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Abstract. We prove the existence, uniqueness, and regularity of minimizers of a polyconvex func-
tional in two and three dimensions, which corresponds to the H1-projection of measure-preserving
maps. Our result introduces a new criteria on the uniqueness of the minimizer, based on the smallness
of the lagrange multiplier. No estimate on the second derivatives of the pressure is needed to get a
unique global minimizer. As an application, we construct a minimizing movement scheme to construct
Lr-solutions of the Navier-Stokes equation (NSE) for a short time interval. Our scheme is an improved
version of the split scheme introduced in Ebin–Marsden [21], and allows us to solve the equation with
Lr initial data (r > d) as opposed to Hd/2+5 initial data requirement in [21].

1. Introduction

A problem of interest in nonlinear elasticity theory is the existence, uniqueness, and the characteri-
zation of the minimizers for variational problems of the form

(1.1) inf
Z∈U

{∫
Ω

(
j(x,DZ)− F · Z

)
dx
}
.

Here, Ω ⊂ Rd is a bounded and open set with smooth boundary, j : Rd ×Rd×d → R∪ {+∞} is a lower
semicontinuous function, U is some appropriately chosen function space, and F : Ω → Rd is a fixed
function. In the context of nonlinear elasticity theory, Ω represents a reference configuration occupied
by an elastic body, j represents the so-called stored energy density of the material, F is an applied
force, and Z represents the deformation undergone by the elastic body.

If we further assume that j is a polyconvex functional (cf. [6]), then the theory of the calculus of
variations developed by Morrey [36] gives robust results on the existence of minimizers to problem (1.1).
On the other hand, the uniqueness and regularity properties of minimizers or their characterizations
in terms of a system of PDEs, remain a major challenge when j fails to be convex (cf. e.g. [8] for a
summary of a list of unsolved problems). We refer the reader to [1] [24] [25] for partial regularity results
(up to a set of small measure) for a class of so-called quasiconvex stored energy density functions.

An important example of polyconvexity arises in the study of incompressible materials. Incompress-
ibility can be encoded by requiring that the admissible set of deformation maps satisfies the determinant
constraint det(DZ) = 1 everywhere. If we let Diff id(Ω) denote the set of maps X : Ω̄ → Ω̄ that are
volume preserving C1–diffeomorphisms such that X|∂Ω = id, then the constraint functional

χ(Z) =

{
0 if Z ∈ Diff id(Ω);

+∞ otherwise,

is not convex with respect to Z, but is a convex function of det(DZ) (hence, χ is polyconvex).

In this paper, we are interested in studying a particular incompressible polyconvex functional. Given
an H1(Ω) map S : Ω→ Ω, the so-called H1-projection problem seeks the closest incompressible map to
S in a weighted H1 norm. More explicitly, given a parameter a > 0, one wishes to find a minimizer of
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the problem

(1.2) Ja(Z) := χ(Z) +
1

2
‖Z − S‖2L2(Ω) +

a

2
‖DZ −DS‖2L2(Ω).

Note that since we are forced to choose Z ∈ Diff id(Ω), the term 1
2‖Z −S‖

2
L2(Ω) is equivalent to −Z ·S,

thus the H1 projection problem can be put into the form of problem (1.1). The intriguing problem (1.2)
dates back to the work of Lord Kelvin and continues to generate a lot of interest (cf. e.g. [9, 14, 16]
and the discussion on the Navier-Stokes equations below). The difficulty of problem (1.2) lies in the
non-convexity of the constraint set Diff id(Ω). Worse yet, in dimension d = 3, the H1 coercivity of the
functional is not sufficient to deduce weak convergence of the determinant. Thus, although (1.2) is a
polyconvex problem, Morrey’s theory cannot even ensure the existence of a minimizer.

In this paper, we will develop a theory that allows us to deduce the existence and uniqueness of
minimizers to the H1-projection problem under a mild regularity assumption on the data S. Our main
result in this paper can be summarized as follows:

In dimensions d ∈ {2, 3}, if r > d and S is sufficiently close to the identity in W 2,r(Ω), then there
exists a unique minimizer Z∗ ∈W 2,r

id (Ω) of the H1-projection problem (1.2).

To give a more detailed explanation of our result, let us introduce the Euler-Lagrange equation
associated to (1.2). Formally, the tangent space to a point Z ∈ Diff id(Ω) is the space {v ◦ Z : v ∈
C1

0 (Ω), ∇ · v = 0}. Therefore, any critical point of (1.2) must satisfy the equation

(Z − S) · v(Z) + a(DZ −DS) : D(v(Z)) = 0,

for every smooth divergence free vector field v vanishing on the boundary. Equivalently, every critical
point Z must have a corresponding scalar function p : Ω→ R such that

(1.3) (I − a∆)(Z − S) +∇p(Z) = 0,

where the equation should be interpreted distributionally. As it turns out, one can also understand p
as a Lagrange multiplier for the determinant constraint. If we define the Lagrangian

(1.4) L(Z, q) =
1

2
‖Z − S‖2L2(Ω) +

a

2
‖DZ −DS‖2L2(Ω) +

∫
Ω

q(x)
(
|det(DZ(x))| − 1

)
dx,

then the equations δZL(Z, q) = 0 and δqL(Z, q) = 0 correspond to

(1.5) (I − a∆)(Z − S) +DT
(

cof(DZ)q
)

= 0, det(DZ) = 1,

respectively. Thanks to the Null-Lagrangian identity DT cof(DZ) = 0, the equations (1.3) and (1.5)
can be transformed into one another through the relation q = p(Z).

To prove our main theorem, we develop a new regularity condition on critical points (Z∗, q∗) (i.e.
solutions to equation (1.5)) that guarantee that Z∗ is the unique solution to the H1-projection problem.
When q∗ is bounded in L∞ and the singular values of DZ∗ are uniformly bounded away from zero, we
are able to show that the Lagrangian L(Z, q∗) has a previously undiscovered convexity property (c.f.
Lemma 3.1 and Proposition 3.4). This property allows us to conclude that Z∗ is the unique minimizer
of the relaxed problem Z 7→ L(Z, q∗), and hence the original problem Z 7→ supq L(Z, q). Let us note
that although the focus is on H1 projection problem in this work, our strategy can be generalized to
other polyconvex problems in both compressible and incompressible non-linear elasticity.

Of course, our regularity condition is only useful if there actually exist critical points with the required
properties. In order to find such points, we employ Ekeland’s variational principle (EVP) [22, 23] to
derive a version of implicit function theorem for (1.5). While the use of the implicit function theorem
to find critical points is quite well-known in the calculus of variations literature (see for instance [34]
for a similar incompressible problem), the use of EVP is much less common albeit its powerful nature.
Our EVP-based approach is fully quantitative and does not require exactly inverting a linear operator.
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Indeed, the allowance for error in our approach considerably simplifies the required calculations. As
long as S is close enough to the identity in W 2,r(Ω), we are able to use EVP to produce a critical point
(Z∗, q∗) ∈W 2,r

id (Ω)×W 1,r(Ω) with sufficient regularity to conclude that Z∗ is the unique minimizer.

To illustrate the significance of our quantitative result beyond stationary variational problems, we
apply our main result to develop a discrete-in-time minimizing movements scheme to generate mild
solutions of the incompressible Navier Stokes equations. Indeed, our particular interest in the H1-
projection problem is rooted in the connection to Navier-Stokes. This connection can be traced back to
Arnold’s celebrated geometric interpretation of the incompressible Euler equations [4]. In [15], Brenier
gave a very concrete reinterpretation of Arnold’s idea as a projection problem. First one lets the fluid
evolve for a short time taking into account inertia only (i.e. evolve the Lagrangian flow map X by the
equation ∂ttX = 0), then the resulting fluid configuration is then projected back onto the space Diff(Ω).
Given a sequence of fluid configurations {X0, X1, . . . , Xn} and a time step τ > 0, Brenier’s scheme finds
the next fluid configuration by solving the variational problem

(1.6) Xn+1 ∈ argmin
X∈Diff(Ω)

1

2
‖X −Xn

τ
− Xn −Xn−1

τ
‖2L2(Ω).

The problem tries to find an incompressible map Xn+1, whose velocity Xn+1−Xn
τ best matches the

velocity at the previous time step Xn−Xn−1

τ , or in other words, the incompressible map with the least
L2 acceleration [27]. In fact, problem (1.6) can be viewed as the L2 analogue of problem (1.2).

The H1 projection problem appears when one wishes to extend the Brenier formalism to the Navier-
Stokes equations (2.7). In Lagrangian coordinates, the no-slip Navier-Stokes equations take the form

(1.7) ∂ttX − µ∆v(X) +∇p(X) = 0, ∂tX = v(X), det(DX) = 1, X|∂Ω = id,

where µ > 0 is a parameter that represents the viscosity of the fluid. As one can see from the above
equation, it is somewhat awkward to express viscous forces in Lagrangian coordinates. For this reason,
when given a sequence of fluid configurations {X0, . . . , Xn}, it is more natural to find the next fluid
configuration Xn+1 by decomposing Xn+1 = Zn+1 ◦Xn and solving for Zn+1. The map Zn+1 will be
determined by solving the viscous analogue of Brenier’s problem

(1.8) Zn+1 = argmin
Z∈Diffid(Ω)

1

2
‖Z ◦Xn −Xn

τ
− Xn −Xn−1

τ
‖2L2(Ω) +

µτ

2
‖DZ − I

τ
‖2L2(Ω),

where I is the identity matrix. In contrast to (1.6), Problem (1.8) attempts to evolve the fluid by
finding the incompressible map that simultaneously minimizes both the L2 acceleration of the fluid and
the viscous dissipation term µτ

2 ‖
DZ−I
τ ‖2L2(Ω), which measures the instantaneous loss of kinetic energy

to heat.

As one might expect, problem (1.8) is equivalent to a special case of the H1-projection problem.
Indeed, if one chooses a = µτ and sets S = id + τv, where v solves

(I − µτ∆)v =
(Xn −Xn−1

τ

)
◦X−1

n , v|∂Ω = 0,

then (1.8) and (1.2) are identical up to an irrelevant constant term. Note that the term
(Xn−Xn−1

τ

)
◦X−1

n

in the above equation roughly corresponds to the Eulerian vector field at time nτ . Hence, S ∈W 2,r(Ω)
roughly corresponds to the vector field being an element of Lr. As we shall show in the final section
of the paper, our W 2,r theory for the H1 projection problem allows us to build short-time Eulerian
and Lagrangian solutions to the Navier-Stokes equations starting from Lr initial data. Compared to
the well-known work of Ebin and Marsden [21], which also constructs Navier-Stokes solutions using the
volume preserving diffeomorphism formalism, we are able to solve the equations with much rougher
initial data.
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2. Summary of main results

In this subsection we give precise statements of the main results obtained in this paper. We begin
with our uniqueness result, which produces a sufficient condition for critical points (Z∗, q∗) of (1.5) to
be the unique minimizer of the H1 projection problem.

Theorem 2.1 (Uniqueness). Suppose that d ∈ {2, 3} and there exists a pair (Z∗, q∗) ∈W 1,d(Ω)×L∞(Ω)
satisfying (1.5). If there exists a constant σ > 0 such that the singular values of DZ∗ are larger than σ
almost everywhere and

(2.1) ‖q∗ − q̂‖L∞(Ω) ≤ aσ2
(
2 + 3(1 +

√
3)
)−1

,

where q̂ = 1
|Ω|
∫

Ω
q(x) dx, then Z∗ is the unique global minimizer of (1.2).

As we noted earlier, we shall prove Theorem 2.1 by showing that the Lagrangian (1.4) has a novel
convexity property. In particular, we shall show that it is possible to control the concavity of the
determinant term

∫
Ω
q(x)|det(DZ(x))| dx. If we let B(Z,Z0, q) denote the Bregman divergence [10]

(2.2) B(Z,Z0, q) :=

∫
Ω

q(x)
(
|det(DZ)|−|det(DZ0)|−sgn(det(DZ0)) cof(DZ0)) : (DZ−DZ0)

)
(x) dx,

then, when d ≤ 3, we prove the inequality

(2.3) − B(Z,Z0, q) ≤
c

2σ(DZ0)2
‖q det(DZ0)‖L∞(Ω)‖DZ −DZ0‖2L2(Ω) for q ≥ 0,

where c = 1 + 3
2 (1 +

√
3) and σ(DZ0) is a lower bound on the smallest singular value of DZ0. Thus,

we see that it is possible to control the concavity of Z 7→
∫

Ω
q(x)|det(DZ(x))| dx with H1(Ω), as long

as we are at a base point (Z0, q) that is not too irregular. Indeed, we shall obtain our uniqueness result
by controlling the concavity of Z 7→

∫
Ω
q(x)|det(DZ(x))| dx at the critical point (Z∗, q∗) with the H1

term Z 7→ a
2‖DZ −DS‖

2
L2(Ω).

Beyond the application to the H1 projection problem, the inequality (2.3) is useful for more general
polyconvex variational problems in nonlinear elasticity. This is due to the fact that terms of the form∫

Ω
q(x)|det(DZ(x))| dx can be made to appear in any polyconvex problem involving determinants.

Our uniqueness result is complemented by the following theorem, which guarantees the existence of
critical points to (1.5) that satisfy the conditions of Theorem 2.1 when S is close to the identity in
W 2,r(Ω). Taken together, Theorem 2.1 and 2.2 guarantee that the H1 projection problem has a unique
solution when S is sufficiently close to the identity in W 2,r(Ω).

