce L̄(N) ≥ ‖N‖2/2, so

c

∫ 1

0
Ndx − L̄(N) ≤ c

∫ 1

0
Ndx − 1

2

∫ 1

0
N2dx ≤ 1

2
c2 for all N ∈ L2(0, 1).

Thus, H̄(c) ≤ c2/2 and we now need to prove the opposite inequality. For this we observe that

inf
φ∈H

−
∫ T

0
L(tc + φ(t), c + φ̇(t))dt = −

∫ T

0
L(tc, c)dt =

1

2
c2

for all T > 0 because W ≤ 0 = W (0) and the infimum is taken over H1(0, T ;L2(0, 1)) functions
such that φ(0) = φ(T ) = 0. According to (23), we obtain L̄(c) = c2/2. Therefore, L̄(c)+ H̄(c) ≥
c2 yields H̄(c) ≥ c2/2 which concludes the proof. QED.

3 From finite to infinite-dimensions

In this section we introduce the discrete versions of the particle interaction Lagrangian and
Hamiltonian. We study the corresponding cell problems, then we show that the viscosity solu-
tions obtained by a linear perturbation approximation argument are finite-dimensional restric-
tions of a rearrangement invariant, periodic, Lipschitzian functional on L2(0, 1).
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3.1 Discrete Hamiltonians

We endow IRn with the inner product 〈x,y〉n = x · y/n, denote by | · |n the induced norm and
by ∇n the induced gradient. Let us define Ln : IRn × IRn → IR by

Ln(x, v) =
1

2
|v|2n − 1

2n2

n∑

i,j=1

W (xi − xj). (25)

Its Legendre transform is, clearly, Hn : IRn × IRn → IR defined by

Hn(x,p) =
1

2
|p|2n +

1

2n2

n∑

i,j=1

W (xi − xj). (26)

Note that Ln(x, v) = L(Mn, Nn), where Mn and Nn are piecewise constant Mn ≡ xi, Nn ≡ vi

on the n-regular partitions of X. One can easily adapt the proof of Proposition 2.2 above to
prove:

Lemma 3.1. If we denote by cn := (c, ..., c) ∈ IRn

Hn(cn) =
1

2
c2 for all integers n ≥ 1 and all c ∈ IR. (27)

We know from the classical, finite-dimensional theory, that (27) implies that c2/2 is the
unique real number λ for which the equation

Hn(x,∇nv(x) + cn) = λ (28)

admits a Zn-periodic viscosity solution [11], [12] denoted by un(·; c). Since these solutions are, in
general, not unique, we choose specific ones, obtained by a standard approximation argument.

Remark 3.2. For a generic Lagrangian l and its associated Hamiltonian h, one can obtain [13],
[5] a periodic viscosity solution for the cell problem (7) the following way: for c ∈ IRn define
h̃(x,p) = h(x, c − p), so that its Legendre transform is l̃(x,v) = c · v + l(x,−v). Then, for
ǫ > 0 there exists a unique periodic viscosity solution for ǫwǫ + h̃(x,−∇wǫ) = 0 such that the
pair (wǫ − min wǫ,−ǫwǫ) converges as ǫ ↓ 0 (possibly, up to subsequence) to (w, h̄(c)) uniformly
on IRn, where w is a periodic solution for the cell problem. It is known [13] that wǫ admits the
representation

wǫ(x) = inf
σ(0)=x

∫ ∞

0
e−ǫsl̃(σ(s), σ̇(s))ds.

This fact will be used below.

We now return to the Ln case and introduce the Lagrangian Ln
c along with its corresponding

Hamiltonian Hn
c by

Ln
c (x,v) = Ln(x,v) − 〈cn,v〉n, Hn

c (x,p) = Hn(x, cn + p). (29)

Note that they are, indeed, Legendre conjugates. Then (28) becomes

Hn
c (x,∇nv(x)) = Hn(cn) =

1

2
c2. (30)

For ǫ > 0 one looks at the unique viscosity solution un
ǫ (·; c) for

ǫv + Hn
c (x,∇nv(x)) = 0 (31)
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and shows [18] that un
ǫ (·; c)−min un

ǫ (·; c) converges uniformly to some un(·; c) which is a viscosity
solution for (30) and, thus, for (28). By Remark 3.2, these unique un

ǫ (·; c) have the following
representation formula

un
ǫ (x; c) = inf

σ(0)=x

∫ ∞

0
e−ǫsL̃n

c (σ(s), σ̇(s))ds (32)

where σ ∈ H1(0,∞; IRn) and L̃n
c (x,v) = Ln(x,v)+ 〈cn,v〉n. Due to the permutation invariance

of L̃n
c , we infer that

un
ǫ (x; c) = un

ǫ (xτ ; c) for any permutation of n letters τ, (33)

where we recall that xτ = (xτ(1), ..., xτ(n)). Let us now prove a useful lemma.

