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Abstract

In this paper we elucidate the connection between various notions of differentiability in the Wasserstein space: some have
been introduced intrinsically (in the Wasserstein space, by using typical objects from the theory of Optimal Transport) and
used by various authors to study gradient flows, Hamiltonian flows, and Hamilton-Jacobi equations in this context. Another
notion is extrinsic and arises from the identification of the Wasserstein space with the Hilbert space of square-integrable
random variables on a non-atomic probability space. As a consequence, the classical theory of well-posedness for viscosity
solutions for Hamilton-Jacobi equations in infinite-dimensional Hilbert spaces is brought to bear on well-posedness for
Hamilton-Jacobi equations in the Wasserstein space.

Résumé. Dans cet article, nous élucidons le lien entre diverses notions de différentiabilité dans l’espace de Wasserstein:
certaines ont été introduites intrinsèquement (dans l’espace de Wasserstein, en utilisant des objets typiques de la théorie du
transport optimal) et utilisées par divers auteurs pour étudier les flots gradients, les flots Hamiltoniens ainsi que les équations
de Hamilton–Jacobi dans ce contexte. Une notion alternative et extrinsèque, est basée sur l’identification de l’espace de
Wasserstein avec l’espace de Hilbert des variables aléatoires de carré intégrables, sur un espace des mesures de probabilité
non–atomique. Il s’avère que la théorie des équations de Hamilton-Jacobi dans l’espace de Wasserstein, repose sur la théorie
classique des solutions de viscosité des équations de Hamilton–Jacobi dans les espaces de Hilbert de dimension infinie.

Keywords: Differentiability in the Wasserstein space, Hamilton-Jacobi equations in the Wasserstein space, Viscosity
solutions
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1. Introduction

This manuscript is a contribution to the theory of viscosity solutions for Hamilton-Jacobi equations in P2(Rd),
the set of probability measure on Rd with finite second moments; it is endowed with the Wasserstein metric
W2. Many challenges already overcome on “flat” spaces, such as Banach spaces which satisfy the so-called
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Radon-Nikodym property (cf. e.g. [11] [12]), have to be faced in the study of first order equations in P2(Rd).
The latter set, with its special metric structure, allows for an Eulerian description of systems consisting of either
finitely many or infinitely many particles. A Lagrangian description of these systems can be achieved via any
fixed non-atomic probability space. For instance, as done in this manuscript, one can choose the probability
space Ω to be the ball of unit volume in Rd, centered at the origin. The probability measure here will be the the
d-dimensional Lebesgue measure restricted to Ω (denoted by Ld

Ω
) and the set of random variables is the Hilbert

space
H := L2(Ω;Rd).

It is endowed with the inner product 〈·, ·〉, defined for X,Y ∈ H by

〈X,Y〉 := E(X · Y) =

∫
Ω

X(ω) · Y(ω)dω.

We denote by ‖ · ‖ its associated norm, i.e.

‖X‖2 := 〈X, X〉 for all X ∈ H.

The set H is a Hilbert manifold with a single global chart given by the identity map on H. The metric and the
natural Levi-Civita connection on H are linked to the metric and the Levi-Civita connection [17] [18] on P2(Rd)
(cf. also [10]). The push-forward operator ] : H → P2(Rd) associates to X ∈ H its law – the Borel measure
X]L

d
Ω

– defined for any Borel subset B of Rd by(
X]L

d
Ω

)
(B) = Ld

Ω

(
X−1(B)

)
.

The map ] yields an equivalence relation on H: the class of equivalence of X ∈ H is denoted by [X]], the set
of Y ∈ H which have the same law as X, denoted by ](X). Note that ] is surjective since the optimal mass
transportation theory ensures [4] that any element of P2(Rd) is the law of the gradient of a convex function
φ : Ω→ R.

If µ is the law of X ∈ H, ν is the law of Y ∈ H then (cf. e.g. [3])

W2
2 (µ, ν) = inf

X̄,Ȳ∈H

{
E(‖X̄ − Ȳ‖2) : µ = ](X̄), ν = ](Ȳ)

}
. (1.1)

Therefore, ] is an isometry of the quotient space H/] onto P2(Rd). This is the first hint that the intrinsic
differential structure on P2(Rd), introduced in [3], may be inherited from the differential structure on the Hilbert
space H. One may also suspect that the Levi-Civita connection on both spaces may allow to link the Hessian of
functions defined on P2(Rd) to functions defined on H/].

There is a special non-commutative group related to the isometry ] : H/] → P2(Rd), namely the set G(Ω)
of Borel maps S : Ω → Ω (they lie in H) that are almost everywhere invertible and have the same law as the
identity map id. The binary operation on G(Ω) is the composition operation ◦ and the orbit of X ∈ H is the set
X · G(Ω) = {X ◦ S : S ∈ G(Ω)}. The set of orbits of (points X in) H generated by the action of G(Ω) form a
partition of H. We henceforth have another equivalence relation consistent with the right action of G(Ω) on H.
This is very helpful for developing our intuition to better understand ], but unfortunately the new equivalence
relation differs from that induced by ]; indeed, X · G(Ω) is strictly contained in its closure [X]]. This conclusion
follows from the fact that ](X) = ](Y) if and only if there exists a sequence (S n)n ⊂ G(Ω) such that (cf. e.g.
Lemma 6.4 [9])

lim
n→∞
‖X − Y ◦ S n‖ = 0.

In particular, this yields that the closure of G(Ω) is the set S(Ω) of Borel maps which have the same law as id
(see Theorem 1.4 [5] for a refined result when d ≥ 2).

We would like to understand how we can exploit the point of view that the quotient space H/] is isometric
to the Wasserstein space P2(Rd) in order to make inferences on partial differential equations in the latter set.
Partial results in this direction were obtained in the one-dimensional case for “mechanical” Hamiltonians on
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Gangbo & Tudorascu / Journal de Mathématiques Pures et Appliquées 00 (2018) 1–47 3

P2(R) [15]. In the current manuscript, we go beyond offering a new point of view on the differential structure on
P2(Rd) and the concept of subdifferential of functions on this set; we were successful in substantially advancing
the theory of existence and uniqueness of solutions to first order Hamilton-Jacobi equations on P2(Rd).

The notions of viscosity solutions to the differential equations (either on H or on P2(Rd)) we are concerned
with are expressed in terms of subdifferentials of functions. A few years ago, [3] introduced the concepts of
sub and super-differential for real-valued functions on P2(Rd), intrinsic to the weak differential structure of this
space. For practical reasons, a need later arose to modify these concepts (cf. e.g. [2]). It is proved in [2] that
for λ-convex functions on P2(Rd) the definition of subdifferential in [3] is equivalent to that in [2]. A first task
completed in this paper is to show that the definitions of subdifferential in [2] and [3] coincide (with no need for
extra-assumptions, such as λ–convexity). A second task completed is to compare the extrinsic definitions of sub
and super-differential of [9] with the intrinsic ones of [3]. For instance, we show that if U : P2(Rd) → R and
Ũ : H→ R is its rearrangement invariant “lift” defined by

Ũ = U ◦ ], (1.2)

then the subdifferential of U at µ ∈ P2(M) is nonempty if and only if the subdifferential of Ũ at some X0 ∈ H
such that ](X0) = µ is nonempty. This is further equivalent to the fact that the subdifferential of Ũ at any
X ∈ H whose law is µ is nonempty. Let ∂o

· U(µ) denote the element of minimal norm of ∂·U(µ) and let ∂o
· Ũ(X)

denote the element of minimal L2(µ;Rd)-norm of ∂·Ũ(X); we may express the L2–subgradient in terms of the
Wasserstein subgradient as

∂o
· Ũ(X) = ∂o

· U(µ) ◦ X. (1.3)

The identity (1.3) is very subtle. First, it forces the level sets of X to be subsets of the level sets of ∂o
· Ũ(X).

Secondly, it implies that gradients of rearrangement invariant functions defined on H have a special structure.
Indeed, if, for instance, X is invertible, (1.3) implies that ∂o

· Ũ(X) ◦ X−1 belongs to the closure of ∇C1
c (Rd) in

L2(µ;Rd), where µ := ](X). Thirdly, a more general attempt to express elements of the subdifferential of Ũ at X
in terms of elements of the subdifferential of U at µ is doomed to fail even when d = 1. Example 3.20 provides
us with a function U, its lift Ũ and ζ in the subdifferential of Ũ at X such that there is no ξ for which ζ = ξ ◦ X.

The conclusion reached in (1.3), which plays an instrumental role in our study, has been obtained by relying
on two deep results: (i) Brenier [4] proved that for any µ ∈ P2(Rd) there is a convex function whose gradient
pushes Ld

Ω
forward to µ. The existence of such a gradient map, which is referred to as an optimal map, is the

essence of the theory of optimal transportation. (ii) A remarkable result by Caravenna and Daneri [8] ensures
that given any convex function φ : Ω→ R, one can disintegrate Ld

Ω
into probability measures {νy : y ∈ ∇φ(Ω)}

such that each νy is supported by the level set {∇φ = y} and is comparable to the Hausdorff measureHk(y), where
k(y) ∈ {0, 1, ..., d}.