Theorem 2.2 (Existence). For d ∈ {2, 3} and r ∈ (d,∞), let us define

(2.4) u∗ := argmin
u∈H1

0 (Ω),∇·u=0

‖S − id− u‖2L2(Ω) + a‖D(S − id− u)‖2L2(Ω),

and

(2.5) δ := ‖(I − a∆)(S − id)‖Lr(Ω), δ′ := ‖(I − a∆)(S − id− u∗)‖Lr(Ω).

If δ, a−
d+r
2r δ, a−1δ′ and a−

d+3r
2r δ2 = a−

d+r
2r δ(a−1δ) are sufficiently small, then there exists Z∗ ∈W 2,r(Ω)

and q∗ ∈W 1,r(Ω) that satisfy the hypotheses of Theorem 2.1. Furthermore,

‖(I − a∆)(Z∗ − S)‖Lr(Ω) .d,r δ
′ + a−

d+r
2r δ2.
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Remark 2.3. The constants in above result can be derived explicitly from our arguments in Section 6.

Remark 2.4. One may wonder if a similar result holds when W 2,r(Ω) is replaced by a different Banach
space X of maps from Ω to Ω (if S is close to the identity in X, can one find a critical point Z∗ ∈ X?).
In our argument we use three crucial properties ofW 2,r(Ω), namely thatW 2,r(Ω) embeds intoW 1,∞(Ω),
it is closed with respect to composition, and that ∆−1∂2

ij is a bounded operator fromW 2,r(Ω) to itself. We
suspect that this result would hold for any space X with those three properties. However, we anticipate
that the argument would need to overcome additional technical difficulties if X is a space weaker than
W 2,r(Ω).

In general, it is not so simple to estimate δ′ from the data S alone. Nonetheless, δ′ must always be
bounded by a constant multiple of δ (c.f. Lemma 4.2), hence, one can also restate Theorem 2.2 in the
following simpler but weaker form.

Theorem 2.5. Suppose that r > d ∈ {2, 3}. Define δ as in Theorem 2.2. If δ, a−
d+r
2r δ and a−1δ

are sufficiently small, then there exists Z∗ ∈ W 2,r(Ω) and q∗ ∈ W 1,r(Ω) that satisfy the hypotheses of
Theorem 2.1.

Let us briefly discuss previously known results in the literature. By appealing to abstract results in
convex duality [37], one can deduce that there exists a dense set D ⊂ H1(Ω) such that the H1 projection
problem has at most one minimizer when S ∈ D. Unfortunately, there is no known characterization of
this set beyond its denseness, which limits its practical usefulness (for instance the interior of this set
may be empty). Furthermore, this result is silent on the question of existence. In contrast, our result
shows that a unique solution exists for maps S in an entire ball around the identity in W 2,r(Ω).

Several authors have considered existence and uniqueness of minimizers to polyconvex problems of
the form (1.1) in more concrete settings. In three dimensions, [34] studied the existence of regular
critical points to (1.1) in the incompressible case U = Diffid(Ω) under the assumption that the applied
force F was small in an appropriate space. Building on this, in [42], Zhang showed that when j has the
form

(2.6) j(x,M) = G(x,M) + b
(
|M |r + |cof(M)|s

)
,

for some polyconvex function G : Ω× Rd×d → R and some parameters b > 0, r ≥ 2 and s ≥ r/(r − 1),
then the critical points from [34] are in fact the unique global minimizers of (1.1) provided that they
satisfy certain norm bounds. The presence of the term |cof(M)|s in (2.6) was essential for [42], where
cof(M) denotes the cofactor matrix of M . The resulting bound on the cofactor matrix allows a much
better control over determinants, thanks to the fundamental identity MT cof(M) = det(M)I. Indeed,
conditions in [42] imply that the determinant map Z 7→ det(DZ) is weakly continuous along any
minimizing seqnuence for (1.1). Hence, the existence of minimizers for such functionals follows from
the standard theory. Clearly, these results do not apply to the H1 projection problem: the projection
functional (1.2) does not afford any control on the cofactor matrix of DZ.

In [28], the notion of λ-convexity [3] is used to provide a sufficient condition for a critical point of
(1.1) to be the unique global minimizer of the problem. While their result could be applied to the H1-
projection problem, it requires strong bounds on the optimal Lagrange multiplier q∗. In particular, it is
necessary that the eigenvalues of D2q∗ are uniformly bounded from below. Since there is no apparent
mechanism in the H1 projection problem that encourages λ-convexity of q∗, it seems unlikely that such
a property can be obtained without showing that q∗ ∈ W 2,∞(Ω). This is two full derivatives stronger
than our condition, and hence, considerably more difficult to satisfy.

2.1. Applications to Navier-Stokes. Finally, in the last section of this paper, we use the H1 pro-
jection problem to construct solutions to no-slip Navier-Stokes equations:

(2.7) ∂tv − µ∆v + v · ∇v +∇p = 0, ∇ · v = 0 in Ω× (0, T ), v = 0 on ∂Ω× (0, T ),
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with initial data v0 ∈ Lr(Ω).

For technical reasons, we shall use a slightly different scheme than the one given in (1.8). Given an
initial divergence free velocity v0 and a time step τ , we will construct discrete-in-time approximations
to the Navier-Stokes equations using the H1 projection problem by iterating the following scheme:

(2.8) (I − µτ∆)Sn+1,τ = id + τvn,τ , Sn+1,τ |∂Ω = id;

(2.9) Zn+1,τ ∈ argmin
Z∈Diffid(Ω)

1

2
‖Z − Sn+1,τ‖2L2(Ω) +

µτ

2
‖DZ −DSn+1‖2L2(Ω);

(2.10) wn+1,τ := Zn+1 #vn,τ ;

(2.11) vn+1,τ := e−µτAwn+1.

Here A is the so called Stokes operator, and vn+1,τ is the solution to the parabolic equation

∂tv +Av = 0, ∇ · v = 0, v|∂Ω = 0,

at time τ starting from the initial data wn+1,τ . Using the scheme, we shall also define the Lagrangian
flow maps

Xn+1,τ = Zn+1,τ ◦Xn,τ .

Our main result on Navier-Stokes can then be summarized as follows.

Theorem 2.6. Let v0 ∈ Lr(Ω) with r > d ∈ {2, 3}. Then there exists a time T ∗ > 0 depending only
on ‖v0‖Lr(Ω), r, d and the viscosity µ in (2.7) such that the following holds:

(a) The scheme (2.8-2.11) is well-defined and generates discrete velocities vn,τ that are uniformly
bounded in Lr(Ω) for 0 ≤ nτ ≤ T ∗.

(b) The discrete velocities converge in L2([0, T ∗] × Ω)) as τ → 0 to the unique mild solution v ∈
L∞([0, T ∗], Lr(Ω)) ∩ L1((0, T ∗];W 1,∞

0 (Ω)) of the Eulerian Navier-Stokes equation (2.7).
(c) The discrete Lagrangian flow maps converge in L1([0, T ∗]×Ω) as τ → 0 to the unique solution

of the Lagrangian Navier-Stokes equation (1.7).

The solution v and X in above theorem satisfies stronger regularity properties than those listed
above: see Remark 7.10.

3. A new sufficient conditions for being a minimizer: proof of Theorem 2.1

To prove Theorem 2.1, we will show that our assumption on the pair (Z∗, q∗) guarantees that Ja
lies above a convex parabola centered at Z∗ and touches the parabola at Z∗. In other words, we will
obtain the inequality Ja(Z) ≥ Ja(Z∗) + 1

2‖Z − Z
∗‖L2(Ω), see (3.3). The argument involves two key

steps. First, we relax the constraint on det(DZ) by introducing q∗ as a Lagrange multiplier, see (3.1).
We then show that the non-convexity of the Lagrange multiplier term

∫
Ω
q∗|det(DZ)| is dominated by

the quadratic term a
2‖DZ − DS‖

2
L2(Ω) by establishing the Bregman divergence bound in (2.3). This

bound is the consequence of an interesting matrix inequality that holds in dimensions 2 and 3 (Lemma
3.1). Though the matrix inequality is elementary, it plays an essential role in our argument that we
believe is worth highlighting.

Lemma 3.1. Let M,A ∈ Rd×d. In two dimensions,(
sgn(det(A)) cof(A)− sgn(det(M)) cof(M)

)
: (A−M) ≥ −|det(M)|

σ2
|A−M |2.

In three dimensions,(
sgn(det(A)) cof(A)− sgn(det(M)) cof(M)

)
: (A−M) ≥ −

(
1 +

3

2
(1 +

√
3)
) |det(M)|

σ2
|A−M |2
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where σ is the smallest singular value of M .

Remark 3.2. As a polynomial of degree d, the restriction of the determinant function to any convex
subset of the set of Rd×d, is λ-convex. When d = 2, we can choose λ = −1 independently of the convex
set. This means, (

cof(A)− cof(M)
)

: (A−M) ≥ −|A−M |2 A,M ∈ R2×2.

Remark 3.3. There is no analogous inequality when d ≥ 4. Indeed, if we choose M = I and A =
αI − (α−α1−d)ed⊗ ed, then as α→∞, the left-hand-side of the inequality scales like −αd−1 while the
right-hand-side scales like −α2.

Proof. Thanks to the density of diagonalizable nonsingular matrices, we can assume without loss of
generality that A and M are nonsingular and diagonalizable. Thus, we can factor A = BM for some
matrix B. We then have(

sgn(det(A)) cof(A)− sgn(det(M)) cof(M)
)

: (A−M) = |det(M)|
(

sgn(det(B)) cof(B)− I
)

: (B− I).

Expanding out the product and using the fact that cof(B)T = det(B)B−1, the right-hand-side is equal
to

|det(M)|
(
d|det(B)|+ d− tr(B)− | det(B)|tr(B−1)

)
.

Since σ is the smallest singular value of M , we have

|A−M |2 ≥ σ2|B − I|2.
Hence, given any constant c > 0, we obtain(

sgn(det(A)) cof(A)− sgn(det(M)) cof(M)
)

: (A−M) + c
|det(M)|

σ2
|A−M |2 ≥

|det(M)|
(
c|B − I|2 + d|det(B)|+ d− tr(B)− | det(B)|tr(B−1)

)
.

It is now clear that the lower bound only depends on det(M) and the eigenvalues of B.

Let us now show that

f(B) := c|B − I|2 + d|det(B)|+ d− tr(B)− | det(B)|tr(B−1)

is nonnegative once c is sufficiently large. It is clear that f is a function of the eigenvalues of B and that
it is minimized when the eigenvalues are nonnegative. Therefore, we shall assume that B is a diagonal
matrix with nonnegative eigenvalues in the rest of the argument.

In two dimensions, |det(B)|tr(B−1) = tr(B). It is then easy to check that f has a single critical
point at B = I. When c > 1, f is coercive, thus, I must be the unique minimizer when restricted to
diagonal matrices. Since f(I) = 0, we obtain the desired inequality in two dimensions by letting c→ 1.

In three dimensions, we have the inequality

|det(B)|tr(B−1) ≤ |B − I|2 + 2tr(B)− 3.

Thus,
f(B) ≥ g(B) := (c− 1)|B − I|2 + 3|det(B)| − 3tr(B) + 6.

As long as c ≥ 1, g is coercive.

Now consider h(B) := (c− 1)|B − I|2 − 3tr(B) + 6, which lies below g, and set

h̄(t) = (c− 1)|t− 1|2 − 3t+ 2, t ≥ 0.

When c > 1, h is strictly convex and has a unique global minimum over diagonal matrices at its critical
point B0 := aI where a := 1 + 3

2(c−1) . Similarly, h̄ has a unique global minimizer at a. For

B = diag(x1, x2, x3), B̃ =: diag
(

min{a, x1},min{a, x2},min{a, x3}
)
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with nonnegative entries, we have

h(B̃) =

3∑
i=1

h̄
(
min{a, xi}

)
≤

3∑
i=1

h̄(xi) = h(B).

The previous inequality is strict unless B̃ = B. Since det(B̃) ≤ det(B) we can conclude that g(B̃) ≤
g(B) and again the latter inequality is strict unless B̃ = B. Therefore, any minimizer of g must have
eigenvalues bounded in [0, 1 + 3

2(c−1) ].

By direct calculation, the Hessian of g is diagonally dominant when restricted to the set of diagonal
matrices whose eigenvalues are bounded in [0, c−1

3 ]. Thus, g must be convex in this region. This
region is guaranteed to contain the minimizer of g as soon as 1 + 3

2(c−1) ≤
c−1

3 which is equivalent to
c ≥ 1 + 3

2 (1 +
√

3). In this case, the critical point of g at C = I must be the global minimum with value
g(I) = 0. Therefore, in three dimensions, it follows that(

sgn(det(A)) cof(A)− sgn(det(M)) cof(M)
)

: (A−M) +
(
1 +

3

2
(1 +

√
3)
) |det(M)|

σ2
|A−M |2 ≥ 0,

which is the desired result. �

With the matrix inequality in hand, we can prove Proposition 3.4, which establishes the unique-
ness of minimizers for the Lagrangian relaxation (1.4). This produces Theorem 2.1 as an immediate
consequence.

Proposition 3.4. Let d ∈ {2, 3} and let

(3.1) L(Z, q) :=
1

2
‖Z − S‖2L2(Ω) +

a

2
‖DZ −DS‖2L2(Ω) +

∫
Ω

q(x)(|det
(
DZ(x)

)
| − 1) dx.