Lemma 3.3. For every c ∈ IR, ǫ > 0 and every positive integer n,

min
x∈IRn

un
ǫ (x; c) = un

ǫ (0; c) = − c2

2ǫ
.

Proof: According to (32),

un
ǫ (x; c) = inf

σ(0)=x

∫ ∞

0
e−ǫs

[
1

2
|σ̇|2n + 〈σ̇, cn〉n − 1

2n2

n∑

i,j=1

W (σi − σj)

]
ds

= inf
σ(0)=x

∫ ∞

0
e−ǫs

[
− c2

2
+

1

2n

n∑

i=1

|σ̇i + c|2 − 1

2n2

n∑

i,j=1

W (σi − σj)

]
ds.

Since W ≤ 0, clearly the minimum with respect to x is attained at x = 0 when σi(s) = −cs for
all s ≥ 0. Thus, the conclusion follows. QED.

Next, we prove a “consistency” result.

Lemma 3.4. Let m, n be positive integers. Then

umn
ǫ (xm

1 , ..., xm
n ; c) = un

ǫ (x; c), (34)

where xm
j := (xj , ..., xj) ∈ IRm for 1 ≤ j ≤ n.

Proof: Without loss of generality, we may assume c = 0 and drop the dependence on c in the
notation. We have

umn
ǫ (x) = inf

σmn

∫ ∞

0
e−ǫs

[
1

2mn

mn∑

i=1

|σ̇i
mn|2 −

1

2m2n2

mn∑

i,j=1

W (σi
mn − σj

mn)

]
ds, (35)

where σi
mn(0) = xj for all 1 ≤ j ≤ n and all (j − 1)m + 1 ≤ i ≤ jm. Now let us consider the

expression on the right hand side under the restriction σi1
mn = σi2

mn =: σj
n for any 1 ≤ j ≤ n and

every (j − 1)m + 1 ≤ i1, i2 ≤ jm. Then,

1

2mn

mn∑

i=1

|σ̇i
mn|2 −

1

2m2n2

mn∑

i,j=1

W (σi
mn − σj

mn) =
1

2n

n∑

j=1

|σ̇j
n|2 −

1

2n2

n∑

i,j=1

W (σi
n − σj

n),

which means that if we take the infimum in (35) with respect to x under this restriction we get

umn
ǫ (xm

1 , ..., xm
n ) ≤ un

ǫ (x).
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To prove the opposite inequality, denote by Jk = {(k − 1)m + 1, ..., km} for 1 ≤ k ≤ n. Since
W ≤ 0, after throwing away some nonnegative terms, one has

∫ ∞

0
e−ǫs

[
1

2mn

mn∑

i=1

|σ̇i
mn|2 −

1

2m2n2

mn∑

i,j=1

W (σi
mn − σj

mn)

]
ds

≥ m−n

∫ ∞

0
e−ǫs

∑

k∈J1×...×Jn

[
1

2n

n∑

i=1

|σ̇ki
mn|2 −

1

2n2

n∑

i,j=1

W (σki
mn − σ

kj
mn)

]
ds

≥ m−n
∑

k∈J1×...×Jn

inf
σ

ki
mn(0)=xi,1≤i≤n

∫ ∞

0
e−ǫs

[
1

2n

n∑

i=1

|σ̇ki
mn|2 −

1

2n2

n∑

i,j=1

W (σki
mn − σ

kj
mn)

]
ds

= m−nmnun
ǫ (x) = un

ǫ (x).

We conclude by taking the infimum in the left hand side. QED.

By Lemma 3.3 we infer

un
ǫ (·; c) +

c2

2ǫ
→ un(·; c) uniformly in IRn as ǫ ↓ 0.

Due to the periodicity of Ln
c and the uniqueness of un

ǫ (·; c), it follows that un
ǫ (·; c) is periodic.

Lemma 3.3 and (33) imply that un(·; c) is also Zn-periodic and permutation invariant. Further-
more, Lemma 3.4 implies

umn(xm
1 , ..., xm

n ; c) = un(x; c) for all positive integers m, n. (36)

It is also known that un(·; c) is Lipschitz on IRn, so it is differentiable a.e. and the equation (28)
is satisfied pointwise at the points of differentiability. One can easily see then that the Lipschitz
constant κn satisfies 0 < κn ≤

√
c2 − 2 inf V =: κ.