The Levi-Civita connection on P2(Rd) [18], allows for a definition of the Hessian of U under appropriate
conditions (cf. [10]). Indeed, assume that U is differentiable on P2(Rd) in the sense that for any µ ∈ P2(Rd)
the sets ∂·U(µ) and ∂·U(µ) are simultaneously nonempty. As commonly done in convex analysis, we refer to
the element of minimal norms in the subdifferential as the gradient of U at µ and denote it by ∇wU(µ). For each
µ ∈ P2(Rd), let us define

TµP2(Rd) := ∇C1
c (Rd)

L2(µ;Rd)
.

We shall see that
∂·U(µ) +

[
TµP2(Rd)

]⊥
= ∂·U(µ),

which implies ∇wU(µ) ∈ TµP2(Rd).

We suppose that for any ξ ∈ C∞c (Rd;Rd) the directional derivative

µ 7→ ξ(U[µ]) := 〈∇wU(µ), ξ〉µ

is differentiable on P2(Rd). (Here and thereon 〈·, ·〉µ denotes the standard inner product of L2(µ;Rd) and ‖ · ‖µ
the associated norm.) In particular, if ξ1, ξ2 ∈ C∞c (Rd;Rd) and we set ∇̄ξ1ξ2 = (∇ξ2)ξ1, then

Hess U[µ](ξ1, ξ2) = ξ1

(
ξ2

(
U[µ]

))
−

(
∇̄ξ1ξ2

)
(U[µ])
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is meaningful. Assume also Ũ is twice continuously differentiable on H, viewed as an infinite dimensional
manifold. For X ∈ H, denote by Hess Ũ(X) : H × H → R the Hessian of Ũ at X. One checks that, as a
consequence of (1.3), if µ = ](X), then

Hess U(µ)(ξ1, ξ2) = Hess Ũ(X)(ξ1 ◦ X, ξ2 ◦ X) (1.4)

for any ξ1, ξ2 ∈ ∇C∞c (Rd).

Contrary to the fact that the real valued function U : P2(Rd)→ R has a unique rearrangement invariant lift,
given in (1.2), real-valued functions on

CP2(Rd) :=
{
(µ, ξ) : µ ∈ P2(Rd), ξ ∈ L2(µ;Rd)

}
may have several distinct lifts H̃ on H ×H, satisfying the invariance property

H̃(X, ζ) = H̃(X ◦ S , ζ ◦ S ) (1.5)

for any S ∈ S(Ω). For instance, the function on CP2(Rd) defined by

(µ, ξ) 7→ H(µ, ξ) :=
1
2

∫
Rd
|ξ(x)|2µ(dx),

admits infinitely many lifts on H ×H satisfying (1.5), two of which are

H̃(X, ζ) :=
1
2
‖projF[X]ζ‖

2, H̃1(X, ζ) :=
1
2
‖ζ‖2, (1.6)

For X ∈ H,
F[X] = {ξ ◦ X : ξ ∈ L2(µ;Rd)} := {φ ◦ X : φ ∈ Cc(Rd;Rd)}

L2(Ω;Rd)
, (1.7)

where µ := ](X). While H̃1 is the unique continuous lift of H , the natural (see below) lift H̃ comes with some
serious handicaps since it is far from satisfying the sufficient conditions employed by [11], [12] in order to prove
existence and uniqueness of continuous viscosity solutions in H. Indeed, H̃ is not even continuous on H × H.
Thus, the extant proofs of existence and uniqueness do not work in this case.

We employ a workaround, based on studying some HJ equations with Hamiltonians that may, at a first
glance, look like “linearized”, “toy” Hamiltonians. These Hamiltonians depend on a functional parameter ϕ ∈
C∞c (Rd) in the following way:

Hϕ(µ, ξ) := 〈ξ,∇ϕ〉µ −
1
2
‖∇ϕ‖2µ .

Define
∇F[X] := {ξ ◦ X : ξ ∈ TµP2(Rd)} := {∇φ ◦ X : φ ∈ C1

c (Rd)}
L2(Ω;Rd)

. (1.8)

If ζ ∈ H and ξ ◦ X := proj∇F[X]ζ, then, thanks to the identities

〈ξ,∇ϕ〉µ = 〈ξ ◦ X,∇ϕ ◦ X〉 = 〈ζ,∇ϕ ◦ X〉,

the lift defined by (given a general Hamiltonian H on TP2(Rd))

H̃(X, ζ) := H
(
](X), proj∇F[X]ζ

)
(1.9)

becomes
H̃ϕ(X, ζ) = 〈ζ,∇ϕ ◦ X〉 −

1
2
‖∇ϕ ◦ X‖2 (1.10)

when H := Hϕ. One checks that the theory in [11], [12] can be applied to the smooth Hamiltonians in (1.10).
The identity (note that this holds if and only if ξ ∈ TµP2(Rd))

1
2
‖ξ‖2µ = sup

ϕ∈C1
c (Rd)

Hϕ(µ, ξ)

4
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gives us our first glimpse that there may be ways to connect HJ equations on P2(Rd) to HJ equations on H, even
when the lift in (1.9) cannot be directly used. From our perspective, the lift in (1.9) is arguably the most natural
lift for H satisfying (1.5). Indeed, for this lift, Theorem 4.4 shows that the identity (1.3) becomes directly useful
in the study of viscosity solutions of Hamilton-Jacobi equations.

Other works [1], [16] on Hamilton-Jacobi equations in the Wasserstein space deal with more general met-
ric settings and have various degrees of generality (either special types of Hamiltonians depending on metric
derivatives and/or concepts of viscosity solutions based on special types of test functions). It will be inter-
esting to investigate whether the measure-random variable duality approach used in this paper applies to such
problems.

In this work, our focus is on genuine first-order Hamilton-Jacobi equations in the Wasserstein space of type
(4.3) and (6.1).

2. Notation and Preliminaries

To emphasize the fact that most of the results proved in this manuscript are valid on spaces more general than
Rd, we shall denote Rd by M. Throughout this manuscript, P2(M) denotes the set Borel probability measures
on M, of finite second moments. This is a length space when endowed with W2, the Wasserstein distance.

Given µ, ν ∈ P2(M) we denote by Γ(µ, ν) the set of Borel measures γ on M × M, which have µ as first
marginal, ν as second marginal. We denote by Γo(µ, ν), the set of γ ∈ Γ(µ, ν) such that

W2
2 (µ, ν) =

∫
M×M

|x − y|2γ(dx, dy).

We denote the first (respectively, second) projection of M ×M onto M by π1 (respectively, π2)

π1(x, y) = x, π2(x, y) = y.

The space of uniformly continuous functions on H is UC(H) while the subspace of bounded functions in
UC(H) is BUC(H). The space UCs

(
[0,T ] × V

)
consists of those functions v : [0,T ] × V → R which are

uniformly continuous in x uniformly with respect to t, and uniformly continuous on bounded sets.

Denote by L2(µ) the set of Borel maps ξ : M → M such that ‖ξ‖2µ :=
∫
M |ξ(x)|2µ(dx) < ∞. The union

∪µ∈P2(M){µ} × P2(M) is denoted by CP2(M). The closure of ∇C∞c (M) in L2(µ) is denoted by TµP2(M).

We define ] : H→ P2(M) by

](X)(B) = Ld
Ω

(
X−1(B)

)
for all X ∈ H, B ⊂M

and, for any X ∈ H,
[X]] := {Y ∈ H : ](Y) = ](X)}.

Recall from the introduction that we denote

G(Ω) := {S : Ω→ Ω : S is Borel, Ld-a.e. invertible, and S ∈ [idΩ]]},

where idΩ is the identity map of Ω. Also,

S(Ω) := {S : Ω→ Ω : S is Borel and S ∈ [idΩ]]}.

We say that a function m : [0,∞) → [0,∞) is a modulus if m is continuous, monotone, nondecreasing,
sub-additive and m(0) = 0. A function σ : [0,∞) × [0,∞) → [0,∞) is a local modulus if σ(·,R) is a modulus
for each R ≥ 0 and σ is continuous and monotone nondecreasing in each variable.
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In this manuscript, if S is a metric space UCs([0,T ]×S) denotes the vector space of all real valued functions
U on [0,T ]×Swhich are uniformly continuous on bounded subsets of [0,T ]×S and such that U(t, ·) is uniformly
continuous uniformly with respect to t ∈ [0,T ].

If X ∈ H, F[X] is the closure of the set { f ◦ X : f ∈ Cc(M;M)} in H. If ζ ∈ H, the projection of ζ onto
F[X] is denoted by projF[X]ζ. If the closure of the set {∇ϕ ◦ X : ϕ ∈ ∇C1(M)} in H is used instead and denoted
by ∇F[X], then the projection of ζ ∈ H onto this subspace is denoted by proj∇F[X]ζ.