Suppose that Z∗ ∈ Diff id(Ω) and q∗ ∈ L∞(Ω) solve (1.5) and the singular values of DZ∗ are uniformly
bounded from below by some σ > 0. Set q̄ := q∗ − c, where c ∈ R is the largest constant so that q̄ ≥ 0.
If ‖q̄‖L∞ ≤ aσ2

(
1 + 3

2 (1 +
√

3)
)−1, then Z∗ is the unique global minimizer of L(·, q̄) among functions

in W 1,d
id (Ω).

Proof. Let Z be some arbitrary element of W 1,d
id (Ω). Calculating the Z variation of L, we see that

δZL(Z, q̄)(φ) =

∫
Ω

(
(Z − S) · φ+

(
DZ −DS + q̄ sgn(det(DZ)) cof(DZ)

)
: Dφ

)
dx,

where φ ∈W 1,d
0 (Ω) is an arbitrary perturbation. Since (Z∗, q∗) solves (1.5), it follows that δZL(Z∗, q̄) ≡

0. Hence,

L(Z, q̄)−L(Z∗, q̄) = L(Z, q̄)−L(Z∗, q̄)−δZL(Z∗, q̄)(Z−Z∗) =
1

2
‖Z−Z∗‖2L2(Ω)+

a

2
‖DZ−DZ∗‖2L2(Ω)+B(Z,Z∗, q̄),

where we recall the definition of B(Z,Z∗, q̄) from (2.2). Applying the Fundamental Theorem of Calculus,
we have

B(Z,Z∗, q̄) =

∫
Ω

q̄(x)

∫ 1

0

1

t

(
sgn

(
det(DZt(x))

)
cof
(
DZt(x)

)
−cof

(
DZ∗(x)

))
:
(
DZt(x)−DZ∗(x)

)
dx dt,

where Zt = tZ+ (t− 1)Z∗ and we have used the fact that 1
t (DZt−DZ

∗) = (DZ−DZ∗). Now Lemma
3.1 combined with the L∞ bound on q̄ implies that

(3.2) L(Z, q̄) ≥ L(Z∗, q̄) +
1

2
‖Z − Z∗‖2L2(Ω).

�
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Proof of Theorem 2.1.

Let Z0 be some arbitrary element of Diffid(Ω). Since det(DZ0) = 1 everywhere, it follows that

χ(Z0) ≥ sup
q∈L1(Ω)

∫
Ω

q(x)
(

det(DZ0(x))− 1
)
dx = sup

q∈L1(Ω)

∫
Ω

q(x)
(
|det(DZ0(x))| − 1

)
dx.

Therefore,
Ja(Z0) ≥ sup

q∈L1(Ω)

L(Z0, q) ≥ L(Z0, q̄),

where q̄ is defined as in Proposition 3.4. Using Proposition 3.4 and the fact that Ja(Z∗) = L(Z∗, q̄), we
can conclude that

(3.3) Ja(Z0) ≥ Ja(Z∗) +
1

2
‖Z − Z0‖2L2(Ω).

4. Preliminaries for the proof of Theorem 2.2

It remains to prove the existence of the solution pair (Z∗, q∗) that satisfies the hypothesis of Theorem
2.1. In this section, we will introduce a number of basic results that will play an important role in our
subsequent analysis. We begin by introducing a special operator that will allow us to simplify equation
(1.5).

Changing a base point for an operator. Given any operator L from a subset of functions on Ω
to another subset of functions on Ω, whenever Z : Ω̄→ Ω̄ is invertible, we define

LZ(f) := L
(
f ◦ Z−1

)
◦ Z.

The operator LZ can be expressed in terms of the pull–back operator.

Leray projection operator P. We set

Vid :=
{
w ∈ L2(Ω;Rd) : (w,∇φ) = 0 for all φ ∈ C∞(Ω;R)

}
The Leray projection P : L2(Ω,Rd)→ Vid is the orthogonal projection of L2(Ω) onto Vid. When ∂Ω is
of class C1,1, we have from Theorem 1 of [35] (also [38], [39]) that

(4.1) ‖P(φ)‖W l,r(Ω) . ‖φ‖W l,r(Ω) ∀l ∈ {0, · · · , k} ∀φ ∈W k,r(Ω), ∀r ∈ (1,∞).

The Projection operator PZ . Given a map Z ∈ Diffid(Ω) we can introduce the operator PZ from
the Leray projection, using the change of base point formula. Note that PZ can also be understood as
an orthogonal projection. If we define the space

VZ :=
{
w ∈ L2(Ω;Rd) : (w,∇φ(Z)) = 0 for all φ ∈ C∞(Ω;R)

}
,

one can readily check that w ∈ VZ if and only if w◦Z−1 ∈ Vid. It then follows that PZ is the orthogonal
projection of L2(Ω;Rd) onto VZ .

Now that we have defined PZ , we can use it to simplify equation (1.5) by eliminating the pres-
sure/Lagrange multiplier variable q. This is accomplished in the following lemma.

Lemma 4.1. If Z ∈ Diffid(Ω) solves the equation

(4.2) PZ(I − a∆)(Z − S) = 0,

then there exists q : Ω → R such that (Z, q) is a solution to equation (1.5). Furthermore, q can be
recovered explicitly from the formula

∇q = −DZT (I − a∆)(Z − S).
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Proof. Since PZ is the orthogonal projection of L2(Ω) onto the space VZ , the condition PZ(I−a∆)(Z−
S) = 0 implies that (

(I − a∆)(Z − S), v ◦ Z
)

= 0,

for every divergence free vector field v with zero normal component. As we noted in the introduction,
this is equivalent to the existence of a scalar function q : Ω→ R such that

(I − a∆)(Z − S) +DT (cof(DZ)q) = 0.

To recover q, we use the fact thatDT (cof(DZ)q) = cof(DZ)∇q andDZT cof(DZ) = det(DZ)I = I. �

In the process of finding solutions to (4.2), we shall need to be able to invert the equations

PZ(I − a∆)u = w, ∇ · u = 0, u|∂Ω = 0

where w ∈ VZ and Z ∈ Diffid(Ω) are given and u is unknown. In the special case where Z = id, this
is known as the Stokes resolvent problem. This problem plays an important role in the study of the
Navier-Stokes equations and will reappear throughout the rest of our paper.

The Stokes operator and the Stokes resolvent problem. For 1 < p <∞, let

Kp := {u ∈W 2,p(Ω,Rd) ∩W 1,p
0 (Ω,Rd) : ∇ · u = 0 in Ω}.

The Stokes operator

(4.3) A := −P∆ : Kp → Lp(Ω)

is defined to be the negative of the composition of the Leray projection and the Laplace operator. For
well-posedness and regularity properties of this operator, see for instance [41],[29]. Using the Stokes
operator, we can rewrite the Stokes resolvent problem for a given w as follows:

(4.4) (I + aA)u+ w = 0, ∇ · u = 0, u|∂Ω = 0.

The following Lemma on the solvability and regularity of the Stokes resolvent problem will be essential
to our critical point analysis, and will reappear again when we consider the Navier-Stokes equations.

Lemma 4.2 (Theorem 1.2, [26]). If w ∈ Lp(Ω), then there exists a solution u ∈ Kp to equation (4.4),
a scalar function f : Ω→ R and a constant C̄p such that

(I − a∆)u+∇f + w = 0

and

(4.5) ‖u‖Lp(Ω) + a‖D2u‖Lp(Ω) + ‖∇f‖Lp(Ω) ≤ C̄p‖w‖Lp(Ω).

5. EVP and the main ideas for the proof of Theorem 2.2

Now we have converted the critical point equation (1.5) into the simplified form (4.2). As mentioned
in the introduction, we will now use a version of the implicit function theorem based on Ekeland’s
variational principle (EVP). These ideas are first introduced in an abstract setting.

5.1. EVP and the implicit function theorem.

Proposition 5.1 (Ekeland variational principle [22]). Let (T ,dist) be a complete metric space and let
F : T → R∪ {+∞} be a lower semicontinuous function that is bounded below and is not identically ∞.
If x0 ∈ T such that F (x0) ≤ ε+ infT F for some ε > 0, then for all λ > 0 there exists xλ ∈ T such that

F (xλ) ≤ F (x0), dist(x0, xλ) ≤ λ, and F (xλ) < F (x) +
ε

λ
dist(x, xλ) ∀x ∈ T \ {xλ}.
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In order to use EVP to solve (4.2), we need to convert the question of finding zeros into a variational
problem. This is accomplished in the following abstract lemma, which is an adaptation of Ekeland’s
argument from [23] that is well-suited to our setting.

Lemma 5.2. Suppose that X ,Y are Banach spaces and Φ : X → Y is a continuous and Frechet
differentiable map. Given a closed proper subset M ⊂ X , we define a function F : X → R ∪ {+∞}
such that

F (x) :=

{
‖Φ(x)‖Y if x ∈M,

+∞ otherwise
Given a point x0 ∈ M and λ > 0, let xλ ∈ X be the point provided by Ekeland’s variational principle
such that

F (xλ) ≤ F (x0), ‖x0 − xλ‖X ≤ λ, and F (xλ) < F (x) +
F (x0)

λ
‖x− xλ‖X ∀x ∈ X \ {xλ}.

If F (xλ) 6= 0 and γ : [0, 1] → M is a C1 path such that γ(0) = xλ, γ′(0) = F (xλ)v for some vector
v ∈ X , then

(5.1) − 1 + ‖Φ(xλ)

F (xλ)
+ dΦ(xλ; v)‖Y ≥ −

F (x0)

λ
‖v‖X ,

where dΦ(xλ; v) is the Frechet derivative of Φ at xλ in the direction of v.

Proof. Let us first note that it is valid to apply EVP to F , since F is nonnegative, lower semicontinuous,
and not identically infinity. EVP implies that

F (γ(t))− F (xλ) > −F (x0)

λ
‖γ(t)− xλ‖X

for all t > 0. By the triangle inequality

F (γ(t)) ≤ (1− t)‖Φ(xλ)‖Y + t‖Φ(xλ) + F (xλ)dΦ(xλ, v)‖Y + ‖Φ(γ(t))− Φ(xλ)− tF (xλ)dΦ(xλ; v)‖Y .
Since Φ is Frechet differentiable, we have

lim
t→0

t−1‖Φ(γ(t))− Φ(xλ)− tF (xλ)dΦ(xλ; v)‖Y = 0.

Therefore,

lim
t→0+

F (γ(t))− F (xλ)

t
≤ −F (xλ) + ‖Φ(xλ) + F (xλ)dΦ(xλ; v)‖Y .

Hence, it follows that

−F (xλ) + ‖Φ(xλ) + F (xλ)dΦ(xλ; v)‖Y ≥ −F (xλ)
F (x0)

λ
‖v‖X .

Dividing both sides by F (xλ) gives the result. �

It is not immediately obvious how one can use Lemma 5.2 to find zeros of a map Φ. However, note
that because ‖Φ(xλ)

F (xλ)‖Y = 1, the Lemma essentially gives a bound on the steepest descent rate of F at
xλ when F (xλ) 6= 0. If we can show that this bound is impossible for some λ > 0, then it follows that
F (xλ) = 0 and hence Φ(xλ) = 0. For example, under the usual assumptions for the implicit function
theorem (i.e. M = ∅ and v 7→ dΦ(x, v) is a linear bijection with a uniformly continuous inverse for all x
in a neighborhood of x0), we can choose v = −dΦ(xλ,

Φ(xλ)
F (xλ) )−1, which is the steepest descent direction

for F at xλ. With this choice, the slope inequality will fail as long as F (x0) is sufficiently small and λ
is chosen appropriately.

On the other hand, there is no reason that one needs to invert v 7→ dΦ(x, v) exactly. As long as we
can find a (valid) direction v where the inequality (5.1) fails, we will have found a zero of Φ. Indeed, this
is the advantage of the EVP based approach — we are allowed to make some error when we attempt
to invert v 7→ dΦ(x, v). Furthermore, when we make a choice for λ we will have the guarantee that
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the solution xλ is at most distance λ away from the starting point x0 in the X norm. This gives us
complete quantitative control on the solution. Finally, this approach makes it very convenient to enforce
a nonlinear constraint on the solution set. If M 6= ∅, then one just needs to ensure that the descent
direction v is chosen to be in the “tangent space” ofM at xλ.

5.2. Adapting the arguments to our setting. To apply Lemma 5.2 to find zeros of (4.2), we need
to give appropriate choices for the spaces X ,Y,M and the map Φ. Once these have been chosen, we
shall define F as in Lemma 5.2.

We shall take X = W 2,r
id (Ω) with a modified norm that depends on the parameter a > 0. More

precisely we take

(5.2) X = Xa; Y = Lr(Ω); andM = W 2,r
id (Ω) ∩ Diffid(Ω),

where Xa has its elements the same as W 2,r
id (Ω) with the norm

(5.3) ‖Z‖Xa := ‖Z‖Lr(Ω) + a‖D2Z‖Lr(Ω).

Note that by setting M = W 2,r
id (Ω) ∩ Diffid(Ω) we will ensure that any points produced by EVP will

satisfy the determinant constraint det(DZ) = 1. Finally, since we wish to solve (4.2), we shall define

(5.4) Φ(Z) := PZ(I − a∆)(Z − S),

which is clearly a map from W 2,r(Ω) into Lr(Ω). More precisely, PZ is a map from W 2,r(Ω) into
VZ ∩ Lr(Ω).