3.2 An infinite-dimensional extension

Let us now consider partitioning the interval X = (0, 1) into n equal subintervals and denote by
Cn the set of all real-valued functions defined on (0, 1) and constant on each such subinterval.
Any function f ∈ Cn can be identified with a vector xn

f ∈ IRn by its values. We now define

Ũ : ∪n≥1Cn =: C → IR by Ũ(f ; c) = un0(xn0

f ; c) whenever f ∈ Cn. (37)

According to Lemma 3.4, not only is this functional well-defined, but it is also Lipschitz on C
with respect to the strong L2(0, 1)-norm. Indeed, let f, g ∈ C. Then f ∈ Cn and g ∈ Cm for
some positive integers m, n, so f, g ∈ Cmn. Thus,

|Ũ(f ; c) − Ũ(g; c)| = |umn(xmn; c) − umn(ymn; c)| ≤ κ|xmn − ymn|mn.

But |xmn −ymn|mn = ‖f − g‖L2(0,1), so the claim is proved. Due to the density of C in L2(0, 1),

we conclude that Ũ can be uniquely extended by continuity to L2(0, 1). More precisely:

Proposition 3.5. For any c ∈ IR there exists a unique U(·; c) : L2(0, 1) → IR which is Lipschitz
continuous with Lip(U(·; c)) ≤ κ and such that U(·; c)

∣∣
Cn

= un(·; c).

In the next section we will prove that U is the viscosity solution we are looking for. Before
that, let us show that it has some “nice” properties inherited from un.



12

Proposition 3.6. For any c ∈ IR the functional U(·; c) is RI and L2
Z
(0, 1)-periodic.

Proof: We give up the c-dependence to unburden notation. Let M ∈ L2(0, 1) and M̃ be its
monotone rearrangement. Take a sequence of maps Mn ∈ Cn converging to M in L2(0, 1), denote
by M̃n their monotone rearrangements and set µn = Mn#ν0, µ = M#ν0. By one-dimensional
optimal transport [16], we have

‖M̃n − M̃‖ = W2(µn, µ) ≤ ‖Mn − M‖

which gives M̃n → M̃ in L2(0, 1). Here, W2 denotes the 2–Wasserstein distance on the real line
(cfr. [2], [15] [27]). Since un is permutation invariant, we conclude U(Mn) = U(M̃n) which,
due to the continuity of U , implies U(M) = U(M̃). Thus, U is rearrangement invariant. To
prove periodicity take Z ∈ L2

Z
(0, 1) and a sequence Zn ∈ L2

Z
(0, 1) piecewise constant on the

n-equipartition of (0, 1) such that Zn → Z in L2(0, 1). Then Mn + Zn → M + Z in L2(0, 1), so
U(Mn + Zn) → U(M + Z). But the Zn-periodicity of un yields U(Mn + Zn) = U(Mn) and the
continuity of U concludes the proof. QED.

Remark 3.7. In the proof we have used the fact that any Z ∈ L2
Z
(0, 1) is the L2-limit of

functions that are integer-valued, piecewise constant on the n-equipartition of (0, 1). Indeed, to
see that, note that we may first approximate Z by functions taking on only finitely many values.
So it suffices to prove the statement for indicator functions of Borel sets A ⊂ 0, 1. Since the
Lebesgue measure is Borel regular, it is enough to consider open sets O ⊂ (0, 1). Furthermore,
one can reduce these open sets to finite unions of disjoint open subintervals of (0, 1). For such
sets, the property is easy to prove.

4 The Weak KAM Theorem

Here we shall prove Theorem 1.1, i.e. we shall show that U(·; c) constructed in the previous
section provides a viscosity solution for (15).

Definition 4.1. Let V be a real valued proper functional defined on L2(0, 1) with values in IR∪
{±∞}. Let M0 ∈ L2(0, 1) and ξ ∈ L2(0, 1). We say that ξ belongs to the (Fréchet) subdifferential
of V at M0 and we write ξ ∈ ∂·V (M0) if

V (M) − V (M0) ≥ 〈ξ,M − M0〉 + o
(
‖M − M0‖

)

for all M ∈ L(0, 1).
We say that ξ belongs to the superdifferential of V at M0 and we write ξ ∈ ∂·V (M0) if −ξ ∈
∂·(−V )(M0).

Remark 4.2. As expected, when the sets ∂·V (M0) and ∂·V (M0) are both nonempty, then they
coincide and consist of a single element. That element is the L2-gradient of V at M0, denoted
by ∇L2V (M0).