If V : H→ R ∪ {±∞}, X, ζ ∈ H and r > 0, we set

ε[V](r, X, ζ) = inf
H∈H

{V(H + X) − V(X) − 〈ζ,H〉
‖H‖

: 0 < ‖H‖ ≤ r
}
. (2.1)

If U : P2(M)→ R ∪ {±∞}, µ, ν ∈ P2(M), and ξ ∈ L2(µ), then for any p ∈ Γ(µ, ν) we set

eµ(ν, ξ, γ) := U(ν) − U(µ) −
∫
M×M

ξ(x) · (y − x)γ(dx, dx). (2.2)

and then set

eµ[U](ξ, ν) := sup
p∈Γ0(µ,ν)

{eµ(ν, ξ, γ)
W2(µ, ν)

}
, eµ[U](ξ, ν) := inf

p∈Γ0(µ,ν)

{eµ(ν, ξ, γ)
W2(µ, ν)

}
. (2.3)

For r > 0 we set
εµ[U](r, ξ) := inf

ν

{
eµ[U](ξ, ν) | ν ∈ P2(M), 0 < W2(µ, ν) ≤ r

}
, (2.4)

and
εµ[U](r, ξ) := inf

ν

{
eµ[U](ξ, ν) | ν ∈ P2(M), 0 < W2(µ, ν) ≤ r

}
, (2.5)

As a consequence of (1.1) we obtain the following remarks.

Remark 2.1. Let U : P2(M)→ R ∪ {±∞} and set Ũ := U ◦ ] : H→ R ∪ {±∞}. Then

(i) U is continuous if and only if Ũ is continuous.
(ii) U is κ–Lipschitz if and only if Ũ is κ–Lipschitz.

Lemma 2.2. If X, ζ ∈ H and µ := ](X), then there exists a unique v0 ∈ L2(µ) such that

〈b ◦ X, ζ〉 = 〈b, v0〉µ for any b ∈ C∞c (M,M).

Proof. The linear map L : L2(µ)→ R defined by

L(ξ) := 〈ξ ◦ X, ζ〉

is continuous. By the Riesz representation theorem there exists a unique v0 ∈ L2(µ) such that

L(ξ) = 〈ξ, v0〉µ for all ξ ∈ L2(µ).

It is straight-forward to check that v0 is the unique map with the stated properties.

It is easy to see that v0 is the projection of ζ onto F[X] (defined in (1.7)), so we denote

v0 = projF[X]ζ. (2.6)

Remark 2.3. We shall also consider the set of v ∈ L2(µ) such that

〈∇ϕ ◦ X, ζ〉 = 〈∇ϕ, v〉µ for all ϕ ∈ C∞c (M), (2.7)

which contains v0 found in Lemma 2.2. Observe that if v satisfies (2.7), so does v + w for any w ∈ L2(µ) such
that ∇ · (µw) = 0 in the sense of distributions.
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In the remainder of this section we consider

L̄ ∈ C([0,T ] ×H ×H), L ∈ C([0,T ] × CP2(M))

bounded below and such that
L̄(t, X, ξ ◦ X) = L(t, µ, ξ)

for all t ∈ [0,T ], X ∈ H, µ = ](X) (recall that this means µ = X]L
d
Ω

) and ξ ∈ L2(µ). We assume that there exist
κ0 > 0 and κ1 ∈ R such that

κ0‖B‖2 − κ1 ≤ L̄(t, X, B) for all (t, X, B) ∈ [0,T ] ×H ×H. (2.8)

Lemma 2.4. Assume L̄(t̄, X̄, ·) is strictly convex for any (t̄, X̄) ∈ [0,T ]×H. Then for any (t, X) ∈ [0,T ]×H there
exists a unique v0 ∈ L2(](X)) such that v0 minimizes

i0 := inf
v
{L̄(t, X, v ◦ X) : v satisfies (2.7)} . (2.9)

Proof. Since the set of v satisfying (2.7) is nonempty and L̄ is bounded below, i0 ∈ R. By (2.8), any minimizing
sequence (vn)n is bounded in L2(µ) and so, is weakly pre–compact in L2(µ). We may assume without loss of
generality that the whole sequence weakly converges to some v0 ∈ L2(µ). Choose

wn :=
n∑

k=1

cn
kvk, cn

k ≥ 0,
n∑

k=1

cn
k = 1

such that (wn)n converges strongly to v0.Observe that v0 satisfies (2.7). It remains to show that L̄(t, X, v0◦X) ≤ i0.
Let ε > 0 be arbitrary. Assume without loss of generality that

L̄(t, X, vn ◦ X) ≤ i0 + ε

for every n ≥ 1. We have

L̄(t, X,wn ◦ X) ≤
n∑

k=1

cn
k L̄(t, X, vk ◦ X) ≤

n∑
k=1

cn
k(i0 + ε) = i0 + ε (2.10)

and
lim

n
‖wn ◦ X − v0 ◦ X‖ = lim

n
‖wn − v0‖µ = 0.

By the continuity of L̄ and (2.10)

L̄(t, X, v0 ◦ X) = lim sup
n

L̄(t, X,wn ◦ X) ≤ i0 + ε.

This proves that v minimizes (2.9). The strict convexity of L̄(t, X, ·) ensures the uniqueness of v0 ◦ X, which in
turn ensures the uniqueness of v0.

Definition 2.5. Assume L̄(t̄, X̄, ·) is strictly convex for any (t̄, X̄) ∈ [0,T ] ×H. Let (t, X, ζ) ∈ [0,T ] ×H ×H and
set µ := ](X). Using the notation in Lemma 2.4,

(i) we refer to ζ̄ := v ◦ X ∈ H as the L̄–projection of ζ onto ∇F[X] (see (1.8)) and write ζ̄ = proj∇F[X],L̄ζ.
(ii) When L̄(B) ≡ ‖B‖2 for B ∈ H, the L̄–projection is simply denoted proj∇F[X]ζ and referred to as the

projection of ζ onto ∇F[X] (since it is easy to see that it coincides with the orthogonal projection of ζ
onto the closed subspace defined in (1.8)).

Proposition 2.6. Assume both L̄(t̄, X̄, ·) and H̄(t̄, X̄, ·) are strictly convex and of class C1 for any (t̄, X̄) ∈ [0,T ]×
H. Let (t, X, ζ) ∈ [0,T ] ×H ×H. Then v ◦ X = proj∇F[X],L̄ζ for some v satisfying (2.7) if and only if

ξ := ∇bL(t, µ, v) ∈ TµP2(M).
7
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Proof. Set µ := ](X). Assume v ◦ X = proj∇F[X],L̄ζ and let w ∈ L2(µ) be such that ∇ · (µw) = 0 in the sense of
distributions. For every r ∈ R, (2.7) holds if we replace v by v + rw. Thus,

0 =
d
dr

L̄(t, X, v ◦ X + rw ◦ X)
∣∣∣∣
r=0

= 〈∇BL̄(t, X, v ◦ X),w ◦ X〉

If L̄(t, X, ·) is differentiable on H and L(t, µ, ·) is differentiable on L2(µ) then

∇BL̄(t, X, v ◦ X) = ∇bL(t, µ, v). (2.11)

From this we deduce
0 = 〈∇bL(t, µ, v),w〉.

Since w is an arbitrary vector such that ∇· (µw) = 0 in the sense of distributions, we conclude that ξ ∈ TµP2(M).

Conversely, suppose ξ ∈ TµP2(M). Let v̄ ∈ L2(µ) such that (2.7) holds. Then ∇ ·
(
µ(v̄ − v)

)
= 0 in the sense

of distribution. We have

L̄(t, X, v̄ ◦ X) ≥ L̄(t, X, v ◦ X) + 〈ξ ◦ X, v̄ ◦ X − v ◦ X〉 = L̄(t, X, v ◦ X).

This proves that v minimizes (2.9). By Lemma 2.4, v ◦ X = proj∇F[X],L̄ζ.

Remark 2.7. Assume both L̄(t̄, X̄, ·) and H̄(t̄, X̄, ·) are strictly convex and of class C1 for any (t̄, X̄) ∈ [0,T ]×H.
Let (t, X, ζ) ∈ [0,T ] ×H ×H. Using the notation in Definition 2.5 we have

(i)
L̄(t, X, proj∇F[X],L̄ζ) ≤ L̄(t, X, ζ), H̄(t, X, proj∇F[X],L̄ζ) ≤ H̄(t, X, ζ). (2.12)

(ii) We do not know if we can replace proj∇F[X],L̄ζ by proj∇F[X]ζ in (2.12), which is why we sometimes impose
the condition in this form when necessary.

We recall the following result:

Proposition 2.8. X, X0 ∈ H have the same law if and only if for each positive integer n there exists S n ∈ G(Ω)
such that

‖X0 ◦ S n − X‖ ≤
1
n
. (2.13)

Proof. Clearly (2.13) implies that X and X0 have the same law. Conversely, if X ∈ [X0]], then Lemma 6.4 [9]
implies (2.13).

As a consequence, the following holds:

Corollary 2.9. Let X, X0, ζ ∈ H and let {S n}n be as in Proposition 2.8 such that {ζ̄n}n := {ζ ◦ S n}n converges
weakly to ζ̄ in H. Let ξ ∈ L2(µ) be uniquely defined by ξ ◦ X0 := projF[X0]ζ, where µ := ](X0). Then ξ ◦ X =

projF[X]ζ̄.