To contradict the inequality (5.1), we shall need to minimize ‖Φ(Zλ)
F (Zλ) + dΦ(Zλ; v)‖Lr(Ω). Note that

Φ(Zλ)
F (Zλ) must take the form

(5.5)
Φ(Zλ)

F (Zλ)
= w(Zλ)

where w ∈ Lr(Ω) ∩ V is a divergence free vector field such that ‖w‖Lr(Ω) = 1. Hence, we must be able
to find a solution v that approximately solves the equation

(5.6) dΦ(Zλ; v) = −w(Zλ)

for a given divergence free vector field w with unit Lr norm.

Luckily, Φ(Z) is very nearly a linear map, the only nonlinear behavior comes from the operator PZ .
Hence, apart from the contribution coming from PZ , the Frechet derivative of Φ is trivial. Given a
point Z ∈M, let

dP(Z; v) = lim
t→0+

PZ+tv − PZ
t

denote the Frechet derivative of PZ in the direction of a vector v ∈W 2,r(Ω). We can then write equation
(5.6) as

(5.7) dΦ(Z; v) = PZ(I − a∆)v + dP(Z; v)(I − a∆)(Z − S).

The second term in the Frechet derivative of Φ is rather annoying to work with. Thus, rather than
try to invert the full expression (5.7), we will just treat the second term as an error term and try to
approximately solve

(5.8) PZ(I − a∆)v = −w(Zλ).

However, even this simplified expression is tricky to solve explicitly due to the combination of the
operators PZ and (I − a∆). Indeed, PZ is a linear operator with base point Z, while (I − a∆) is a
linear operator with base point at the identity, thus their composition is rather complicated. To simplify
matters, we shall let u be a solution to the Stokes resolvent problem

(I +A)u = −w, ∇ · u = 0, u|∂Ω = id
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and choose v = u ◦Zλ. This choice of v will not exactly solve (5.8), hence, this leads to a second source
of error that we shall also need to control.

The above considerations are now summarized in the following Proposition, which simplifies Lemma
5.2 and converts it into our specific setting.

Proposition 5.3. Given a point Z̃ ∈ M and some λ > 0, let Zλ be the point chosen by Ekeland’s
variational principle starting from Z̃. If F (Zλ) 6= 0, then for w given in (5.5) we have
(5.9)

−1+a‖PZλ
(
∆(u◦Zλ)−(∆u)◦Zλ

)
‖Lr(Ω)+‖dP(Zλ;u◦Zλ)‖r,r‖(I−a∆)(Zλ−S)‖Lr(Ω) ≥ −

F (Z̃)

λ
‖u◦Zλ‖Xa ,

where u solves the Stokes resolvent problem (4.4) and

(5.10) ‖dP(Zλ;u ◦ Zλ)‖r,r := sup
‖f‖Lr(Ω)≤1

‖dP(Zλ;u ◦ Zλ)f‖Lr(Ω).

Proof. u is a divergence free vector field vanishing on ∂Ω. Therefore, thanks to the construction in
Appendix B, there exists a C1 curve Z(t) : [0, 1] →M such that Z(0) = Zλ and Z ′(0) = u(Zλ). Now
we can apply Lemma 5.2 to obtain the inequality

−1 + ‖w ◦ Zλ + dΦ(Zλ;u ◦ Zλ)‖Lr(Ω) ≥ −
F (Z̃)

λ
‖u ◦ Zλ‖Xa .

Using equation (5.7), the triangle inequality, and the definition of the operator norm ‖dP(Zλ;u◦Zλ)‖r,r,
it follows that

−1+‖w◦Zλ+PZλ(I−a∆)(u◦Zλ)‖Lr(Ω)+‖dP(Zλ;u◦Zλ)‖r,r‖(I−a∆)(Zλ−S)‖Lr(Ω) ≥ −
F (Z̃)

λ
‖u◦Zλ‖Xa .

Finally, we note that

−w ◦ Zλ =
(
(I + aA)u

)
◦ Zλ = PZλ

[
(I − a∆)u ◦ Zλ

]
.

Thus,
w ◦ Zλ + PZλ(I − a∆)(u ◦ Zλ) = aPZλ

(
∆(u ◦ Zλ)− (∆u) ◦ Zλ

)
.

�

6. Estimates and the proof of Theorem 2.2

In this section, we will complete the proof of Theorem 2.2 by estimating the various quantities in
(5.9) and choosing an appropriate starting point Z̃.

6.1. Estimates. We begin by estimating the operator norm ‖dP(Zλ;u ◦ Zλ)‖r,r. We will do this by
estimating the difference

‖PZ1
− PZ2

‖r,r
for arbitrary maps Z1, Z2 ∈ Diffid(Ω). To start, we will consider the case where one of the maps is the
identity.

Lemma 6.1. If Z ∈ Diff id(Ω), then for r ∈ (1,∞)

‖PZ − P‖r,r ≤
(
‖I −DZ‖L∞(Ω) + ‖cof(DZ)− I‖L∞(Ω)

)
‖P‖2r,r.

Proof. Fix some function f ∈ Lr(Ω) and let ξ be a smooth test function. We use the Hodge decompo-
sition to write

f = w +∇ϕ, w := Pf, ξ = ζ +∇ψ, ζ := Pξ.
Now if we test (PZ − P)f against ξ ◦ Z we have

(PZf − Pf, ξ ◦ Z) = (f, ζ(Z))− (w, ξ(Z))
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If we expand f and ξ in terms of their decompositions, the term (w, ζ(Z)) appears in both expressions,
so we arrive at

(∇ϕ, ζ(Z))− (w,∇ψ(Z))

Now we estimate each term separately. Pushing forward by Z we see that

(∇ϕ, ζ(Z)) = (∇ϕ(Z−1), ζ).

The closely related quantity, (∇(ϕ ◦Z−1), ζ), vanishes. From the fact ∇(ϕ ◦Z−1) = cof(DZ)∇ϕ(Z−1)
we see that

(∇ϕ(Z−1), ζ) = ((I − cof(DZ))∇ϕ(Z−1), ζ)

Similar arguments reveal that

−(w,∇ψ(Z)) = −
(
w, (I −DZT )∇ψ(Z)

)
Therefore

(PZf − Pf, ξ ◦ Z) ≤
(
‖I −DZ‖L∞(Ω) + ‖cof(DZ)− I‖L∞(Ω)

)
‖f‖Lr(Ω)‖ξ‖Lr′ (Ω)‖P‖r,r‖P‖r′,r′

Since P is self adjoint, by duality, ‖P‖r,r = ‖P‖r′,r′ . f and ξ were arbitrary, so we can conclude the
result. �

Corollary 6.2. Suppose Zi ∈ Diff id(Ω) for i = 1, 2. Then for r ∈ (1,∞) we have

‖PZ1
− PZ2

‖r ≤
(
‖DZ1 cof(DZ2)T − I‖L∞(Ω) + ‖cof(DZ1)DZT2 − I‖L∞(Ω)

)
‖P‖2r,r.

Furthermore, if u ∈ C1
0 (Ω) is divergence free, then

‖dP(Z;u ◦ Z)‖r,r ≤ 2‖P‖2r,r‖Du‖L∞(Ω)

for any Z ∈ Diff id(Ω).

Proof. Fix some function f ∈ Lr(Ω) and let g = f ◦ Z2. Writing things in terms of g we have
PZ1f = (P(g ◦ Z2 ◦ (Z1)−1)) ◦ Z1 and PZ2f = (Pg) ◦ Z2. Therefore,

‖PZ2f − PZ1f‖Lr(Ω) = ‖(Pg − PY g) ◦ Z2‖Lr(Ω)

where Y = Z1 ◦ Z−1
2 . Since Z2 is measure preserving, we have

‖(Pg − PY g) ◦ Z2‖Lr(Ω) = ‖Pg − PY g‖Lr(Ω).

From the previous Lemma we get the bound

‖Pg − PY g‖Lr(Ω) ≤
(
‖DY − I‖L∞(Ω) + ‖cof(DY )− I‖L∞(Ω)

)
‖g‖Lr(Ω)‖P‖2r,r.

We can then compute DY (Z2) = DZ1 cof(DZ2)T and cof(DY (Z2)) = cof(DZ1)DZT2 . Recalling that
g = f ◦ Z−1

2 , we can conclude that(
‖DY − I‖L∞(Ω) + ‖cof(DY )− I‖L∞(Ω)

)
‖g‖Lr(Ω)

≤
(
‖DZ1 cof(DZ2)T − I‖L∞(Ω) + ‖cof(DZ1)DZT2 − I‖L∞(Ω)

)
‖f‖Lr(Ω).

Since f is arbitrary, we can conclude the first result.

For the second result, using Appendix B, we can construct a C1 curve Z(t) : [0, 1] →M such that
Z(0) = Z and Z ′(0) = u ◦ Z. We then have

‖PZ(t) − PZ‖r ≤
(
‖DZ(t) cof(DZ)T − I‖L∞(Ω) + ‖cof(DZ(t))DZT − I‖L∞(Ω)

)
‖P‖2r,r.

Therefore,

‖dP(Z;u ◦ Z)‖r,r ≤ lim
t→0+

t−1
(
‖DZ(t) cof(DZ)T − I‖L∞(Ω) + ‖cof(DZ(t))DZT − I‖L∞(Ω)

)
‖P‖2r,r.

We can then write
DZ(t) = DZ + tDu(Z)DZ + o(t),
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and
cof(DZ(t))DZT − I = cof(DZ(t))

(
DZT −DZ(t)T

)
.

Thus,

lim
t→0+

t−1
(
‖DZ(t) cof(DZ)T − I‖L∞(Ω) + ‖cof(DZ(t))DZT − I‖L∞(Ω)

)
= 2‖Du‖L∞(Ω),

and the second result now follows.

�

We will use the following lemma to estimate the remaining terms in (6.1) involving u.

Lemma 6.3. If f ∈ W 2,r(Ω) is a scalar function and Z ∈ M then for any indices 1 ≤ i, j ≤ d, we
have

‖∂2
i,j(f ◦ Zλ)− (∂2

i,jf) ◦ Zλ‖Lr(Ω) ≤ ‖∇f‖L∞(Ω)‖∂2
i,jZ‖Lr(Ω) + ‖D2f‖Lr(Ω)‖∂iZ ⊗ ∂jZ − ei ⊗ ej‖L∞(Ω)

and we have

‖∆(f ◦ Zλ)− (∆f) ◦ Zλ‖Lr(Ω) ≤ ‖∇f‖L∞(Ω)‖∆Z‖Lr(Ω) + ‖D2f‖Lr(Ω)‖DZDZT − I‖L∞(Ω)

where ei is the ith standard basis vector.

Proof. Computing directly, we have

∂2
i,j(f ◦ Z) = D2f(Z) : ∂iZ ⊗ ∂jZ +∇f(Z) · ∂2

i,jZ.

Writing ∂2
i,jf = D2f : ei ⊗ ej , we see that

∂2
i,j(f ◦ Z)− (∂2

i,jf) ◦ Z = D2f(Z) : (∂iZ ⊗ ∂jZ − ei ⊗ ej) +∇f(Z) · ∂2
i,jZ.

Hence,
∆(f ◦ Z)− (∆f) ◦ Z = D2f(Z) : (DZDZT − I) +∇f(Z) ·∆Z

The result now follows from Holder’s inequality and the fact that Z is a measure preserving map. �

We can now state a version of Proposition 5.3 that eliminates the dependence on the Stokes resolvent
solution u. Recall thatM is given in (5.2).

Proposition 6.4. Given a point Z̃ ∈ M and some λ > 0, let Zλ be the point chosen by Ekeland’s
variational principle starting from Z̃. Define

Ka := sup
f∈W 2,r(Ω)

‖Df‖L∞(Ω)

‖f‖Xa
.

and
Cr := max(‖P‖r,r, C̄r),

where C̄r is the constant in (4.2). If F (Zλ) 6= 0, then

(6.1) − 1 + C2
r

(
‖DZλDZTλ − I‖L∞(Ω) + aKa‖∆Zλ‖Lr(Ω)

)
+ 2KaC

3
r‖(I − a∆)(Zλ − S)‖Lr(Ω) ≥

− Cr
F (Z̃)

λ

(
1 +

d∑
i,j=1

‖∂iZλ ⊗ ∂jZλ − ei ⊗ ej‖L∞(Ω) + aKa‖D2Zλ‖Lr(Ω)

)
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Proof. Let u and w be defined as in Proposition 5.3, and recall that we have the inequality

−1+a‖P‖r,r‖∆(u◦Zλ)−(∆u)◦Zλ‖Lr(Ω)+‖dP(Zλ;u◦Zλ)‖r,r‖(I−a∆)(Zλ−S)‖Lr(Ω) ≥ −
F (Z̃)

λ
‖u◦Zλ‖Xa .

Since
‖u ◦ Zλ‖Xa = ‖u ◦ Zλ‖Lr(Ω) + a‖D2(u ◦ Zλ)‖Lr(Ω),

we can use the measure preserving property of Zλ and the triangle inequality to estimate

‖u ◦ Zλ‖Xa ≤ ‖u‖Xa + a‖(D2u) ◦ Zλ −D2(u ◦ Zλ)‖Lr(Ω).