4.1 Viscosity solutions; solution semigroup

We can now define [6] the notion of viscosity solution for a general Hamilton-Jacobi equation of
the type

F (M,∇L2U(M)) = 0. (HJ)
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Definition 4.3. Let V : L2(0, 1) → IR be continuous.
(i) We say that V is a viscosity subsolution for (HJ) if

F (M, ζ) ≤ 0 for all M ∈ L2(0, 1) and all ζ ∈ ∂·V (M). (38)

(ii) We say that V is a viscosity supersolution for (HJ) if

F (M, ζ) ≥ 0 for all M ∈ L2(0, 1) and all ζ ∈ ∂·V (M). (39)

(iii) We say that V is a viscosity solution for (HJ) if V is both a subsolution and a supersolution
for (HJ).

Remark 4.4. If U is a viscosity solution, then, in view of remark 4.2, we deduce that (HJ) is
satisfied at all M ∈ L2(0, 1) where ∂·U(M) ∩ ∂·U(M) 6= ∅, which are precisely the points where
U is differentiable.

Let M ∈ L2(0, 1) and V : L2(0, 1) → IR be continuous and bounded. For t ≥ 0 define the
operator TL,t on the space of uniformly continuous and bounded functionals BUC(L2(0, 1)) by

TL,tV (M) := inf
S(t)=M

{
V (S(0)) +

∫ t

0
L(S(τ), Ṡ(τ))dτ : S ∈ H1(0, t;L2(0, 1))

}
. (40)

Observe that t → TL,t defines a (backward) semigroup on [0,∞). Furthermore, U(t,M) =:
TL,tV (M) yields the unique viscosity solution [6], [7] for the Cauchy problem associated with
the evolutionary Hamilton-Jacobi equation

∂tU(t,M) + H(M,∇L2U(t,M)) = 0, U(0,M) = V (M).

As a consequence, we have the following:

Proposition 4.5. The map V ∈ BUC is a fixed point for {TL,t}t≥0, i.e.

TL,tV = V for all t ≥ 0 (41)

if and only if V is a viscosity solution for H(M,∇L2V(M)) = 0.

Indeed, if we put V (t,M) := V(M), then according to the above discussion V solves (in
the viscosity sense) the Cauchy problem with initial data V. Since this V is, in fact, time-
independent, we deduce that it is a viscosity solution for the stationary HJ equation. Similarly,
we obtain that U constructed at the end of the previous section satisfies the requirements of
Theorem 1.1 if it has the following property.

Proposition 4.6. For any c ∈ IR let U(·; c) be the functional from Proposition 3.5. Then

TLc,tU(·; c) = U(·; c) − 1

2
c2t for all t ≥ 0, (42)

where Lc is defined in (14).

The goal of the remainder of this section is proving Proposition 4.6. To achieve this, we
consider the discrete Ln and use it to define (we use T n

c,t instead of T n
Ln

c ,t to unburden notation)

T n
c,tv(x) := inf

σ(t)=x

{
v(σ(0)) +

∫ t

0
Ln

c (σ(τ), σ̇(τ))dτ : σ ∈ H1(0, t; IRn)

}
, (43)
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where Ln
c is defined in (29). Likewise, any viscosity solution of Hn(x,∇nv(x) + cn) = c2/2

satisfies the n-dimensional version of (42). We deduce that, in particular, the n-dimensional
approximations (restrictions, rather) un of U satisfy

T n
c,tu

n(·; c) = un(·; c) − 1

2
c2t for all t ≥ 0. (44)

We would like to use this to prove (42) by passing to the limit as n → ∞ in some sense.

Remark 4.7. Note that if we further simplify notation by setting Tt := TL0,t and T n
t := T n

0,t,
easy calculations show that (44) becomes

T n
t ūn(·; c) = ūn(·; c) for all t ≥ 0, where ūn(·; c) := un(·; c) + 〈·, cn〉n.

Likewise, (42) becomes

TtŪ(·; c) = Ū(·; c) for all t ≥ 0, where Ū(M ; c) := U(M ; c) + c

∫ 1

0
Mdx.

4.2 The main result

Again, in this subsection, we consider the case c = 0 without loss of generality. Thus, we can
use the notation from Remark 4.7.

Lemma 4.8. Let U : L2(0, 1) → IR be Lipschitz continuous. Then, for any t > 0, TtU is
uniformly continuous on L2(0, 1).