Proof. Let ξ̄ be uniquely defined by ξ̄ ◦ X := projF[X]ζ̄. For any φ ∈ Cc(M;M) we have

〈ξ, φ〉µ = 〈ζ, φ ◦ X0〉 = 〈ζ ◦ S n, φ ◦ X0 ◦ S n〉.

As {ζ ◦ S n}n converges weakly to ζ̄ and {φ ◦ X0 ◦ S n}n convergences strongly to φ ◦ X we conclude that

〈ξ, φ〉µ = 〈ζ̄, φ ◦ X〉 =: 〈ξ̄, φ〉µ.

Since φ is arbitrary, this concludes the proof of the Lemma.

8
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Corollary 2.10. Let E : H ×H→ R be continuous and satisfy the invariance property

E(X, ζ) = E(X ◦ S , ζ ◦ S ) (2.14)

for any map S ∈ S(Ω) and any X, ζ ∈ H. Then

E(X0, ξ ◦ X0) = E(X, ξ ◦ X)

for any X0, X ∈ H such that ](X0) = ](X) =: µ and any ξ ∈ L2(µ).

Proof. Using the notation in Proposition 2.8, we choose S n ∈ G(Ω) such that (2.13) holds. By approximating ξ
in L2(µ) with functions in Cc(M;M) we get that

(
ξ ◦ X0 ◦ S n

)
n converges strongly to ξ ◦ X in H. Thus, by the

continuity of E and the invariance property (2.14) we get

E(X, ξ ◦ X) = lim
n→∞

E(X0 ◦ S n, ξ ◦ X0 ◦ S n) = E(X0, ξ ◦ X0),

which concludes the proof.

3. Differentiability of Rearrangement Invariant maps

Throughout this section, we assume that U : P2(M)→ R ∪ {±∞}.

Definition 3.1. Let µ ∈ dom(U).

(i) The weak–inf subgradient of U at µ ∈ P2(M) is the set of all ξ ∈ L2(µ) such that

U(ν) − U(µ) ≥ inf
γ∈Γo(µ,ν)

∫
M×M

ξ(x) · (y − x)γ(dx, dx) + o
(
W2(µ, ν)

)
,

for ν ∈ P2(M). We denote this set by ∂−in f U(µ).
(ii) We define the weak-sup subgradient by replacing “inf” with “sup” in the inequality above. We denote

this set by ∂−supU(µ).

For µ, ν ∈ P2(M) and γ ∈ Γ(µ, ν), let be as defined in (2.2). We reformulate the above definition in terms of
optimal bounds on o

(
W2(µ, ν)

)
. First, if µ , ν, we introduce the expressions

H−(ν, ξ) := sup
p∈Γ0(µ,ν)

eµ(ν, ξ, p)
W2(µ, ν)

, H+(ν, ξ) := inf
p∈Γ0(µ,ν)

eµ(ν, ξ, p)
W2(µ, ν)

. (3.1)

Secondly, for any r > 0 we set

h−(r, ξ) := inf
ν

{
H−(ν, ξ) : 0 < W2(µ, ν) ≤ r

}
,

h+(r, ξ) := inf
ν

{
H+(ν, ξ) : 0 < W2(µ, ν) ≤ r

}
.

Remark 3.2. For µ ∈ P2(M) and ξ ∈ L2(µ) the following hold:

(i) ξ ∈ ∂−in f U(µ) if and only if limr→0+ h−(r, ξ) ≥ 0.
(ii) ξ ∈ ∂−supU(µ) if and only if limr→0+ h+(r, ξ) ≥ 0.

(iii) For any ν ∈ P2(M) we have h±(W2(µ, ν), ξ) ≤ H±
(
ν, ξ

)
.

Lemma 3.3. For µ, ν ∈ P2(M), any p, p̂ ∈ Γ(µ, ν) and ζ ∈ C2
c (M), we have∣∣∣∣∫

M×M
∇ζ(x) · (y − x)

[
p̂(dx, dy) − p(dx, dy)

]∣∣∣∣ ≤ 1
2
‖∇2ζ‖∞

[
‖π1 − π2‖2p + ‖π1 − π2‖2p̂

]
.

9
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Proof. Since p, p̂ ∈ Γ(µ, ν), ∫
M×M

[
ζ(y) − ζ(x)

][
p̂(dx, dy) − p(dx, dy)

]
= 0. (3.2)

For any x, y ∈M there exists r ∈ [−1, 1] depending on x and y such that

ζ(y) − ζ(x) − ∇ζ(x) · (y − x) =
r
2
‖∇2ζ‖∞|x − y|2. (3.3)

Since ∣∣∣∣∫
M×M

r ‖∇2ζ‖∞|y − x|2
(
p̂(dx, dy) − p(dx, dy)

)∣∣∣∣ ≤ ‖∇2ζ‖∞
(
‖π1 − π2‖2p + ‖π1 − π2‖2p̂

)
,

we use (3.2), (3.3) to conclude the proof of the Lemma.

Proposition 3.4. Let µ, ν ∈ P2(M), ξ ∈ L2(µ) and p, p̂ ∈ Γo(µ, ν). If ζ ∈ C2
c (M), then∣∣∣∣eµ(ν, ξ, p) − eµ(ν, ξ, p̂)

∣∣∣∣ ≤ (
‖∇2ζ‖∞W2(µ, ν) + 2‖ξ − ∇ζ‖µ

)
W2(µ, ν)

Proof. First, we use the decomposition

eµ(ν, ξ, p) − eµ(ν, ξ, p̂) =

∫
M×M

∇ζ(x) · (x − y)
(
p̂(dx, dy) − p(dx, dy)

)
(3.4)

+

∫
M×M

(
ξ(x) − ∇ζ(x)

)
· (x − y)

(
p̂(dx, dy) − p(dx, dy)

)
. (3.5)

Next we apply Cauchy–Schwarz inequality to obtain∣∣∣∣∫
M×M

(
ξ(x) − ∇ζ(x)

)
· (x − y) p̂(dx, dy)

∣∣∣∣ ≤ ‖ξ − ∇ζ‖µ‖π1 − π2‖p̂. (3.6)

Similarly, ∣∣∣∣∫
M×M

(
ξ(x) − ∇ζ(x)

)
· (x − y)p(dx, dy)

∣∣∣∣ ≤ ‖ξ − ∇ζ‖µ‖π1 − π2‖p. (3.7)

We use Lemma 3.3 to control the expression in the right hand side of (3.4) and combine this with (3.4-3.7) to
obtain the thesis.

Corollary 3.5. Let µ, ν ∈ P2(M), let ξ ∈ L2(µ) and let ζ ∈ C2
c (M). Then∣∣∣∣H+(ν, ξ) − H−(ν, ξ)

∣∣∣∣ ≤ ‖∇2ζ‖∞W2(µ, ν) + 2‖ξ − ∇ζ‖µ.

Theorem 3.6. For any µ ∈ P2(M) we have

∂−in f U(µ) ∩ TµP2(M) = ∂−supU(µ) ∩ TµP2(M).

Proof. Let ξ ∈ L2(µ). By Corollary 3.5, for any ζ ∈ C2
c (M) we have

inf
0<W2(µ,ν)≤r

H+(ν, ξ) ≥ inf
0<W2(µ,ν)≤r

(
H−(ν, ξ) − ‖∇2ζ‖‖∞W2(µ, ν) − 2‖ξ − ∇ζ‖µ

)
≥ inf

0<W2(µ,ν)≤r

(
H−(ν, ξ) − ‖∇2ζ‖∞r − 2‖ξ − ∇ζ‖µ

)
.

In terms of h±, this reads
h+(r, ξ) ≥ h−(r, ξ) − ‖∇2ζ‖∞r − 2‖ξ − ∇ζ‖µ,

which, together with the fact that h+ ≤ h−, implies

lim
r→0+

h−(r, ξ) ≥ lim
r→0+

h+(r, ξ) ≥ lim
r→0+

h−(r, ξ) − 2‖ξ − ∇ζ‖µ.
10
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If, in addition, ξ ∈ TµP2(M), then we can choose ζ so that ‖ξ − ∇ζ‖µ is arbitrarily small and conclude that

lim
r→0+

h−(r, ξ) = lim
r→0+

h+(r, ξ).

We use Remark 3.2 to conclude the proof of the Theorem.

If γ ∈ Γo(µ, ν) then (cf. [3]) the barycentric projection of γ, of base µ, belongs to TµP2(M) and so,∫
M×M

w(x) · (y − x)γ(dx, dy) = 0

for any w ∈
[
TµP2(M)

]⊥
. Thus,

∂−in f U(µ) ∩ TµP2(M) +
[
TµP2(M)

]⊥
= ∂−in f U(µ) (3.8)

and
∂−supU(µ) ∩ TµP2(M) +

[
TµP2(M)

]⊥
= ∂−supU(µ). (3.9)

Thanks to Theorem 3.6, we can use (3.8) and (3.9) to obtain the following proposition.

Proposition 3.7. If U : P2(M)→ R ∪ {±∞} and µ ∈ dom(U), then ∂−in f U(µ) = ∂−supU(µ). We define

∂−U(µ) := ∂−in f U(µ) = ∂−supU(µ).