Thanks to Lemma 6.3, we have

‖∆(u ◦ Zλ)− (∆u) ◦ Zλ‖Lr(Ω) ≤ ‖DZλDZTλ − I‖L∞(Ω)‖D2u‖Lr(Ω) + ‖Du‖L∞(Ω)‖∆Zλ‖Lr(Ω),

and

‖(D2u)◦Zλ−D2(u◦Zλ)‖Lr(Ω) ≤ ‖D2u‖Lr(Ω)

d∑
i,j=1

‖∂iZλ⊗∂jZλ−ei⊗ej‖L∞(Ω)+‖Du‖L∞(Ω)‖D2Zλ‖Lr(Ω)

Thus,

a‖∆(u ◦ Zλ)− (∆u) ◦ Zλ‖Lr(Ω) ≤ ‖u‖Xa
(
‖DZλDZTλ − I‖L∞(Ω) + aKa‖∆Zλ‖Lr(Ω)

)
,

and

a‖(D2u) ◦ Zλ −D2(u ◦ Zλ)‖Lr(Ω) ≤ ‖u‖Xa
( d∑
i,j=1

‖∂iZλ ⊗ ∂jZλ − ei ⊗ ej‖L∞(Ω) + aKa‖D2Zλ‖Lr(Ω)

)
.

From Corollary 6.2, we have

‖dP(Zλ;u ◦ Zλ)‖r,r ≤ 2‖P‖2r,r‖Du‖L∞(Ω) ≤ 2Ka‖P‖2r,r‖u‖Xa
From the definition of u and w, and the bound (4.5), we have

‖u‖Xa ≤ C̄r‖w‖Lr(Ω) = C̄r.

Thus, combining our work, we can conclude that

−1 + ‖P‖r,rC̄r
(
‖DZλDZTλ − I‖L∞(Ω) + aKa‖∆Zλ‖Lr(Ω)

)
+ 2Ka‖P‖2r,rC̄r‖(I − a∆)(Zλ − S)‖Lr(Ω) ≥

−C̄r
F (Z̃)

λ

(
1 +

d∑
i,j=1

‖∂iZλ ⊗ ∂jZλ − ei ⊗ ej‖L∞(Ω) + aKa‖D2Zλ‖Lr(Ω)

)
The result now follows from the definition of Cr. �

We conclude this subsection with an estimate for Ka.

Lemma 6.5. If Ka is defined as in Proposition 6.4, then

(6.2) Ka .d,r a
− d+r

2r .

Proof. By the Gagliardo-Nirenberg interpolation inequality, we have

‖Df‖L∞(Ω) .d,r ‖D2f‖
d+r
2r

Lr(Ω)‖f‖
r−d
2r

Lr(Ω) ≤ a
− d+r

2r ‖f‖Xa .

Hence, Ka .d,r a−
d+r
2r . �
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6.2. Construction of the starting point Z̃ and the proof of Theorem 2.2. In order to prove
the failure of inequality (6.1), it remains to choose an appropriate starting point Z̃.

Let us define u∗ to be the solution to the Stokes resolvent problem

(6.3) (I + aA)u∗ + P(I −∆)(id− S) = 0, ∇ · u∗ = 0, u∗|∂Ω = 0.

We now apply Lemma 4.2 to obtain that

(6.4) ‖u∗‖Lr(Ω) + ‖aD2u∗‖Lr(Ω) .d,r ‖(I − a∆)(S − id)‖Lr(Ω).

Thus,

(6.5) ‖(I − a∆)(S − id− u∗)‖Lr(Ω) .d,r ‖(I − a∆)(S − id)‖Lr(Ω).

We shall now use this u∗ to construct the starting point Z̃.

Proposition 6.6. Suppose that Y : [0,∞)× Ω→ Ω is a map that satisfies

Y (t, x) = id +

∫ t

0

u∗(Y (s, x)) ds, det(DY (t, x)) = 1,

where u∗ is defined as in (6.3). If we set Z̃(x) := Y (1, x) then

‖Z̃ − id‖Xa ≤ Crδ + δ2Ka

(
1 + Cr

(
1 +m0(δCrKa)

))
and

(6.6) F (Z̃) ≤ Crδ2Ka

(
1 + Cr

(
1 +m0(δCrKa)

))
.

Here Ka and Cr are defined as in Proposition 6.4, δ := ‖((I − a∆)(S − id)‖Lr(Ω) and

m0(t) := t
(

1 + Cr
(
2et + 2te2t + t2e3t

))
.

Note that Ka has an upper bound by (6.2).

Proof. We begin by noticing that u∗ must solve the equation

(6.7) P(I − a∆)(S − id− u∗) = 0.

By triangle inequality,

‖Z̃ − id− u∗‖Xa ≤
∫ 1

0

‖u∗ ◦ Y (s, ·)− u∗‖Xa ds.

By Lemma B.1 and Corollary 6.2,

F (Z̃) ≤ ‖P(I − a∆)(Z̃ − S)‖Lr(Ω) + ‖DZ̃ − I‖L∞(Ω)‖Z̃ − S‖Xa .
We can then estimate

‖Z̃ − S‖Xa ≤ ‖S − id− u∗‖Xa + ‖Z̃ − id− u∗‖Xa ≤ Crδ +

∫ 1

0

‖u∗ ◦ Y (s, ·)− u∗‖Xa ds.

By (6.7) we have
P(I − a∆)(Z̃ − S) = P(I − a∆)(Z̃ − id− u∗),

which gives us

‖P(I − a∆)(Z̃ − S)‖Lr(Ω) ≤ Cr
∫ 1

0

‖u∗ ◦ Y (s, ·)− u∗‖Xa ds.

Focusing on the term
∫ 1

0
‖u∗ ◦ Y (s, ·)− u∗‖Xa ds, we have the bound∫ 1

0
‖u∗ ◦ Y (s, ·)− u∗‖Xa ds ≤

∫ 1

0
‖Du∗‖L∞(Ω)‖Y (s, ·)− id‖Lr(Ω) + a‖∆(u∗ ◦ Y (s, ·)− u∗)‖Lr(Ω) ds

≤ 1
2‖Du

∗‖L∞(Ω)‖u∗‖Lr(Ω) +
∫ 1

0
a‖∆(u∗ ◦ Y (s, ·)− u∗)‖Lr(Ω) ds.
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A direct calculation gives the estimate∫ 1

0

a‖∆(u∗ ◦ Y (s, ·)− u∗)‖Lr(Ω) ds ≤∫ 1

0

a‖∆Y (s, ·)‖Lr(Ω)‖Du∗‖L∞(Ω) + a‖D2u∗‖Lr(Ω)‖DY (s, ·)− I‖L∞(Ω)(1 + ‖DY (s, ·)− I‖L∞(Ω)) ds.

It is straightforward to obtain the estimates

‖DY (t, ·)− I‖L∞(Ω) ≤
∫ t

0

‖Du∗‖L∞(Ω)(1 + ‖DY (t, ·)− I‖L∞(Ω)) ds.

and

‖∆Y (t, ·)‖Lr(Ω) ≤
∫ t

0

‖Du∗‖L∞(Ω)‖∆Y (s, ·)‖Lr(Ω) + ‖D2u∗‖Lr(Ω)‖DY (s, ·)DY T (s, ·)‖L∞(Ω).

Hence, Gronwall’s inequality gives us

‖DY (t, ·)− I‖L∞(Ω) ≤ t‖Du∗‖L∞(Ω) exp(t‖Du∗‖L∞(Ω)),

and

‖∆Y (t, ·)‖Lr(Ω) ≤ ‖D2u∗‖Lr(Ω)

2∑
j=0

(
t‖Du∗‖L∞(Ω)

)j
exp((j + 1)t‖Du∗‖L∞(Ω)).

By Lemma 4.2 and the definition of Ka, we have

‖u∗‖Xa ≤ Crδ, ‖Du∗‖L∞(Ω) ≤ CrKaδ.

Putting together our computations we get

(6.8)
∫ 1

0

‖u∗ ◦Y (s, ·)−u∗‖Xa ds ≤ Crδ2Ka

(
1 + 2Cre

CrδKa + 2CrδKae
2CrδKa +Cr(CrδKa)2e3CrδKa

)
,

and our estimates of F (Z̃) and ‖Z̃ − id‖Xa now follow. �

Now we are ready to prove the existence of a point Z ∈ Diff id(Ω) such that the critical point equation
(4.2) is satisfied. We shall proceed by combining Propositions 6.4 and 6.6, and estimating the remaining
quantities in terms of a and δ.

Theorem 6.7. If δ and a−
d+r
2r δ are sufficiently small (depending on d and r only), then there exists a

constant λ > 0 such that
F (Zλ) = 0 and λ .d,r δ

2a−
d+r
2r .

Proof. For each λ > 0, let Zλ be the point provided by Ekeland’s variational principle starting from the
point Z̃ constructed in Proposition 6.6. If F (Zλ) 6= 0, then Proposition 6.4 provides us with the “slope
inequality"

−1 + C2
r

(
‖DZλDZTλ − I‖L∞(Ω) + aKa‖∆Zλ‖Lr(Ω)

)
+ 2KaC

3
r‖(I − a∆)(Zλ − S)‖Lr(Ω) ≥

−Cr
F (Z̃)

λ

(
1 +

d∑
i,j=1

‖∂iZλ ⊗ ∂jZλ − ei ⊗ ej‖L∞(Ω) + aKa‖D2Zλ‖Lr(Ω)

)
Our goal is to rewrite this inequality in terms of δ and a to derive a contradiction when δ and a−

d+r
2r δ

are small enough.

Let us choose λ := γ0F (Z̃) for some constant γ0 > 0, and set

b1 := ‖Zλ − id‖Xa .
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Recall that λ is positive since 0 < F (Zλ) ≤ F (Z̃). We can then write

‖(I − a∆)(Zλ − S)‖Lr(Ω) ≤ δ + ‖Zλ − id‖Xa = δ + b1,

‖DZλDZTλ − I‖L∞(Ω) ≤ Ka‖Zλ − id‖Xa
(
2 +Ka‖Zλ − id‖Xa

)
= Kab1(2 +Kab1),

and
d∑

i,j=1

‖∂iZλ ⊗ ∂jZλ − ei ⊗ ej‖L∞(Ω) ≤ d2Ka‖Zλ − id‖Xa
(
2 +Ka‖Zλ − id‖Xa

)
= d2Kab1(2 +Kab1).

We also note that
a‖D2Zλ‖Lr(Ω) = aKa‖D2(Zλ − id)‖Lr(Ω) ≤ Kab1,

and hence
a‖∆Zλ‖Lr(Ω) ≤ Kab1

Using these bounds, the slope inequality can now be written as

−1 + C2
r

(
Kab1(2 +Kab1) +Kab1

)
+ 2KaC

3
r (δ + b1) ≥ −Cr

γ0

(
1 + d2Kab1(2 +Kab1) +Kab1

)
Dropping constants and rearranging, we have shown that

(6.9) 1− γ−1
0 . Ka(δ + b1) +Kab1(2 +Kab1) +Kab1 + γ−1

0

(
Kab1(2 +Kab1) +Kab1

)
.

Let us now define
b2 := Kab1.

Using the above calculations, we can rewrite (6.9) as

(6.10) 1− γ−1
0 .r Kaδ + b22 + b2 + γ−1

0 (b2 + b22)

Since ‖Zλ − Z̃‖Xa ≤ λ, as long as a−
d+r
2r δ are sufficiently small, Proposition 6.6 yields

b1 = ‖Zλ − id‖Xa ≤ λ+ ‖Z̃ − id‖Xa .r λ+ δ +Kaδ
2.

Moreover, Proposition 6.6 and Lemma 6.5 yields that

Ka .d,r a
− d+r

2r and λ = γ0F (Z̃) .d,r γ0Kaδ
2 .d,r γ0a

− d+r
2r δ2.

Hence we see that Kab1 .d,r a−
d+r
2r δ + (a−

d+r
2r δ)2.

Thus, when a−
d+r
2r δ is sufficiently small, (6.10) fails for γ0 = 2. Hence, we can deduce by contradiction

that F (Zλ) = 0 when λ = γ0F (Z̃). The conclusion of the theorem follows from the bounds on F (Z̃)
and Ka.

�

Proof of Theorem 2.2.

When δ, a−
d+r
2r δ and a−

d+3r
2r δ2 are sufficiently small, Theorem 6.7 yields a point Zλ such that

(6.11) F (Zλ) = 0 and ‖Zλ − Z̃‖Xa ≤ λ = γδ2a−
d+r
2r ,

where Z̃ is as given in Proposition 6.6. Since F (Zλ) = 0 and Zλ ∈W 2,r(Ω) we know that

(I − a∆)(Zλ − S) +DT (cof(DZ)q∗) = 0,

for some function q∗ ∈ W 1,r(Ω). Theorem 2.2 will now follow from Theorem 2.1 if we can show that
‖q∗‖L∞(Ω) ≤ aσ2(2 + 3(1 +

√
3))−1, where σ is the smallest singular value of DZλ.

Note that
‖DZλ − I‖L∞(Ω) ≤ Ka(λ+ ‖Z̃ − id‖Xa) .d,r a

− d+r
2r δ,
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Thus,

(6.12) σ ≥ 1− θd,ra−
d+r
2r δ

for some constant θd,r > 0.

Define p∗ := q∗ ◦Z−1
λ and note that ‖q∗‖L∞(Ω) = ‖p∗‖L∞(Ω). We have DT (cof(DZ)∇q) = ∇p∗(Zλ).

Since Zλ is measure preserving, we have

‖∇p∗‖Lr(Ω) = ‖(I − a∆)(Zλ − S)‖Lr(Ω) ≤ λ+ ‖(I − a∆)(Z̃ − S)‖Lr(Ω).