Proof: Let ε > 0 be fixed. Take δ > 0 (to be fixed later), M1, M2 ∈ L2(0, 1) such that
‖M1 − M2‖ ≤ δ. By definition, there exists S1 ∈ H1(0, t;L2(0, 1)) with S1(t) = M1 such that

U(S1(0)) +

∫ t

0
L(S1(s), Ṡ1(s))ds ≤ TtU(M1) + δ. (45)

Define

Sδ(s) =

{
S1(s) if 0 ≤ s ≤ t − δ
s−t+δ

δ (M2 − M1) + S1(s), if t − δ ≤ s ≤ t,

a path connecting S1(0) and M2. Thus,

TtU(M2) ≤ U(S1(0)) +

∫ t

0
L(S1, Ṡ1)ds −

∫ t

t−δ
L(S1, Ṡ1)ds +

∫ t

t−δ
L(Sδ, Ṡδ)ds

≤ TtU(M1) + δ + Cδ +
1

2

∫ t

t−δ

(
‖Ṡδ‖2 − ‖Ṡ1‖2

)
ds

≤ TtU(M1) + Cδ +
1

2δ
‖M2 − M1‖2 +

‖M2 − M1‖
δ

∫ t

t−δ
‖Ṡ1(s)‖ds

≤ TtU(M1) + Cδ +
1

2δ
‖M2 − M1‖2 +

‖M2 − M1‖√
δ

(∫ t

0
‖Ṡ1(s)‖2ds

)1/2

.

But if we consider the constant path M1 in the variational principle we get

TtU(M1) ≤ U(M1) −
t

2

∫ ∫

X2

V (M1(x) − M1(y))dydx,
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so, in view of (45), we obtain

1

2

∫ t

0
‖Ṡ1(s)‖2ds ≤ δ + Ct + U(M1) − U(S1(0)).

Now we use

‖M1 − S1(0)‖ ≤
∫ t

0
‖Ṡ1(s)‖ds ≤

√
t

(∫ t

0
‖Ṡ1(s)‖2ds

)1/2

and the fact that U is Lipschitz to infer that
∫ t
0 ‖Ṡ1(s)‖2ds is bounded by some C(δ, t) (increasing

in each variable). So, for δ < 1,
∫ t
0 ‖Ṡ1(s)‖2ds is bounded (since t is fixed). Thus, for δ < 1, one

has

TtU(M2) − TtU(M1) ≤ Cδ +
1

2δ
‖M2 − M1‖2 +

C√
δ
‖M2 − M1‖ ≤ C(δ +

√
δ) =: ε

whenever ‖M2−M1‖ ≤ δ. One can now interchange the roles of M1 and M2 to conclude. QED.

Since we took c = 0, we denote U(·; 0) and un(·; 0) by U and un, respectively. We know that
U(Mn) = un(x) whenever Mn ≡ xi is piecewise constant on the n-regular partition of (0, 1).
Therefore, it makes sense to write T n

t U(Mn) which is nothing but T n
t un(x).

Lemma 4.9. If U is the one defined in Proposition 3.5, then for any t > 0 and any M ∈ L2(0, 1)
there exists a sequence Mn ∈ Cn such that

‖Mn − M‖ → 0 and lim sup
n→∞

T n
t U(Mn) ≤ TtU(M). (46)

Proof: Let εn ↓ 0. Since U is continuous and C is dense in L2(0, 1), for n sufficiently large
we can find Mn ∈ Cn such that ‖Mn − M‖ ≤ εn/κ. Then |U(Mn) − U(M)| ≤ εn. Also, take
γn ∈ H1(0, t;L2(0, 1)) such that γn(t) = M and

A(t; γn) − εn ≤ TtU(M) ≤ U(γn(0)) +

∫ t

0
L(γn(s), γ̇n(s))ds =: A(t; γn). (47)

Let σn ∈ L2(0, t; Cn) such that ‖γ̇n − σn‖L2((0,t)×(0,1)) ≤ εn/(κ
√

t) (see, for example, [17] for the
existence of such σn). Then place

Sn(s, x) = Mn(x) −
∫ t

s
σn(τ, x)dτ.