Definition 3.8. (i) We define the weak-sup supergradient of a function U : P2(M)→ R at µ ∈ P2(M) as the set
of all ξ ∈ L2(µ) such that

U(ν) − U(µ) ≤ sup
γ∈Γo(µ,ν)

∫ ∫
ξ(x) · (y − x) γ(dx, dy) + o

(
W2(µ, ν)

)
for ν ∈ P2(M). We denote this set by ∂+

supU(µ).

(ii) We define the weak-sup supergradient by replacing “sup” with “inf” in the inequality above. We denote
this set by ∂+

in f U(µ).

Since
∂+

in f U(µ) = −∂−sup
(
− U

)
(µ) and ∂+

supU(µ) = −∂−in f
(
− U

)
(µ),

Proposition 3.7 implies:

Proposition 3.9. For any U : P2(M)→ [−∞,∞] and any µ ∈ P2(M) we have ∂+
in f U(µ) = ∂+

supU(µ), which will
be denoted by ∂+U(µ). Also, ∂+U(µ) = −∂−

(
− U

)
(µ).

We define
∂•U(µ) := ∂−U(µ) ∩ TµP2(M) and ∂•U(µ) := ∂+U(µ) ∩ TµP2(M)

Theorem 3.10. The set ∂•U(µ) ∩ ∂•U(µ) has at most one element.

Proof. If ξ, ζ ∈ ∂−U(µ) ∩ ∂+U(µ) ∩ TµP2(M), then for any sequence {µn}n ⊂ P2(M) such that W2(µ, µn) → 0
and any sequence of plans {γn}n such that γn ∈ Γo(µ, µn) for all n, we have

lim
n→∞

∫ ∫ [
ξ(x) − ζ(x)

]
· (y − x) γn(dx, dy)

W2(µ, µn)
= 0. (3.10)

Choose µn :=
[
Id + n−1∇φ

]
]µ for some non-identically zero φ ∈ C1

c (Rd). For sufficiently large n we have that
Γo(µ, µn) =

{[
Id×

(
Id + n−1∇φ

)]
]µ

}
, so (3.10) yields 〈ξ− ζ,∇φ〉L2(µ;Rd) = 0. Since φ is arbitrary, we are done.

11
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Definition 3.11. We say that U : P2(M)→ R ∪ {±∞} is differentiable at µ ∈ dom(U) if ∂−U(µ) ∩ ∂+U(µ) , ∅.
In this case, according to Theorem 3.10, there exists a unique ξ ∈ TµP2(M), which we now denote by ∇wU(µ),
such that (using the notation in (2.2))

lim
n→∞

eµ(µn,∇wU(µ), γ)
W2(µ, µn)

= 0 (3.11)

for any sequence {µn}n ⊂ P2(M) such that W2(µ, µn) → 0 and any sequence of plans {γn}n such that γn ∈

Γo(µ, µn) for all n.

Lasry and Lyons have introduced another, less intrinsic, notion of differentiability by associating to each
function U : P2(M)→ R a map Ũ : H→ R given by

Ũ(X) := U(X]P),

where
(
Ω,B(Ω), P

)
is a non-atomic probability space. Each µ ∈ P2(M) corresponds to a random variable X on

the probability space
(
Ω,B(Ω), P

)
via µ = X]P. The range of the operator U 7→ Ũ is the set of all functionals

V : H→ R such that
X, Y ∈ H, X]P = Y]P =⇒ V(X) = V(Y).

We are particular about this probability space, and recall that we have chosen Ω to be the ball in Rd of unit
volume and centered at the origin, while P := Ld

Ω
. This will give us access to the powerful tools of Optimal

Transport; in particular, to any µ ∈ P2(M) there corresponds a unique random variable which is Lebesgue a.e.
equal to the gradient of a convex function. This fact will be of crucial importance in the sequel. Also, recall
that we have called functionals such as Ũ above rearrangement invariant, R.I. for short. In the sequel we shall
denote by ∂±V(X) the super (sub, respectively) Frechét gradient at X ∈ H. As in (3.1), for X,Y, ζ ∈ H we define

H̃[X](Y, ζ) :=
V(Y) − V(X) − 〈ζ,Y − X〉

‖Y − X‖
(3.12)

and
h̃[X](r, ζ) := inf

Y
{H̃[X](Y, ζ) : 0 < ‖Y − X‖ ≤ r}.

Remark 3.12. For X, ζ ∈ H the following hold.

(i) ζ ∈ ∂−V(X) if and only if limr→0+ h̃[X](r, ζ) ≥ 0.
(iii) For any Y ∈ H using the notation of e[V] in (2.1) we have

e[V](X, ‖Y − X‖, ζ) ≤ H̃[X]
(
Y, ζ

)
.

Lemma 3.13. Let X ∈ H, µ := ](X), and let ξ ∈ L2(µ). Let ε > 0, ν ∈ P2(M) and let γ ∈ Γo(µ, ν). Then there
exists Z ∈ H such that the following hold:

(i) ν = ](Z);

(ii) ‖X − Z‖ ≤ ε + W2(µ, ν);

(iii) For any φ ∈ C1
c (M;M) we have∣∣∣∣∣ ∫

M×M
ξ(x) · (y − x)

(
γ − p

)
(dx, dy)

∣∣∣∣∣
≤ W2(µ, ν)

[
(3 + ε)‖ξ − φ‖µ + ε‖∇φ‖∞W2(µ, ν) + ε‖ξ‖µ

]
,

where ∇φ denotes the Jacobian matrix of φ and we have set

p := ](X × Z) ∈ Γ(µ, ν). (3.13)

12
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Proof. Choose a random variable A = (S ,T ) ∈ L2(Ω;Rd × Rd) such that ](A) = γ. Due to the marginal
properties of γ, we have µ = ](S ) and ν = ](T ). Also, by the optimality of γ we have that

W2(µ, ν) = ‖S − T‖. (3.14)

By Lemma 6.4 [9], there exists a measure preserving (preserves Ld
Ω

) map τ such that

‖X − S ◦ τ‖ ≤ W2(µ, ν)ε. (3.15)

Thus,
‖X − T ◦ τ‖ ≤ ‖X − S ◦ τ‖ + ‖S ◦ τ − T ◦ τ‖ ≤ εW2(µ, ν) + W2(µ, ν). (3.16)

Set
Z := T ◦ τ, Y := S ◦ τ.

Note that (i) and (ii) are satisfied.

Let φ ∈ C1
c (M;M). We have∣∣∣〈ξ ◦ Y,Z − Y〉 − 〈ξ ◦ X,Z − X〉

∣∣∣ ≤ ∣∣∣〈ξ ◦ Y − φ ◦ Y,Z − Y〉
∣∣∣

+
∣∣∣〈φ ◦ Y,Z − Y〉 − 〈φ ◦ X,Z − X〉

∣∣∣
+

∣∣∣〈φ ◦ X − ξ ◦ X,Z − X〉
∣∣∣

≤
∣∣∣〈ξ ◦ Y − φ ◦ Y,Z − Y〉

∣∣∣
+

∣∣∣〈φ ◦ Y − φ ◦ X,Z − Y〉
∣∣∣ +

∣∣∣〈φ ◦ X, X − Y〉

+
∣∣∣〈φ ◦ X − ξ ◦ X,Z − X〉

∣∣∣.
We conclude that ∣∣∣〈ξ ◦ Y,Z − Y〉 − 〈ξ ◦ X,Z − X〉

∣∣∣ ≤ ‖ξ − φ‖µ‖Z − Y‖

+ ‖∇φ‖∞‖Y − X‖‖Z − Y‖ + ‖φ‖µ‖Y − X‖

+ ‖ξ − φ‖µ‖Z − X‖.

This, together with (3.14 – 3.16) implies∣∣∣∣〈ξ ◦ Y,Z − Y〉 − 〈ξ ◦ X,Z − X〉
∣∣∣∣ ≤ W2(µ, ν)

[
(2 + ε)‖ξ − φ‖µ + ε‖∇φ‖∞W2(µ, ν) + ε‖φ‖µ

]
.

We use the inequality ‖φ‖µ ≤ ‖ξ − φ‖µ + ‖ξ‖µ to conclude the proof.

The above lemma is useful for proving:

Theorem 3.14. Let X ∈ H, µ := ](X) and ξ ∈ L2(µ). Then:

(i) ξ ◦ X ∈ ∂−Ũ(X) implies ξ ∈ ∂−U(µ). The converse holds if ξ ∈ TµP2(M).
(ii) ξ ◦ X ∈ ∂+Ũ(X) implies ξ ∈ ∂+U(µ). The converse holds if ξ ∈ TµP2(M).

Proof. We will only prove the first statement as one can obtain the second one by duality.

Part I. Assume ξ ∈ L2(µ). Let r > 0 and ν ∈ P2(M) be such that 0 < W2(µ, ν) ≤ r. Let γ ∈ Γo(µ, ν). By Lemma
3.13, we can find Z ∈ H such that (i) – (iii) in the Lemma hold for ε = rW2(µ, ν). In terms of the bistochastic
measure p defined in (3.13), we have

eµ(ν, ξ, γ) = Ũ(Z) − Ũ(X) − 〈ξ ◦ X,Z − X〉 −
∫
M×M

ξ(x) · (y − x)(γ − p)(dx, dy).