Recalling the definition of u∗ from (6.3) and

δ′ := ‖S − id− u∗‖Xa
we have

‖(I − a∆)(Z̃ − S)‖Lr(Ω) ≤ δ′ + ‖(I − a∆)(Z̃ − id− u∗)‖Lr(Ω).

Since ‖(I − a∆)(Z̃ − id − u∗)‖Lr(Ω) is bounded by the quantity on the left hand side of (6.8), we can
conclude that

‖(I − a∆)(Z̃ − S)‖Lr(Ω) . δ
′ + a−

d+r
2r δ2,

when δ and a−
d+r
2r δ are sufficiently small. In particular from (6.11) it follows that

‖(I − a∆)(Zλ − S)‖Lr(Ω) ≤ δ′ + a−
d+r
2r δ2.

It is now clear from (6.12) and the Poincaré-Wirtinger inequality that∥∥∥p∗ − 1

|Ω|

∫
Ω

p∗(x)dx
∥∥∥
L∞(Ω)

≤ aσ2
(
2 + 3(1 +

√
3)
)−1

will hold as long as a−1(δ′ + a−
d+r
2r δ2) is sufficiently small.

�

7. Application to Navier-Stokes equation

In this section we prove Theorem 2.6. For a given initial data v0 ∈ Lr(Ω;Rd) with r > d, we will
construct discrete-time solutions that generates the unique mild solution of the Navier-Stokes equations
(2.7) as well as the associated Lagrangian flow (1.7).

7.1. The discrete scheme: Lagrangian and Eulerian viewpoint. Let A denote the Stokes op-
erator introduced in (4.3). We begin by recalling the discrete-in-time scheme to construct Lagrangian
and Eulerian solutions to the Navier-Stokes equations. Given an initial velocity v0, we set v0,τ = v0

and iterate the following steps:

(7.1) (I − µτ∆)Sn+1,τ = id + τvn,τ , Sn+1,τ |∂Ω = id,

(7.2) Zn+1,τ ∈ argmin
Z∈Diffid(Ω)

1

2
‖Z − Sn+1,τ‖2L2(Ω) +

µτ

2
‖DZ −DSn+1‖2L2(Ω),

(7.3) wn+1,τ := Zn+1 #vn,τ ,

(7.4) vn+1,τ := e−µτAwn+1.

Note that vn,τ has zero trace on ∂Ω from the definition.
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Due to Theorem 2.2, Zn+1 exists as long as ‖vn‖Lr(Ω) is bounded (see Lemma 7.1), which makes the
scheme well-defined. We shall also use the scheme to construct discrete-in-time Lagrangian solutions
Xn,τ by setting X0,τ = id and iterating

(7.5) Xn+1,τ = Zn+1,τ ◦Xn,τ .

Note that the steps (7.3) and (7.4) can be understood as a splitting scheme for Navier-Stokes. Step
(7.3) accounts for the transportation of the velocity field, while step (7.4) accounts for the linear parts
of the equation. The non-standard aspect of this scheme is that we advect the vector field with the
projection map Zn+1,τ . This lends a great deal of stability, since it makes the scheme much more
implicit. Furthermore, Zn+1,τ is measure preserving, thus, we will see that the scheme automatically
satisfies a discrete version of the energy dissipation inequality and the Navier-Stokes Duhamel formula
(see Lemmas 7.3 and 7.12).

Our ultimate aim is to show that the velocity iterates vn+1,τ and the Lagrangian maps Xn+1,τ

converge to Eulerian and Lagrangian solutions of Navier-Stokes respectively as τ tends to zero. To that
end we will introduce piecewise constant interpolations vτ , Zτ , Xτ , ṽτ defined as follows: for U denoting
v, Z,X and ṽ,

(7.6) Uτ (t, x) := Un+1,τ (x) if nτ ≤ t < (n+ 1)τ.

Now we are ready to analyze the scheme. Let us begin by translating the estimates from Section 5
into our current setting. The following statement is a direct consequence of Theorem 2.2. Note that
here we have

a = µτ, δ = τ‖vN−1,τ‖Lr(Ω) and δ′ = 0.

Lemma 7.1. There exists a constant C > 0 only depending on r such that the following holds. Suppose
that (7.1-7.4) are well-defined for 0 ≤ n ≤ N − 1 and suppose that vN−1,τ satisfies

(7.7) ‖vN−1,τ‖Lr(Ω) ≤ Cµ
d+3r

4r τ
d−r
4r

for some constant C > 0. If C is sufficiently small then vN,τ is well-defined by the scheme.

Since r > d, Lemma 7.1 will follow if we can show that ‖vn,τ‖Lr(Ω) is uniformly bounded with respect
to τ . This is what we will show in Section 6.3 for a finite time period 0 ≤ n ≤ [T

∗

τ ]. To this end we
first present a preliminary estimate that connects ṽ and v.

Proposition 7.2. Given some τ > 0, let {vn,τ , Zn,τ , ṽn,τ}n≥0 be the sequence of iterates generated by
(7.1-7.4) and (7.5). If vn,τ satisfies the Lr norm bound from Lemma 7.1, then

(7.8) ‖ṽn+1,τ‖Lr(Ω) .d,r ‖vn,τ‖Lr(Ω) + µ−
d+r
2r τ1− d+r

2r ‖vn,τ‖2Lr(Ω).

Furthermore, if vn,τ ∈ H1(Ω) then

(7.9) ‖ṽn+1,τ − vn,τ‖L2(Ω) .d,r (µτ)1/2‖Dvn,τ‖L2(Ω) + µ−
d+r
2r τ1− d+r

2r ‖vn,τ‖2Lr(Ω).

Proof. Let Z̃n+1,τ be the reference point from Proposition 6.6 constructed from the map Sn+1,τ . By
the triangle inequality, we have

‖ṽn+1,τ‖Lr(Ω) = ‖Zn+1 − id

τ
‖Lr(Ω) ≤ ‖

Zn+1 − Z̃n+1,τ

τ
‖Lr(Ω) + ‖ Z̃n+1 − id

τ
‖Lr(Ω).

Clearly,

‖Zn+1 − Z̃n+1,τ

τ
‖Lr(Ω) ≤ ‖

Zn+1 − Z̃n+1,τ

τ
‖Xµτ .
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Thanks to Theorem 6.7, we must have

‖Zn+1 − Z̃n+1,τ

τ
‖Xµτ .d,r µ−

d+r
2r τ1− d+r

2r ‖vn,τ‖2Lr(Ω).

If we let u∗n+1,τ denote the solution to the Stokes resolvent problem

(I + µτA)u∗n+1,τ = vn,τ , ∇ · u∗n+1,τ = 0, u∗n+1,τ |∂Ω = 0,

then it is clear from the reference point construction in Proposition 6.6 that

‖ Z̃n+1 − id

τ
‖Lr(Ω) ≤ ‖u∗n+1,τ‖Lr(Ω) .d,r ‖vn,τ‖Lr(Ω),

where the last inequality follows from Lemma 4.2. Therefore,

‖ṽn+1,τ‖Lr(Ω) .d,r µ
− d+r

2r τ1− d+r
2r ‖vn,τ‖2Lr(Ω) + ‖vn,τ‖Lr(Ω)

Now we turn to the second statement. Following a similar idea to the above, we can estimate

‖ṽn+1,τ − vn,τ‖L2(Ω) ≤ ‖
Zn+1,τ − Z̃n+1,τ

τ
‖L2(Ω) + ‖ Z̃n+1,τ − id

τ
− u∗n+1,τ‖L2(Ω) + ‖u∗n+1,τ − vn,τ‖L2(Ω).

Dominating L2 by Xµτ we can estimate

‖Zn+1,τ − Z̃n+1,τ

τ
‖L2(Ω) . ‖

Zn+1 − Z̃n+1,τ

τ
‖Xµτ .d,r µ−

d+r
2r τ1− d+r

2r ‖vn,τ‖2Lr(Ω).

Again, from the construction of the reference point, it is immediate that

‖ Z̃n+1,τ − id

τ
− u∗n+1,τ‖L2(Ω) ds ≤ τ‖Du∗n,τ‖L∞(Ω)‖u∗n,τ‖L2(Ω).

The Sobolev inequalities and Lemma 4.2, then give

τ‖Du∗n,τ‖L∞(Ω)‖u∗n,τ‖L2(Ω) . µ
− d+r

2r τ1− d+r
2r ‖vn,τ‖2Lr(Ω).

Finally, we can use the equation satisfied by u∗n+1,τ to compute

‖u∗n+1,τ−vn,τ‖2L2(Ω) = µτ
(
Au∗n+1,τ , u

∗
n+1,τ−vn,τ ) = µτ

(
Du∗n+1,τ , Dvn,τ )−µτ‖Du∗n+1,τ‖2L2(Ω) ≤

µτ

2
‖Dvn,τ‖2L2(Ω).

Combining these estimates we get the second result.

�

Note that the bounds obtained in Proposition 7.2 present a superlinear growth in τ , and thus they
cannot be iterated to generate a uniform bound. This is because the one-step estimates do not take into
account the regularizing effect of the viscosity in the Navier-Stokes equation. In the next subsection
we will utilize an approximate Duhamel’s fomula to obtain an improved estimate that leverages the
regularization effect over time (see Lemma 7.5).

7.2. Energy dissipation and Duhamel’s formula. In this subsection, we will establish discrete
analogues of the well-known Navier-Stokes energy dissipation inequality and Duhamel formula. In the
following two lemmas, we assume that the scheme (7.1-7.4) is well defined for all iterates 1 ≤ n < Nτ .
Note that Nτ ≥ 1 due to Lemma 7.1.

Lemma 7.3 (Approximate energy dissipation inequality).

(7.10) ‖vn+1,τ‖2L2(Ω) + 2µτ‖Dvn+1,τ‖2L2(Ω) ≤ ‖vn,τ‖
2
L2(Ω) for 1 ≤ n < Nτ

and

(7.11) ‖vn+1,τ‖2L2(Ω) + 2µτ

n+1∑
j=m+1

‖Dvj,τ‖2L2(Ω) ≤ ‖vm,τ‖
2
L2(Ω) for 1 ≤ m ≤ n < Nτ .
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Proof. Let h(t) := ‖e−µtAPwn+1,τ‖2L2(Ω). Differentiating in time and then integrating by parts, we have
h′(t) = −2µ‖De−µtAPwn+1‖2L2(Ω). Therefore,

h(τ) +

∫ τ

0

2µ‖De−µtAPwn+1‖2L2(Ω) dt ≤ h(0).

Integrating the time derivative of the non-stationary stokes equation against itself, one also has

2µτ‖Dvn+1,τ‖2L2(Ω) ≤ 2µ

∫ τ

0

‖De−sAPwn+1‖2L2(Ω) ds.

Thus, we can conclude that

‖vn+1,τ‖2L2(Ω) + 2µτ‖Dvn+1,τ‖2L2(Ω) ≤ ‖Pwn+1,τ‖2L2(Ω) ≤ ‖wn+1,τ‖2L2(Ω)

Finally, using the definition of wn+1,τ we have

‖wn+1‖L2(Ω) = ‖Zn+1 #vn,τ‖L2(Ω) ≤ ‖vn,τ‖L2(Ω).

Combining our work, we obtain the first result. The second result follows from iteration. �

Next, we will show that our scheme satisfies a discrete analogue of the Navier-Stokes Duhamel
formula. The Duhamel formula will play the central role in our subsequent analysis. Indeed, we will
characterize our solution using the Duhamel formula and we will also use it to obtain a short time
bound on the velocity Lr norm.

Lemma 7.4 (Approximate Duhamel formula). If f : Ω → Rd is a smooth divergence free vector field
that vanishes on ∂Ω, then for any n < Nτ we have

(7.12) (vn+1,τ , f) = (v0, fn+1) +

n∑
k=0

(
vk,τ , fn+1−k ◦ Zk+1,τ − fn+1−k

)
,

where fk = e−τkµAf .

Proof. Let f : Ω → Rd be a smooth divergence free vector field that vanishes on ∂Ω and set f1 :=
e−τµAf. From integration by parts and using the definition of wn+1,τ , we see that

(vn+1,τ , f) =
(
wn+1,τ , f1

)
= (vn,τ , f1 ◦ Zn+1,τ ).

Thus, we can conclude that

(7.13) (vn+1,τ , f) = (vn,τ , f1) +
(
vn,τ , f1 ◦ Zn+1,τ − f1

)
.

Iterating this argument, we get the above result. �

7.3. Lr norm control. Based on the Duhamel formula, we will now show that there exists a time
T ∗ > 0 such that ‖vn,τ‖Lr(Ω) is bounded independently of τ for all 0 ≤ n ≤ Nτ := bT

∗

τ c. This will
establish (7.7) for all iterates in the range 0 ≤ n ≤ Nτ := bT

∗

τ c once τ is sufficiently small.

Lemma 7.5.

‖vn+1,τ‖Lr(Ω) .r,d ‖e−τ(n+1)Av0‖Lr(Ω)

+τ

n∑
k=0

(
µτ(n+ 1− k)

)− d+r
2r

(
‖vk,τ‖2Lr(Ω) + µ−

d+r
2r τ1− d+r

2r ‖vn,τ‖3Lr(Ω)

)
.(7.14)
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Proof. Note that vn+1,τ is well defined by Lemma 7.1. Let f be a smooth divergence free vector field
vanishing on ∂Ω, and define fk := e−τkµAf as in Lemma 7.4. We first use Hölder’s inequality and
second use Remark A.2 to conclude that(

vk,τ , fn+1−k ◦ Zk+1,τ − fn+1−k

)
≤ C‖vk,τ‖Lr(Ω)‖Zk+1,τ − id‖Lr(Ω)‖Dfn+1−k‖L r

r−2 (Ω)
.