Obviously, Sn ∈ H1(0, t; Cn). We have

Sn(s) − γn(s) = Mn − M +

∫ t

s
(γ̇n − σn)dτ

which implies

‖Sn(s) − γn(s)‖ ≤ 2εn

κ
for 0 ≤ s ≤ t. (48)

Since Sn(t) = Mn, we can write

T n
t U(Mn) ≤ U(Sn(0)) +

∫ t

0
L(Sn(s), σn(s))ds

≤ U(Sn(0)) − U(γn(0)) + A(t; γn) +

∫ t

0

[
L(Sn(s), σn(s)) − L(γn(s), γ̇n(s))

]
ds

≤ 3εn + TtU(M) +

∫ t

0

[
L(Sn(s), σn(s)) − L(γn(s), γ̇n(s))

]
ds, (49)
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where we have taken into account the Lipschitz property of U (with Lipschitz constant at most
κ) and (47). As for the last term in the right hand side, that is nothing but

1

2

[
‖σn‖2

L2(Xt)
− ‖γ̇n‖2

L2(Xt)

]
− 1

2

∫ t

0

∫

(0,1)2

[
W (Sn(s, x) − Sn(s, y)) − W (γn(s, x) − γn(s, y))

]
,

where Xt := (0, t) × (0, 1). But (47) implies

1

2
‖γ̇n‖2

L2(Xt)
≤ TtU(M) + εn + t sup |W |,

so ‖γ̇n‖L2(Xt) is bounded and, since ‖γ̇n − σn‖L2(Xt) ≤ εn/(κ
√

t), ‖σn‖L2(Xt) is also bounded.
These considerations, along with (48) and the Lipschitz continuity of V , imply

lim
n→∞

∫ t

0

[
L(Sn(s), σn(s)) − L(γn(s), γ̇n(s))

]
ds = 0.

Therefore, (49) yields the second statement in (46). QED.

We have now all the tools to prove Proposition 4.6. Let us remind the reader that we do not
lose generality by considering the case c = 0 only.
Proof of Proposition 4.6: Take M ∈ L2(0, 1) and the corresponding sequence Mn from
Lemma 4.9. Note that, since Mn ∈ Cn for all n, (44) enables us to write

T n
t U(Mn) = U(Mn) → U(M) as n → ∞,

where the convergence is due to the continuity of U . By using Lemma 4.9 again we pass to
lim sup in the left hand side to deduce

TtU(M) ≥ U(M).

To prove the opposite inequality, note that

TtU(Mn) ≤ T n
t U(Mn) for all n ≥ 1, t > 0

because the infimum in the definition of the left hand side is taken under fewer restrictions. Now
Lemma 4.8 applies to yield the convergence of TtU(Mn) to TtU(M). But we have already seen
that the right hand side converges to U(M), so we conclude the proof. QED.

4.3 Forward semigroup

Define the (forward) semigroup T̃L,t on C(T) by

T̃L,tV (M) = sup
S(0)=M

{
V (S(t)) −

∫ t

0
L(S(s), Ṡ(s))ds

}
.

One can modify the proof of Proposition 4.6 to prove:

Proposition 4.10. For any c ∈ IR there exists a Lipschitz continuous, periodic, rearrangement
invariant map Ũ(·; c) : L2(0, 1) → IR such that

T̃Lc,tŨ(·; c) = Ũ(·; c) +
1

2
c2t for all t ≥ 0. (50)

Furthermore, Ũ(Mn; c) = ũn(x; c) whenever Mn ∈ Cn and x is the corresponding vector in IRn,
where ũn(·; c) is a forward semigroup Weak KAM solution on Tn, i.e.

T̃ n
Ln

c ,tũ
n(·; c) = ũn(·; c) +

1

2
c2t for all t ≥ 0. (51)
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Indeed, this is, in some sense, the dual of Proposition 4.6 as it uses the forward semigroup
T̃t instead of the more usual Lax-Oleinik backward semigroup Tt to construct viscosity solutions
for (15). The following result yields the second statement of Theorem 1.1.

Proposition 4.11. Let M ∈ M be fixed. Then for every c ∈ IR there exists a global extremal
curve S ∈ H2(0,∞;L2(0, 1)) such that S(0) = M , S(t) ∈ M for all t ≥ 0, and

Ũ(S(t); c) − Ũ(M ; c) =

∫ t

0
Lc(S(s), Ṡ(s))ds +

1

2
c2t for all t ≥ 0. (52)

Proof: Let Mn ∈ Cn be nondecreasing and such that Mn → M in L2(0, 1). According to
Proposition 4.10, the restriction ũn of Ũ to Cn (or, equivalently, IRn) is a Weak KAM solution
for (51) on Tn. Theorem 4.5.3 in [12] provides a global extremal {(σn(s), σ̇n(s))}s≥0 ⊂ IRn× IRn

such that

ũn(σn(t); c) − ũn(xn; c) =

∫ t

0
Ln

c (σn(s), σ̇n(s))ds +
1

2
c2t for all t ≥ 0, (53)

where xn is the n-dimensional vector corresponding to Mn. Note that the path s → σn(s) we
consider here is, in fact, a lift of the one from [12] to the universal cover IRn. So, if we denote
by Sn(s) the function in Cn corresponding to σn(s) ∈ IRn, then we can write