13
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Thus, by Lemma 3.13 (iii), we have, for any φ ∈ C1
c (M;M),

eµ(ν, ξ, γ)
W2(µ, ν)

≥
Ũ(Z) − Ũ(X) − 〈ξ ◦ X,Z − X〉

W2(µ, ν)
− (3 + ε)‖ξ − φ‖µ − ε‖∇φ‖∞W2(µ, ν) − ε‖ξ‖µ,

and so,
eµ(ν, ξ, γ)
W2(µ, ν)

≥ e[Ũ](2r, X, ξ ◦ X)
‖Z − X‖
W2(µ, ν)

− (3 + ε)‖ξ − φ‖µ − ε‖∇φ‖∞W2(µ, ν) − ε‖ξ‖µ.

If ξ ◦ X ∈ ∂−Ũ(X), then for δ > 0 we can find r0 > 0 such that e[Ũ](2r, X, ξ ◦ X) ≥ −δ for any r ∈ (0, r0). We
conclude that for such r, due Lemma 3.13 (ii), we have

eµ(ν, ξ, γ)
W2(µ, ν)

≥ −δ
‖Z − X‖
W2(µ, ν)

− (3 + ε)‖ξ − φ‖µ − r‖∇φ‖∞W2(µ, ν) − ε‖ξ‖µ

≥ −δ(1 + r) − (3 + r2)‖ξ − φ‖µ − r2‖∇φ‖∞ − r2‖ξ‖µ.

We first minimize over (ν, γ) to conclude that

h+(r, ξ) ≥ −δ(1 + r) − (3 + r2)‖ξ − φ‖µ − r2‖∇φ‖∞ − r2‖ξ‖µ.

Hence,
lim
r→0+

h+(r, ξ) ≥ −δ − 3‖ξ − φ‖µ.

Since δ > 0 and φ ∈ C1
c (M;M) are arbitrary and ξ ∈ L2(µ), we have limr→0+ h+(r, ξ) ≥ 0. Hence, ξ ∈ ∂−U(µ).

Part II. Conversely, assume ξ ∈ ∂•U(µ). Let r > 0 and Y ∈ H be such that 0 < ‖Y − X‖ ≤ r. Set

ν := ](Y), γ := ](X × Y),

and pick any γo ∈ Γo(µ, ν) and any ϕ ∈ C1
c (M). We write the decomposition

Ũ(Y) − Ũ(X) − 〈ξ ◦ X,Y − X〉 = U(η) − U(µ) −
∫
M×M

ξ(x) · (y − x)γ0(dx, dy)

−

∫
M×M

[ξ(x) − ∇ϕ(x)] · (y − x)(γ − γ0)(dx, dy)

−

∫
M×M

∇ϕ(x) · (y − x)(γ − γ0)(dx, dy).

We combine Lemma 3.3 with (3.6 – 3.7) to obtain

Ũ(Y) − Ũ(X) − 〈ξ ◦ X,Y − X〉 ≥ U(η) − U(µ) −
∫
M×M

ξ(x) · (y − x)γ0(dx, dy)

− ‖ξ − ∇ϕ‖µ
(
‖Y − X‖ + W2(µ, ν)

)
−

1
2
‖∇2ϕ‖∞

(
‖Y − X‖2 + W2

2 (µ, ν)
)
.

We divide the above identities by ‖Y − X‖ and use the fact that W2(µ, ν) ≤ ‖Y − X‖ ≤ r to obtain

Ũ(Y) − Ũ(X) − 〈ξ ◦ X,Y − X〉
‖Y − X‖

≥ h+(r, ξ)
W2(µ, ν)
‖Y − X‖

− 2‖ξ − ∇ϕ‖µ − r‖∇2ϕ‖∞

For every ε > 0, there is r0 > 0 such that for r ∈ (0, r0), h+(r, ξ) ≥ −ε. For such r we have

Ũ(Y) − Ũ(X) − 〈ξ ◦ X,Y − X〉
‖Y − X‖

≥ −ε − 2‖ξ − ∇ϕ‖µ − r‖∇2ϕ‖∞.

14
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We use the fact that Y is arbitrary to conclude that

e[Ũ](r, X, ξ ◦ X) ≥ −ε − 2‖ξ − ∇ϕ‖µ − r‖∇2ϕ‖∞,

and so,
lim
r→0+

e[Ũ](2r, X, ξ ◦ X) ≥ −ε − 2‖ξ − ∇ϕ‖µ.

By the fact that ε > 0, ϕ ∈ C1
c (M) are arbitrary and ξ ∈ TµP2(M), we conclude that limr→0+ e[Ũ](r, X, ξ◦X) ≥ 0,

i.e. ξ ◦ X ∈ ∂−Ũ(X).

As an immediate consequence of the above theorem and the definitions of ∂• and ∂•, we deduce:

Corollary 3.15. Let X ∈ H, µ := ](X) and ξ ∈ TµP2(M). Then the following hold:

(i) ξ ∈ ∂•U(µ) if and only if ξ ◦ X ∈ ∂−Ũ(X);
(ii) ξ ∈ ∂•U(µ) if and only if ξ ◦ X ∈ ∂+Ũ(X).

3.1. Subdifferential of R.I. functions

If X ∈ H is a Borel map, we denote µ := ](X). Then we know Ld
Ω

disintegrates with respect to µ as∫
Ω

ξ(x) dx =

∫
Rd

∫
X−1(y)

ξ(z) µy(dz) µ(dy), (3.17)

where {µy}y∈Rd is a family of Borel probability measures such that:
(i) Rd 3 y 7→ µy(B) is Borel for any Borel B ⊂ Ω;
(ii) µy(Ω\X−1(y)) = 0 for µ-a.e. y ∈ Rd.
Using µ = X]L

d
Ω

, we rewrite (3.17) as∫
Ω

ξ(x) dx =

∫
Ω

∫
X−1(X(x))

ξ(z) µX(x)(dz) dx. (3.18)

We denote νx := µX(x) and note that (i) above, along with the Borel measurability of X, implies Ω 3 x 7→ νx(B)
is a Borel map for any Borel set B ⊂ Ω (as a composition of Borel maps). Note also that νx ≡ νz for all z ∈ Ω

such that X(z) = X(x) (or, equivalently, for all z ∈ X−1(X(x))).

For any integer m ≥ 1 denote by Bm the open ball centered at the origin in Rm such that Lm(Bm) = 1.
Theorem 3.16 below is a collection of deep results, proved in [8].

Theorem 3.16. Let Φ : Ω → R be convex, set X := ∇Φ and let (3.18) be the disintegration of Ld
Ω

with respect
to the level sets of X. Then:
(i) For every x ∈ Ω at which Φ is differentiable X−1(X(x)) is a convex set of Hausdorff dimension k(x) ∈
{0, 1, ..., d}.
(ii) If for each k ∈ {0, 1, ..., d} we denote

Ωk := {x ∈ Ω : X−1(X(x)) has Hausdorff dimension k},

we have that Ωk is a Borel set for each k ∈ {0, 1, ..., d}.
(iii) For Ld-a.e. x ∈ Ω at which Φ is differentiable we have that

Hk(x) � νx � H
k(x).

Moreover, for each k ∈ {1, ..., d} for which Ωk , ∅ there exist Borel maps

σk : Bk ×Ωk → Ωk and αk : Bk ×Ωk → [0,∞)

15
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such that σk(·, x) is invertible, (z, x) 7→ σk(·, x)−1(z) is Borel, and αk(·, x) is a positive probability density on
X−1(X(x)) for all x ∈ Ωk. Furthermore,∫

X−1(X(x))
ϕ(z)νx(dz) =

∫
Bk

ϕ(σk(s, x))αk(s, x) ds for all ϕ ∈ C(Ω̄), (3.19)

and ∫
X−1(X(x))

ψ(σk(·, x)−1(z))νx(dz) =

∫
Bk

ψ(s)αk(s, x) ds for all ψ ∈ C(B̄k). (3.20)

Note that the map σk(·, x) is a reparametrization of the k-dimensional convex set X−1(X(x)), which maps Bk onto
X−1(X(x)) and pushes αk(·, x) forward to νX(x). For the Borel measurability of σk and αk see Proposition 4.17
and Theorem 4.18 [8] (notation is different from ours).

Theorem 3.17. Let Φ : Ω → R be convex such that ∇Φ =: X ∈ H. Let Ũ : H → R be R.I. and assume there
exists a Borel map ζ ∈ H such that ζ ∈ ∂−Ũ(X). Then

projF[X]ζ ∈ ∂
−Ũ(X) and proj∇F[X]ζ ∈ ∂

−Ũ(X).