Taking the supremum over smooth divergence free vector fields f in the unit ball of L
r
r−1 (Ω) and using

Lemma C.1, we can conclude that

sup
∇·f=0, ‖f‖

L
r
r−1 (Ω)

≤1

(vn+1,τ , f) .

‖e−τ(n+1)Av0‖Lr(Ω) + τC

n∑
k=0

(
µτ(n+ 1− k)

)− d+r
2r ‖vk,τ‖Lr(Ω)‖

Zk+1,τ − id

τ
‖Lr(Ω),

where the first inequality is from (7.12). Note that

‖vn+1,τ‖Lr(Ω) = sup
‖f‖

L
r
r−1 (Ω)

≤1

(vn+1,τ , f) = sup
‖f‖

L
r
r−1 (Ω)

≤1

(vn+1,τ ,Pf),

where the last equality follows from the fact that vn+1,τ is divergence free. Hence,

‖vn+1,τ‖Lr(Ω) ≤ ‖P‖r sup
∇·f=0, ‖f‖

L
r
r−1 (Ω)

≤1

(vn+1,τ , f).

Applying Proposition 7.2 to ‖Zk+1,τ−id
τ ‖Lr(Ω) we obtain the result.

�

Proposition 7.6. There exists a time T ∗ > 0 and some τ0 > 0 depending on ‖v0‖Lr(Ω), r, d and µ
such that for all 0 < τ ≤ τ0 if τ(n+ 1) < T ∗, then supk≤n+1‖vk,τ‖Lr(Ω) is bounded independently of τ .

Proof. From Lemma C.1 and Lemma 7.5 there exist constants C0 = C0(r, d, µ)

‖vn+1,τ‖Lr(Ω) ≤ C0‖v0‖Lr(Ω) + τ

n∑
k=0

(
µτ(n+ 1− k)

)−α(‖vk,τ‖2Lr(Ω) + µ−ατ1−α‖vn,τ‖3Lr(Ω)

)
.

where α := 1
2 + d

2r < 1. Hence if {hk}k≥0 solves h0 = C0‖v0‖Lr(Ω) and

(7.15) hn+1 = h0 + τC1

n∑
k=0

(
µτ(n+ 1− k)

)−α
(h2
k + µ−ατ1−αh3

k),

then ‖vk,τ‖Lr(Ω) ≤ hk. Suppose that hk ≤M := 2h0 for k = 1, . . . , n. Then we have

hn+1 ≤
M

2
+ C1(τµ(n+ 1))1−α(M2 + µ−ατ1−αM3).

This is less than M as long as

τ(n+ 1) ≤ TD := (
1

4C1M
)

1
1−α and τ ≤ τ0 := (

µα

M
)

1
1−α .

Thus, we see that the velocity doubling time TD is uniformly bounded from below for all τ ∈ [0, τ0].
Since TD is a strictly positive lower bound for T ∗, we are done. �
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7.4. Convergence of the scheme to Eulerian and Lagrangian solutions. Given the existence of
the critical time T ∗ > 0 from the previous section, we at last show that the approximate solutions vτ
and Xτ converge to Eulerian and Lagrangian solutions of the Navier-Stokes equations respectively.

Proposition 7.7. Let T ∗ be as given in Proposition 7.6. Then for any T < T ∗ the family {vτ}τ≥0 is
uniformly bounded in

L2
(

[0, T ];H1
0 (Ω)

)
∩ L∞

(
[0, T ];L2(Ω)

)
and precompact in L2([0, T ]× Ω).

Proof. The uniform boundedness is an immediate consequence of (7.11). Precompactness in L2([0, T ]×
Ω) will follow from modifications of the Aubin-Lions Lemma in [33] if we can show that the discrete
time derivatives vn+1,τ−vn,τ

τ are uniformly bounded in some weak space.

Let Y := {g ∈W 2,r
0 (Ω) : ∇ · g = 0}. We wish to estimate

max
0≤n<N

∥∥∥∥vn+1,τ − vn,τ
τ

∥∥∥∥
Y∗
.

Given f ∈ Y, (7.13) gives us(
vn+1,τ − vn,τ

τ
, f

)
=

(
vn,τ ,

f1 − f
τ

)
+

(
vn,τ ,

f1 ◦ Zn+1,τ − f1

τ

)
where f1 = eµτAf . Thus, it is clear that(

vn+1,τ − vn,τ
τ

, f

)
.d,r‖vn,τ‖L2(Ω)‖Af‖L2(Ω) + ‖vn,τ‖L2(Ω)‖ṽn+1,τ‖L2(Ω)‖Df1‖L∞(Ω)

.d,r‖f‖Y
(
‖vn‖L2(Ω) +

3

2
‖vn,τ‖2L2(Ω) +

1

2
‖vn,τ − ṽn+1,τ‖2L2(Ω)

)
,

where the last inequality follows from the Sobolev inequalities. Note that
1

2
‖vn,τ − ṽn+1,τ‖2L2(Ω) ≤ Jµτ (Zn+1, vn,τ )+

1

2
‖vn,τ‖2L2(Ω) ≤ Jµτ (id, vn,τ )+

1

2
‖vn,τ‖2L2(Ω) =

1

2
‖vn,τ‖2L2(Ω).

Now we can conclude that

max
0≤n≤N

∥∥∥∥vn+1,τ − vn,τ
τ

∥∥∥∥
Y∗
≤ sup

n
‖vn,τ‖L2(Ω) + 2‖vn,τ‖2L2(Ω) ≤ ‖v0‖L2(Ω) + 2‖v0‖2L2(Ω),

where the final inequality follows from (7.11). �

Theorem 7.8. Let T ∗ be as given in Proposition 7.6. Then for any T < T ∗ there exists v ∈
L∞([0, T ];Lr(Ω)) ∩ L2([0, T ];H1

0 (Ω)) such that

lim
τ→0
‖v − vτ‖L2([0,T ]×Ω) = 0

and

(7.16) v(t, x) = e−µtAv0(x)−
∫ t

0

e−µ(t−s)AP∇ ·
(
v(s, x)⊗ v(s, x)

)
ds for a.e. in [0, T ]× Ω.

In particular, v is an Lr mild solution to the Navier-Stokes equations (2.7) discussed in [30].

Proof. Let us define n = nτ := b tτ c for a given time t ∈ [0, T ]. Using the approximate Duhamel formula
in Lemma 7.4, we see that for any smooth divergence free test function f whose is contained in Ω we
have

(vn+1,τ , f) = (v0, fn+1) + τ

n∑
k=0

(
vk,τ ,

fn+1−k ◦ Zk+1,τ − fn+1−k

τ

)
.
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We can then write

(vn+1,τ , f) = (v0, fn+1) + τ

n∑
k=0

(
vk,τ ⊗ vk,τ , Dfn+1−k

)
+ ετ

where

ετ := τ

n∑
k=0

(
vk,τ ,

fn+1−k ◦ Zk+1,τ − fn+1−k

τ
−Dfn+1−kvk,τ ).

Next, observe

|ετ | ≤ τ
n∑
k=0

∫
Ω

|vk,τ (x)||Dfn+1−k(x)||vk,τ (x)− ṽk+1,τ | dx+

τ2
n∑
k=0

∫
Ω

∫ 1

0

∫ t

0

|D2fn+1−k
(
sZk+1,τ (x) + (1− s)x

)
||vk,τ (x)||ṽk+1,τ |2 ds dt dx.

Thanks to the Sobolev Embedding Theorem we have

(7.17) |ετ | .d,r ‖D2fn+1−k‖Lr(Ω)‖vτ‖L2([0,T ]×Ω)τ

n∑
k=0

‖vk,τ − ṽk+1,τ‖2L2(Ω)+

τ‖D3fn+1−k‖Lr(Ω)‖vτ‖L∞([0,T ]×Ω)‖ṽτ‖2L2([0,T ]×Ω).

Using Proposition 7.2 we have

‖vk,τ − ṽk+1,τ‖L2(Ω) ≤ (µτ)1/2‖Dvn,τ‖L2(Ω) + µ−
d+r
2r τ1− d+r

2r ‖vn,τ‖2Lr(Ω).

Combining the above bound with (7.11), we can conclude that

τ

n∑
k=0

‖vk,τ − ṽk+1,τ‖L2(Ω) ≤ (τT )1/2‖v0‖L2(Ω) + µ−
d+r
2r τ1− d+r

2r T‖vτ‖2L∞([0,T ];Lr(Ω)).

Recall that vk,τ := eµτAwk,τ in (7.3) . Thus Sobolev inequalities and Lemma C.1 yields

‖vτ‖L∞([0,T ]×Ω) .d,r ‖Dvτ‖L∞([0,T ];Lr(Ω)) .d,r (µτ)−
d+r
2r max

0≤k≤n
‖wk,τ‖L2(Ω).

Recalling our argument in the proof of (7.11), we have

max
0≤k≤n

‖wk,τ‖L2(Ω) ≤ max
0≤k≤n

‖vk,τ‖L2(Ω) ≤ ‖v0‖L2(Ω).

Plugging the above estimates into formula (7.17), we can now conclude that limτ→0 |ετ | = 0 for all
divergence free f ∈W 3,r

0 (Ω).

By Proposition 7.7, along a subsequence vτ converges to v ∈ L2([0, T ]× Ω). It is now clear that for
any divergence free f ∈ L∞([0, T ];W 3,r

0 (Ω)) we have∫ T

0

∫
Ω

v(t, x)f(t, x) dt dx = lim
j→∞

∫ T

0

∫
Ω

vτj (t, x)f(t, x) dx dt

= lim
j→∞

∫ T

0

v0(x)e−µτjbt/τjcAf(t, x) dt+

∫ T

0

∫ t

0

∫
Ω

vτj (s, x)⊗ vτj (s, x)De
−µτjb t−sτj cAf(t, x) ds dx dt

=

∫ T

0

v0(x)e−µtAf(t, x) dt+

∫ T

0

∫ t

0

∫
Ω

v(s, x)⊗ v(s, x)De−µ(t−s)Af(t, x) ds dx dt.

Since v ∈ L2([0, T ];H1(Ω)) ∩ L∞([0, T ];Lr(Ω)) we have

∇ · (v ⊗ v) ∈ L1([0, T ]× Ω).



WELL-POSEDNESS AND REGULARITY FOR A POLYCONVEX ENERGY 27

Hence, we can conclude that, for a.e. (t, x) ∈ [0, T ]× Ω,

v(t, x) = e−µtAv0(x)−
∫ t

0

e−µ(t−s)A∇ ·
(
v(s, x)⊗ v(s, x)

)
ds.

It is a straightforward consequence of the estimates in Lemma C.1 that any L∞([0, T ];Lr(Ω)) solution
to (7.16) with r > d must be unique (see Theorem D.1). Thus, the full sequence {vτ}τ>0 converges to
v as τ → 0.

�

Theorem 7.9. For T ∗ and v as in Theorem 7.9, there is a unique X : [0, T ]× Ω→ Ω such that

(7.18) X(t, x) = id +

∫ t

0

v(s,X(s, x)) ds, det(DX(t, x)) = 1 a.e.,

and
lim
τ→0
‖Xτ −X‖L1([0,T ]×Ω) = 0.

Proof. Note that any v, solution to equation (7.16) in L∞([0, T ];Lr(Ω)) ∩ L2([0, T ];H1(Ω)) is also in
L1([0, T ];W 1,∞(Ω)) (see Theorem D.1). Thus X is well-defined by (7.18).

It remains to show that Xτ converges to X. Recall that from (7.1-7.4)

Xn+1,τ (x) = id + τ

n∑
k=0

ṽk+1,τ (Xk,τ (x)).

and by definition

Xτ (t, x) = id +

∫ t

0

vτ (s,Xτ (s, x)) ds+ τ

n∑
k=0

ṽk+1,τ (Xk,τ (x))− vk+1,τ (Xk+1,τ (x)).

Therefore, for any t ∈ [0, T ], we have the estimate

‖Xτ (t, ·)−X(t, ·)‖L1(Ω) ≤ ‖v − vτ‖L1([0,t]×Ω) +

∫ t

0

‖Dv(s, ·)‖L∞(Ω)‖Xτ (s, ·)−X(s, ·)‖L1(Ω) ds+

τ

n∑
k=0

‖vk+1,τ ◦ Zk+1,τ − vk+1,τ‖L1(Ω) + ‖vk,τ − ṽk+1,τ‖L1(Ω),

where we have used the fact that Xk,τ is measure preserving for all k and Xk+1,τ = Zk+1,τ ◦ Xk,τ .
Applying Remark A.2 and Proposition 7.2, we have

τ

n∑
k=0

‖vk+1,τ ◦ Zk+1,τ − vk+1,τ‖L1(Ω) + ‖vk,τ − ṽk+1,τ‖L1(Ω) ≤

τ‖Dvτ‖L2([0,T ]×Ω)‖ṽτ‖L2([0,T ]×Ω) + (tµτ)1/2‖Dvτ‖L2([0,T ]×Ω) + µ−
d+r
2r τ1− d+r

2r ‖vτ‖2L2([0,t];Lr(Ω)).