Ũ(Sn(t); c) − Ũ(Mn; c) =

∫ t

0
Lc(Sn(s), Ṡn(s))ds +

1

2
c2t for all t ≥ 0. (54)

We first deduce

Ũ(Sn(t); c) − Ũ(Mn; c) ≥ 1

2

∫ t

0
‖Ṡn(s) − c‖2ds for all t ≥ 0 (55)

which means Sc
n(s) := Sn(s) − cs has functional time derivative bounded in L2(0,∞;L2(0, 1))

uniformly with respect to n. It follows that t → Sc
n(t) is uniformly Hölder. In particular, for

each t ≥ 0, Sc
n(t) is bounded in L2(0, 1), uniformly with respect to n. Note that, since Mn is

nondecreasing we may assume [15], [17] that Sc
n(t) is nondecreasing for all n and t. Therefore,

for any t ≥ 0, there exists a subsequence nk → ∞ such that Sc
nk

(t) → Sc(t) in L2
loc(0, 1) for

some Sc(t) ∈ M (see, e.g., [17]). By a standard diagonalization argument, we can use the same
subsequence for all t ∈ [0,∞) ∩ Q. Again, by a standard argument, one notices that t → Sc(t)
is Hölder continuous on [0,∞) ∩ Q, so it can be extended to the whole [0,∞) in a unique way.
Furthermore, after relabeling Sc

nk
(t) by Sc

n(t), we use the uniform Hölder continuity of Sc
n and Sc

(as well as the density of Q in IR) to deduce that Sn(t) → Sc(t) + ct =: S(t) in L2
loc(0, 1) for all

t ≥ 0. But the uniform bound on Ṡc
n in L2(0,∞;L2(0, 1)) and some of the considerations above,

also imply that S ∈ H1(0,∞;L2(0, 1)) and, up to an unrelabeled subsequence, Ṡn ⇀ Ṡ weakly
in L2(0,∞;L2(0, 1)). Now let us assume Ũ(·; c) is continuous with respect to the L2

loc(0, 1)-
topology as well (stronger than the already known L2(0, 1)-continuity). If we pass to liminf in
(54) as n → ∞, we obtain (due to Lc being l.s.c.)

Ũ(S(t); c) − Ũ(M ; c) ≥
∫ t

0
Lc(S(s), Ṡ(s))ds +

1

2
c2t for all t ≥ 0

which, in light of (50) and the definition of T̃Lc,t, turns into the equality (52). To prove the
L2

loc-continuity of Ũ(·; c) let us take Ω ⊂⊂ (0, 1), f ∈ L2(0, 1) and simply remark that
∣∣Ũ(fχΩ) − Ũ(f)

∣∣ =
∣∣Ũ(f̂χΩ) − Ũ(f̂)

∣∣ =
∣∣Ũ(f̂χΩ) − Ũ(f̂)

∣∣

≤ Lip(Ũ(·; c))
( ∫

(0,1)\Ω
|f̂(x)|2dx

)1/2

≤ Lip(Ũ (·; c))L1((0, 1)\Ω),
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where we remind the reader that f̂ = f − [f ] (here [·] stands for the integer part function). Thus,
the Lipschitz continuity of Ũ(·; c) with respect to the L2-topology implies its uniform continuity
with respect to the L2

loc-topology. QED.

5 A spatially periodic Vlasov-Poisson system

We claim that Proposition 4.6 holds even if W is not necessarily C2. The need for this regularity
assumption came from the use of Theorem 4.5.3 in [12] to provide us with a global extremal
{(σn(s), σ̇n(s))}s≥0 ⊂ IRn × IRn satisfying (53), and it has no bearing on Proposition 4.6. In-
deed, we proved Proposition 4.6 by approximation with finite-dimensional Weak KAM solutions
un(·; c) which were extracted from [5] (therefore, independently of [12]). To further explain, we
refer back to Remark 3.2 (where we indicate how our un(·; c) is constructed) and point to the
conditions on the Hamiltonian (1), (2) and (3) in [5]. These conditions will still be satisfied by
Hn defined in (26) if W is only Lipschitz continuous (instead of C2) and Z-periodic. If (13) is
further assumed on W , then the entire construction from Section 3 carries through. Lemmas
4.8 and 4.9 will also hold, so Proposition 4.6 will remain true in this less regular case.