Proof. Let {Xn}n ⊂ H be a sequence of Borel maps such that 0 < ‖Xn‖ → 0. For any integer n ≥ 2 let {Bm
n }m be

a countable partition of Borel subsets of Rd of diameter at most ‖Xn‖
2. Fix 1 ≤ k ≤ d and x ∈ Ωk. Let Ak(·, x)

be the optimal map that pushes Lk |Bk forward to αk(·, x)Lk |Bk ; we also know that its inverse Ak(·, x)−1 pushes
αk(·, x)Lk |Bk forward to Lk |Bk . Since (s, x) 7→ αk(s, x) is Borel, we use Appendix 9, Corollary 9.8 to conclude
that, after possibly redefining them on negligible sets, the maps (s, x) 7→ Ak(s, x) and (s, x) 7→ Ak(·, x)−1(s) are
also Borel. So, the map (s, x) 7→ σk(Ak(s, x), x) =: Λk(s, x) is a Borel map with the property Λk(·, x)]Lk |Bk = νx,
while Λk(·, x)−1(z) := Ak(·, x)−1 ◦ σk(·, x)−1(z) is a Borel map such that Λk(·, x)−1

]
νx = Lk |Bk . Let Gk : Bk →

Bk × Bk be invertible such that Gk, G−1
k are Borel maps and Gk]L

k |Bk = Lk |Bk ⊗ L
k |Bk . Let

Ek(z, x) :=
(
Λk(G1

k(Λk(·, x)−1(z)), x),Λk(G2
k(Λk(·, x)−1(z)), x)

)
.

Note that the maps
S k,n(z, x) := Xn(E1

k (z, x)), Tk,n(z, x) := ζ(E2
k (z, x))

are Borel and satisfy
[S k,n(·, x) × Tk,n(·, x)]]νx = ϑn,x ⊗ ηx =: γn,x,

where ϑn,x := Xn]νx and ηx := ζ]νx. This implies∫
X−1(X(x))

Xn(z)νx(dz) ·
∫

X−1(X(x))
ζ(z)νx(dz) =

∫
M×M

x1 · x2 γn,x(dx1, dx2) (3.21)

= 〈S k,n(·, x),Tk,n(·, x)〉νx .

We have that Tk,n(·, x)]νx = ζ]νx implies

Lk(Λk(·, x)−1(ζ−1(Bm
n ))

)
= Lk((G2

k)−1 ◦ Λk(·, x)−1(ζ−1(Bm
n ))

)
=: r.

We restrict our attention to the set M of all m for which r > 0 and we consider the optimal map τ̃k
n,m(·, x)

which pushes Lk |Λk(·,x)−1(ζ−1(Bm
n )) forward to Lk |(G2

k )−1◦Λk(·,x)−1(ζ−1(Bm
n )). Since (z, x) 7→ Λk(·, x)−1(z) and (z, x) 7→

(G2
k)−1 ◦ Λk(·, x)−1(z) are Borel maps and ζ−1(Bm

n ) is a Borel set, it follows by Appendix 9, Corollary 9.9 that
(z, x) 7→ τ̃k

n,m(z, x) can also be taken to be Borel, which further implies (z, x) 7→ τ̃k
n,m(·, x) ◦ Λk(·, x)−1(z) =:

τk
n,m(z, x) is a Borel map. This map satisfies τk

n,m(·, x)]νx|Tk,n(·,x)−1(Bm
n ) = νx|ζ−1(Bm

n ).

Let τk
n(·, x) :=

∑
m∈M τk

n,m(·, x)1Tk,n(·,x)−1(Bm
n ) defined on Ωk ×Ωk to see that

τk
n(·, x)]νx = νx and ‖Tk,n(·, x) ◦ τk

n(·, x) − ζ‖νx ≤ ‖Xn‖
2.

16
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This yields
〈Z̄k,n(·, x), ζ〉νx ≥ 〈S k,n(·, x),Tk,n(·, x)〉νx − ‖Xn‖

2‖Xn‖νx ,

if we set Z̄k,n(z, x) := S k,n(τk
n(z, x), x) for z ∈ Ωk and x ∈ Ωk. By (3.21), we infer∫

X−1(X(x))
Xn(z)νx(dz) ·

∫
X−1(X(x))

ζ(z)νx(dz) ≤ 〈Z̄k,n(·, x), ζ〉νx + ‖Xn‖
2‖Xn‖νx (3.22)

for every x ∈ Ωk. Let Z̃k,n(·, x) denote the extension by zero of Z̄k,n(·, x) outside X−1(X(x)). Next let us define
Zk,n : Ω → Rd by Zk,n(x) := Z̃k,n(x, x) if x ∈ Ωk and Zk,n(x) := 0 otherwise. Since (z, x) 7→ Z̃k,n(z, x) is a Borel
map from Ωk ×Ωk into Rd, we deduce Zk,n is a Borel map from Ω into Rd. Let Z0,n := Xn1Ω0 (a Borel map) and
define Zn : Ω→ Rd by Zn :=

∑d
k=0 Zk,n. Thus, Zn is Borel. In fact, Zn ∈ H and the property Z̃k,n(z, z) = Z̃k,n(z, x)

for all x ∈ Ωk and all z ∈ X−1(X(x)) ∩Ωk ensures that

Zn]L
d
Ω = Xn]L

d
Ω and (X + Zn)]Ld

Ω = (X + Xn)]Ld
Ω

for all n. So, by the rearrangement invariance of Ũ and the fact that ζ ∈ ∂−Ũ(X) we have

lim inf
n→∞

Ũ(X + Xn) − Ũ(X) − 〈ζ,Zn〉

‖Xn‖
≥ 0. (3.23)

Next let
ξ(y) :=

∫
X−1(y)

ζ(z)µy(dz) for µ − a.e. y ∈M

so that
ξ ◦ X(x) :=

∫
X−1(X(x))

ζ(z)νx(dz) for Ld − a.e. x ∈ Ω.

Note that 〈ξ ◦ X − ζ, ϕ ◦ X〉 = 0 for all ϕ ∈ Cc(M;M), which is equivalent to the fact that ξ ◦ X = projF[X]ζ. By
(3.22) we get, after integrating in x with respect to the measure Ld |Ω and using the fact that∫

Ω

‖Xn‖νx dx < 1 +

∫
Ω

‖Xn‖
2
νx

dx

= 1 +

∫
Ω

∫
X−1(X(x))

|Xn(z)|2νx(dz)dx

= 1 + ‖Xn‖
2,

the inequality
〈ζ,Zn〉 + ‖Xn‖

2(1 + ‖Xn‖
2) ≥ 〈ξ ◦ X, Xn〉,

which, in light of (3.23), yields
projF[X]ζ = ξ ◦ X ∈ ∂−Ũ(X), (3.24)

which, by Theorem 3.14, is equivalent to ξ ∈ ∂−U(µ) (where µ := ](X)). This yields

ξ̄ := projTµP2(M)ξ ∈ ∂•U(µ) ⊂ ∂−U(µ).

Theorem 3.14 now implies ξ̄ ◦ X ∈ ∂−Ũ(X). However, since

〈ξ − ξ̄, f 〉µ = 0 for all f ∈ TµP2(M),

we conclude
〈ζ, f ◦ X〉 = 〈ξ̄, f 〉µ for all f ∈ TµP2(M).

But ξ̄ ∈ TµP2(M), so (2.7) and Proposition 2.6 yield ξ̄ ◦ X = proj∇F[X]ζ. The proof is completed.

17
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Remark 3.18. The Borel measurability of the map Zn in the above proof was obtained from the (joint) Borel
measurability of the maps Ak, Λk etc. This is the object of Appendix 9. In fact, there we proved something more
general, which may have its own appeal to the reader; we showed that if one has two one-parameter families
of probability densities which are Borel measurable (jointly with respect to their variables and the parameter),
then the optimal maps between these densities are jointly Borel measurable as well.

Theorem 3.19. Let X, X0 ∈ H be such that X ∈ [X0]] (recall that this means X and X0 have the same law). Let
{S n}n ⊂ G(Ω) be a sequence as given by Proposition 2.8. If Ũ : H→ R is R.I., then the following hold:

(i) If ζ ∈ ∂−Ũ(X0), then every point of accumulation ζ̄ of {ζ ◦S n}n for the weak topology satisfies ζ̄ ∈ ∂−Ũ(X).
(ii) ∂−Ũ(X0) , ∅ if and only if ∂−Ũ(X) , ∅.

(iii) If ζ ∈ ∂−Ũ(X0), then projF[X0]ζ ∈ ∂
−Ũ(X0) and proj∇F[X0]ζ ∈ ∂

−Ũ(X0).

Proof. Since we can replace ‖X0 ◦ S n − X‖ by ‖X ◦ S −1
n − X0‖ in (2.13), (i) readily implies (ii).

Thus, it is enough to prove (i). For that, fix r > 0 and pick H ∈ H arbitrary such that 0 < ‖H‖ ≤ r. Set

Hn := X ◦ S −1
n + H ◦ S −1

n − X0

so that
Hn ◦ S n := X + H − X0 ◦ S n. (3.25)

We have
Ũ(X + H) − Ũ(X) = Ũ

(
X ◦ S −1

n + h ◦ S −1
n

)
− Ũ(X) = Ũ

(
X0 + Hn

)
− Ũ(X0),

and so,
Ũ(X + H) − Ũ(X) − 〈ζn,H〉 = Ũ

(
X0 + Hn

)
− Ũ(X0) − 〈ζ,Hn − (X − S −1

n − X0)〉.