Now we can use Gronwall’s inequality to conclude that

‖Xτ (t, ·)−X(t, ·)‖L1(Ω) ≤ δτ exp(‖Dv‖L1([0,t];L∞(Ω))), with lim
τ→0

δτ = 0.

�

Remark 7.10. Theorem D.1 yields that v ∈ L1
(
(0, T ∗);W 1,∞(Ω)

)
with v(·, 0) ∈ Lr(Ω), which is enough

to conclude that X is unique and X(t, ·) is one-to-one of Ω̄ onto itself. From here, one would use the
standard theory for (2.7) to improve the regularity properties of v to v ∈ L1

(
(0, T ∗);C1,α(Ω)

)
for some

α > 0. Since X satisfies (7.18) with v = 0 on ∂Ω, we can conclude that X ∈ L∞
(
(0, T ∗);Diffid(Ω)

)
.
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Appendix A. Inequalities

The following Lemma is a classical result from the theory of maximal functions which can be found
in [20].

Lemma A.1. For any l ∈ [1,∞] and f ∈W 1,p(Rd),

|f(x)− f(y)| ≤
(
M(∇f)(x) +M(∇f)(y)

)
|x− y|, for a.e. x, y ∈ Rd.

Here, M denotes the Hardy-Littlewood maximal function. Therefore, if 1 < l ≤ ∞, there exists a
constant C ≡ Cl(d) such that ‖M(∇f)‖Ll(Ω) ≤ C‖∇f‖Ll(Ω).

Remark A.2. Assume that Ω is an open bounded set of class C3. Let l ∈ (1,∞] and let f ∈W 1,p
0 (Ω).

Denote as f̃ ∈W 1,p(Rd) the extension of f which is identically null outside Ω. Let g be the restriction
of M(∇f̃) to Ω. We have

‖g‖Ll(Ω) ≤ ‖M(∇f̃)‖Ll(Rd) ≤ C̃‖∇f̃‖Ll(Rd) = C̃‖∇f‖Ll(Ω)

(i) We have
|f(x)− f(y)| ≤ (g(x) + g(y))|x− y|, for a.e. x, y ∈ Ω.

(ii) Consequently, if r > 2 and Z : Ω→ Ω preserves Lebesgue measure then

‖f(Z)− f‖
L

r
r−1 (Ω)

≤ 2C‖Z − id‖Lr(Ω)‖Df‖L r
r−2 (Ω)

Lemma A.3. Suppose that g : [0,∞) → R is an increasing function and {ak}k≥0, {bk}k≥0, {ck}k≥0,
and {βn,k}n,k≥0 are nonnegative sequences such that

an+1 ≤ cn+1a0 +

n∑
k=0

βk,n g(ak)

bn+1 = b0 +

n∑
k=0

βk,n g(bk).

If c = supk≥0 ck is finite and max(c, 1)a0 ≤ b0 then an ≤ bn for all n ≥ 0.

Proof. By assumption a0 ≤ b0, hence it suffices to show that ak ≤ bk for all k ≤ n implies that
an+1 ≤ bn+1. Using the formulas in the assumption of the Lemma, we have

an+1 − bn+1 ≤ cn+1a0 − b0 +

n∑
k=0

βk,n
(
g(ak)− g(bk)

)
.

The result follows from the induction hypothesis, the monotonicity of g, and the nonnegativity of each
sequence. �

Appendix B. Flows on Diff id(Ω)

Here we provide a completely standard lemma guaranteeing the existence of certain paths inDiffid(Ω).

Lemma B.1. For some r ∈ (d,∞) suppose that u ∈ W 2,r(Ω,Rd) is a divergence free vector field, and
letM = Z ∈W 2,r

id (Ω) ∩ Diffid(Ω). If Z ∈M, there exists a flow γ : R→M such that

γ(0) = Z, γ′(0) = u ◦ Z.
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Proof. Since u is divergence free and Lipschitz, there exists a solution h to the ODE

h(0) = id, h′(0) = u.

Gronwall’s Lemma implies that

‖Dh(t)‖L∞(Ω) ≤ exp(t‖Du‖L∞(Ω)).

Since u ∈ W 2,r
0 (Ω) is divergence free, it then follows that h|∂Ω(t) = id and det(Dh(t)) ≡ 1. Therefore

h ∈ Diffid(Ω). We can then estimate

‖D2h′(t)‖Lr(Ω) ≤ ‖Du(h(t))‖L∞(Ω)‖D2h(t)‖Lr(Ω) + ‖D2u(h(t))‖Lr(Ω)‖Dh(t)‖2L∞(Ω).

Using the fact that h is measure preserving and the previous bound,

‖D2h′(t)‖Lr(Ω) ≤ ‖Du‖L∞(Ω)‖D2h(t)‖Lr(Ω) + ‖D2u‖Lr(Ω) exp(2t‖Du‖L∞(Ω)).

Therefore, by Gronwall’s Lemma, h(t) ∈W 2,r(Ω) for all finite times and so h : R→M. Now let us set
γ(t) = h(t) ◦ Z. SinceM is closed with respect to composition, we see that γ : R →M. Finally, it is
clear that γ(0) = Z and γ′(0) = u ◦ Z. �

Appendix C. Stokes operator estimates

We will use the following estimate on the Stokes resolvent problem.

Lemma C.1. For any q ∈ [1,∞), p ∈ [1,∞], t > 0 and any f ∈ K, we have

(C.1) ‖∇e−tAf‖Lp(Ω) ≤ Cq,dt−σ‖f‖Lq(Ω), where σ =
d

2
max(q−1 − p−1, 0) +

1

2
.

Proof. We have the following estimates for any 1 ≤ l ≤ n ≤ ∞. For u sufficiently smooth,

(C.2) ‖D2u‖l ≤ C‖Au‖l; ([41], Chapter 1.2, Prop 2.2)

(C.3) ‖Ae−tAf‖l ≤
Cl
t
‖f‖l, ∀f ∈ K; ([30], Prop 1.2)

(C.4) ‖e−tAf‖Ln(Ω) ≤
C

tk
‖f‖Ll(Ω), ∀f ∈ K, where k =

(
l−1 − n−1)

d

2
. ([31], (A))

To prove the lemma, we choose α in the GNS inequality

‖Du‖Lp(Ω) ≤ C‖D2u‖αLq(Ω)‖u‖
1−α
Lq(Ω),

so that

(C.5)
1

p
≥ 1

d
+
(1

q
− 2

d

)
α+

(1− α)

q
and α ∈ [1/2, 1].

Hence, the smallest choice we can make for α is α = 1
2 + d

2 max(q−1 − p−1, 0).

Let u := etAf . From (C.2)-(C.3) we have

‖D2u‖q ≤ ‖Au‖q ≤
1

t
‖f‖q,

and from (C.4)
‖u‖q ≤ C‖f‖q.

Hence we have

‖Du‖γ ≤
C

tα
‖f‖q.

Using our choice of α we conclude. �
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Appendix D. Navier-Stokes basic estimates

The following theorem is expected to be classical, however we were not able to locate an explicit
reference. Thus we provide a proof for the completeness.

Theorem D.1. For any v0 ∈ Lr(Ω) which is divergence free, there is at most one v ∈ L∞([0, T ];Lr(Ω))
that satisfies the Duhamel’s formula

(D.1) v(t) = e−µtAv0 −
∫ t

0

e−µ(t−s)APDT (v(s)⊗ v(s)) ds.

Moreover t
d+r
2r v(x, t) ∈ L∞((0, T ];W 1,∞(Ω)). In particular v ∈ L1((0, T ];W 1,∞(Ω)).

Proof. Let us denote σα(t) := tα and Av := ‖v‖L∞([0,T ];Lr(Ω)) < ∞. We begin by showing that
σ d

2r
v ∈ L∞((0, T ] × Ω). Note that if φ is a smooth divergence free vector field that vanishes on the

boundary of Ω then(
e−µ(t−s)APDT (v(s)⊗ v(s)), φ

)
= −

(
v(s)⊗ v(s), D

(
e−µ(t−s)Aφ

))
.

We use Lemma C.1 to conclude that∣∣∣(e−µ(t−s)APDT (v(s)⊗ v(s)), φ
)∣∣∣ .r ‖v(s)⊗ v(s)‖Lr(Ω)

(
µ(t− s))−

d+r
2r ‖φ‖L1(Ω).

Using the Duhamel formula (D.1) and (C.4), we can conclude that

‖v(t)σ d
2r

(t))‖L∞(Ω) . ‖v0‖Lr(Ω) + t
d
2r

∫ t
0
(t− s)− d+r

2r ‖v(s)⊗ v(s)‖Lr(Ω)ds

. ‖v0‖Lr(Ω) + t
d
2r

∫ t
0
(t− s)− d+r

2r ‖v(s)‖L∞(Ω)‖v(s)‖Lr(Ω) ds.

. ‖v0‖Lr(Ω) + t
d
2rAv

∫ t
0
s−

d
2r (t− s)− d+r

2r ‖v(s)σ d
2r

(s)‖L∞(Ω) ds.

Since
s−

d
2r (t− s)−

d+r
2r . t−

d+r
2r s−

d
2rχ0≤s≤t/2 + t−

d
2r (t− s)−

d+r
2r χt/2<s≤1

we have

‖v(t)σ d
2r

(t)‖L∞(Ω) .‖v0‖Lr(Ω)

+Av

(
t−

1
2

∫ t/2

0

s−
d
2r ‖v(s)σ d

2r
(s)‖L∞(Ω)ds+

∫ t

t/2

(t− s)−
d+r
2r ‖v(s)σ d

2r
(s)‖L∞(Ω)ds

)
.

Choose some β < ∞ such that β(d+r)
2r(β−1) < 1, this is possible since r > d. Using Hölder’s inequality, we

obtain the estimate

(D.2) ‖v(t)σ d
2r

(t)‖L∞(Ω) . ‖v0‖Lr(Ω) + t
β−1
β −

d+r
2r Avh(t)β

−1

,

where

h(t) :=

∫ t

0

‖v(s)σ d
2r

(s)‖βL∞(Ω).

Raising both sides to the power β, and integrating over [0, t0] with t0 < T , we have

h(t0) . ‖v0‖βLr(Ω) +Aβv

∫ t0

0

tβ−1− β(d+r)
2r h(t) dt.

Thus, Gronwall’s inequality implies that h stays finite in [0, T ]. Plugging this result back into (D.2)
and recalling that β−1

β −
d+r
2r > 0, we conclude that σ d

2r
v ∈ L∞((0, T ]× Ω) as desired.
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Next we will use the above L∞ bound to show that σ 1
2
v ∈ L∞((0, T ];W 1,r

0 (Ω)). Once again, using
the Duhamel formula (D.1) and Lemma C.1, we can conclude that

‖σ 1
2
(t)Dv(t)‖Lr(Ω) . ‖v0‖Lr(Ω) + t

1
2

∫ t
0
(t− s)− 1

2 ‖v(s)‖L∞(Ω)‖Dv(s)‖Lr(Ω) ds.

. ‖v0‖Lr(Ω) + t
1
2 ‖v σ d

2r
‖L∞((0,T ]×Ω)

∫ t
0
s−

d+r
2r (t− s)− 1

2 ‖σ 1
2
(s)Dv(s)‖Lr(Ω) ds.

We can argue as above with the same choice of β to conclude that σ 1
2
v ∈ L∞((0, T ];W 1,r

0 (Ω)).

Now we show σ d+r
2r
v ∈ L∞((0, T ];W 1,∞

0 (Ω)). Again by the Duhamel formula (D.1) and Lemma C.1,
we have the estimate

‖σ d+r
2r

(t)Dv(t)‖L∞(Ω) . ‖v0‖Lr(Ω) + t
d+r
2r

∫ t

0

(t− s)−
d+r
2r ‖v(s)‖L∞(Ω)‖Dv(s)‖Lr(Ω) ds.

Using our previous work, we get the bound

‖σ d+r
2r

(t)Dv(t)‖L∞(Ω) .‖v0‖Lr(Ω)

+t
d+r
2r ‖v σ d

2r
‖L∞((0,T ]×Ω)‖σ 1

2
Dv‖L∞((0,T ];Lr(Ω))

∫ t

0

s−
d+r
2r (t− s)−

d+r
2r ds.

The expression

t
d+r
2r

∫ t

0

s−
d+r
2r (t− s)−

d+r
2r ds

is uniformly bounded for all t, therefore we obtain v σ d+r
2r
∈ L∞((0, T ];W 1,∞

0 (Ω)) as desired.

Finally, we can prove the uniqueness of v. Suppose that ṽ ∈ L∞([0, T ];Lr(Ω)) also satisfies equation
(D.1). Lemma C.1 then yields

‖v(t)− ṽ(t)‖L1(Ω) .
∫ t

0

(t− s)− 1
2 ‖v(s)− ṽ(s)‖L1(Ω)

(
‖v(s)‖L∞(Ω) + ‖ṽ(s)‖L∞(Ω)

)
ds.

Using the L∞ bounds we deduced above, we have

‖v(t)− ṽ(t)‖L1(Ω) .
∫ t

0

s−
d
2r (t− s)− 1

2 ‖v(s)− ṽ(s)‖L1(Ω)ds . t
1/6‖v − ṽ‖L3([0,t];L1(Ω)).

Hence, Ḣ(t) . t1/2H(t) if we set

H(t) :=

∫ t

0

‖v(s)− ṽ(s)‖3L1(Ω)ds.

Thus, H(t) . H(0)e
2
3 t

3
2 . This yields H ≡ 0, which means that v = ṽ for 0 ≤ t ≤ T . �
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