In order to be able to reproduce the proof of Proposition 4.11 in this case, it would suffice
to know that the global extremals {(σ(s), σ̇(s))}s≥0 ⊂ IRn × IRn employed in (53) still exist at
the n-dimensional level. For that, we apply a standard compactness argument in H1(0, t; IRn)
for a maximizing sequence in

un(x; c) = sup
σ(0)=x

{
un(σ(t); c) −

∫ t

0
Ln

c (σ(s), σ̇(s))ds

}
− 1

2
c2t,

say it satisfies

un(x; c) − 1

m
≤ un(σm(t); c) −

∫ t

0
Ln

c (σm(s), σ̇m(s))ds − 1

2
c2t (56)

The maximizing sequence {σm}m is bounded in H1(0, t; IRn) (because un(·; c) is bounded in L∞)
and, since σm(0) = x for all m we infer that, at least up to a subsequence, σm converges to some
σ uniformly on [0, t] (in particular, σ(0) = x) while σ̇m converges to σ̇ weakly in L2(0, t; IRn).
We obtain the desired result by passing to liminf as m → ∞ in (56). Thus, Theorem 1.1 and
Corollary 1.3 remain true for W only Lipschitz continuous. Not the same can be said about
Corollary 1.2, as W is not regular enough to define the flow Ψ.

A periodic version of the Vlasov-Poisson system is replacing (8) if the C2 potential W is
replaced by the less regular

W (z) =
1

2

(
|z|2

T1 − |z|T1

)
. (57)

Indeed, one checks by direct computation that the convolution P := W ∗ ρ satisfies

1 − ∂2
xxP =

∑

k∈Z

ρ(· + k). (58)

Consequently, with the potential (57) the system (8) turns into





∂tft + v∂xft = ∂xPt ∂vft

1 − ∂2
xxPt =

∑
k∈Z

ρt(· + k)
ρt =

∫
IR ftdv.

(59)
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Any Borel probability µ∗ on T1 can be represented as the Z-indexed sum of integer translations
of a Borel probability µ supported in [0, 1). Thus, in light of (58) we deduce that

Pµ∗(x) =

∫

IR
W (x − z)dµ(z) =

∫

T1

W (x − z)dµ∗(z)

satisfies
1 − ∂2

xxPµ∗ = µ∗ for all µ∗ ∈ P(T1).

Furthermore, note that if [0,∞) ∋ t → ft ∈ P2(IR×IR) satisfies (59) in the sense of distributions,
then so does t → ft(· + k, ·) for any k ∈ Z. By the linearity in ft of the first equation in (59),
we deduce that

f∗
t :=

∑

k∈Z

ft(· + k, ·) ∈ P(T1 × IR) (60)

satisfies (in the sense of distributions)





∂tf
∗
t + v∂xf∗

t = ∂xPt ∂vf
∗
t

1 − ∂2
xxPt = ρ∗t in T1 × IR.

ρ∗t =
∫
IR f∗

t dv
(61)

Let c ∈ R and µ∗ ∈ P(T1). We now have all the ingredients for a proof of the following:

Theorem 5.1. There exists a path [0,∞) ∋ t → f∗
t ∈ P2(T

1×R) satisfying in the distributional
sense the spatially periodic Vlasov-Poisson system (61) with ρ∗0 = µ∗ and such that

sup
t>0

√
t‖id/t − c‖ρt < ∞, lim

t→∞

∫

T1

∫

R

|v − c|2df∗
t (x, v) = 0,

where ρt ∈ P2(IR) is such that

ρ∗t =
∑

k∈Z

ρt(· + k).

Proof: Let µ ∈ P([0, 1)) ⊂ P2(IR) such that

µ∗ =
∑

k∈Z

µ(· + k).

According to Corollary 1.3 and our observations above for less regular potentials, there is a path
t → ρt ∈ AC2

loc(0,∞;P2(IR)) and u : (0,∞)×IR → IR Borel satisfying ut ∈ L2(ρt) for L1–almost
every t > 0, and ρ0 = µ. Also, (16) is satisfied with the third equation replaced by the second
equation in (59). Set

ft(x, v) := ρt(x)δut(x)(v) ∈ P2(IR × IR).

This path t → ft satisfies (59) in the sense of distributions, and we have already shown above
that f∗

t given by (60) solves (61) in the distributional sense with ρ∗0 = µ∗. The asymptotic
statement on the energy of f∗

t follows from the second equation in (17). QED.
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