Thus,
Ũ(X + H) − Ũ(X) − 〈ζn,H〉 ≥ e[Ũ]

(
‖Hn − (X − S −1

n − X0)‖, ζ
)
. (3.26)

Observe that
‖Hn‖

2 ≤ 2
(
‖X ◦ S −1

n − X0‖
2 + ‖H ◦ S −1

n ‖
2
)

and
‖X ◦ S −1

n − X0‖ ≤
1
n
, ‖H ◦ S −1

n ‖ = ‖H‖.

Thus, for n > r−1 we have

‖Hn‖
2 ≤ 2

( 1
n2 + ‖H‖2

)
≤ 4r2.

This, together with (3.26) yields

Ũ(X + H) − Ũ(X) − 〈ζn,H〉 ≥ e[Ũ]
(
2r, ζ

)
. (3.27)

Since ‖ζ ◦ S n‖ = ‖ζ‖ for all n, we may assume, without loss of generality, that the sequence

{ζn := ζ ◦ S n}n ⇀ ζ̄ weakly in H. (3.28)

By letting n tend to∞ in (3.27) we obtain

Ũ(X + H) − Ũ(X) − 〈ζ̄, h〉 ≥ e[Ũ]
(
2r, ζ

)
.

Consequently, e[Ũ]
(
r, ζ̄

)
≥ e[Ũ]

(
2r, ζ

)
. This proves that if ζ ∈ ∂−Ũ(X0), then ζ̄ ∈ ∂−Ũ(X).

To prove (iii) let µ := ](X0) and set X := M(X0), whereM(X0) pushes Ld
Ω

forward to µ and is the gradient
of a real valued convex function defined on Ω. By (ii), ζ̄ ∈ ∂−Ũ(M(X0)), which, in light of Corollary 2.9 and
Theorem 3.17, implies

ξ ◦M(X0) = projF[M(X0)]ζ̄ ∈ ∂
−Ũ(M(X0)) and ξ ∈ ∂−U(µ).

Theorem 3.14 and Corollary 2.9 then show projF[X0]ζ := ξ ◦ X0 ∈ ∂
−Ũ(X0), and, as in the proof of Theorem

3.17, this further implies that proj∇F[X0]ζ ∈ ∂
−Ũ(X0).

18
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It is natural to ask whether any element in the sub or superdifferential of Ũ at X is in F[X] (so that ζ =

projF[X]ζ). The following example shows that that is not the case.

Example 3.20. Let d = 1 and X0 ≡ 0 in Ω = [0, 1]. Define the map Ũ : H→ R by Ũ(X) := 〈Id,M(X)〉, so that
Ũ(X0) = 0. Since

‖Id −M(X)‖ = W2(Ld
Ω, ](X)) ≤ ‖Id − X‖,

we deduce
Ũ(X) − Ũ(X0) ≥ 〈Id, X − X0〉 for all X ∈ H.

Thus, Id ∈ ∂−Ũ(X0) even though Id < F[X0] (as F[X0] is the subspace of L2(Ω) consisting of functions which
are Lebesgue a.e. equal to constant functions).

We combine Theorems 3.14 and 3.19 to conclude:

Theorem 3.21. Let U : P2(Rd)→ R and set Ũ := U ◦ ]. Then the following are equivalent:

(i) ∂±U(µ) , ∅;

(ii) ∂±Ũ(X) , ∅ for some X ∈ H such that µ = ](X);

(iii) ∂±Ũ(X) , ∅ for all X ∈ H such that µ = ](X).

Corollary 3.22. Let X ∈ H and let U : P2(Rd) → R. Set µ = ](X) and set Ũ := U ◦ ]. If ξ is the element of
minimal norm of ∂±U(µ) and ζ is the element of minimal norm of ∂±Ũ(X) then ζ = ξ ◦ X. In particular, U is
differentiable at µ if and only if Ũ is differentiable at X. In this case, ∇L2 Ũ(X) = ∇wU(µ0) ◦ X.

Proof. It suffices to prove the corollary in the case of the subdifferential. Suppose ξ is the element of minimal
norm in ∂−U(µ) (which must necessarily lie in ∂•U(µ)) and ζ is the element of minimal norm in ∂−Ũ(X) Since,
by Theorem 3.19, proj∇F[X]ζ belongs to ∂−Ũ(X), we obtain proj∇F[X]ζ = ζ and so, there exists ξ̄ ∈ TµP2(M)
such that ζ = ξ̄ ◦ X. But ξ ∈ ∂−U(µ) implies, by Theorem 3.14, ξ ◦ X ∈ ∂−Ũ(X), and so the minimality property
of ζ implies

‖ξ̄‖µ = ‖ζ‖ ≤ ‖ξ ◦ X‖ = ‖ξ‖µ (3.29)

with a strict inequality unless ζ ≡ ξ ◦ X, Ld
Ω

a.e. Since ξ̄ ◦ X = ζ ∈ ∂•Ũ(X), we use Theorem 3.14 again to see
that ξ̄ ∈ ∂−U(µ) and so, by the norm-minimality property of ξ

‖ξ‖µ ≤ ‖ξ̄‖µ = ‖ζ‖ (3.30)

with a strict inequality unless ξ ≡ ξ̄, µ-a.e. We combine (3.29) and (3.30) to infer ζ ≡ ξ ◦ X, Ld
Ω

a.e.

Recall that U is differentiable at µ if and only if both sets ∂±U(µ) are nonempty. This is equivalent to saying
that both sets ∂±Ũ(X) are nonempty, which in turn is equivalent to saying that Ũ is differentiable at X. The
identity ∇L2 Ũ(X) = ∇wU(µ) ◦ X follows.

4. Hamilton-Jacobi equations in the Wasserstein space

Throughout this section, we are given H : [0,T ] × ∪µ∈P2(M)
{
{µ} × R × L2(µ)

}
→ R. We define H̃ : [0,T ] ×H ×

R ×H→ R by
H̃(t, X, r, ζ) := H(t, ](X), r, ξ), where ξ ◦ X = proj∇F[X]ζ. (4.1)

One important invariance property of H̃ is stated below.

Lemma 4.1. For every S ∈ S(Ω) we have

H̃(t, X ◦ S , r, ζ ◦ S ) = H̃(t, X, r, ζ) (4.2)

for all (t, X, r, ζ) ∈ [0,T ] ×H × R ×H.
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Proof. It is easy to see that proj∇F[X]ζ = proj∇F[X◦S ](ζ ◦ S ), which yields the desired thesis in view of (4.1).

Consider the Hamilton-Jacobi equation

∂tU(t, µ) + H(t, µ,U(t, µ),∇wU(t, µ)) = 0 for (t, µ) ∈ [0,T ) × P2(M), (4.3)

together with its counterpart in H

∂tŨ(t, X) + H̃(t, X, Ũ(t, X),∇Ũ(t, X)) = 0 for (t, X) ∈ [0,T ) ×H. (4.4)

4.1. Definition for time dependent HJE

Definition 4.2. Let U : [0,T ) × P2(M)→ R be locally bounded and U0 : P2(M)→ R.

(1) We say that U is a viscosity subsolution for (4.3) with initial data U0 if U is upper semicontinuous and

U(0, ·) ≤ U0 in P2(M) and θ + H(t, µ,U(t, µ), ξ) ≤ 0. (4.5)

for any (t, µ) ∈ [0,T ) × P2(M) and (θ, ξ) ∈ ∂•U(t, µ).

(2) We say that U is a viscosity supersolution for (4.3) with initial data U0 if U is lower semicontinuous and

U(0, ·) ≥ U0 in P2(M) and θ + H(t, µ,U(t, µ), ξ) ≥ 0 (4.6)

for any (t, µ) ∈ [0,T ) × P2(M) and (θ, ξ) ∈ ∂•U(t, µ).

(3) We say that U is a viscosity solution for (4.3) with initial data U0 : P2(M) → R if it is both a viscosity
subsolution and supersolution.

Similarly, the corresponding objects are defined in H:

Definition 4.3. Let Ũ : [0,T ) ×H→ R be locally bounded and Ũ0 : H→ R.

(1) We say that Ũ is a viscosity subsolution for (4.4) with initial data Ũ0 : H→ R if Ũ is upper semicontinuous
and

Ũ(0, ·) ≤ Ũ0 in H and θ + H̃(t, X, Ũ(t, X), ζ) ≤ 0. (4.7)

for any (t, X) ∈ [0,T ) ×H and (θ, ζ) ∈ ∂+Ũ(t, X).

(2) We say that Ũ is a viscosity supersolution for (4.4) with initial data Ũ0 : H→ R if Ũ is lower semicontinuous
and

Ũ(0, ·) ≥ Ũ0 in H and θ + H̃(t, X, Ũ(t, X), ζ) ≥ 0. (4.8)

for any (t, X) ∈ [0,T ) ×H and (θ, ζ) ∈ ∂−Ũ(t, X).

(3) We say that Ũ is a viscosity solution for (4.4) with initial data Ũ0 : H→ R if it is both a viscosity subsolution
and supersolution.

The equivalence between these notions is given by:

Theorem 4.4. Let U0 : P2(M)→ R be given and define Ũ0 : H→ R by Ũ0(X) = U0(](X)). Then the following
hold:

(1) If U : [0,T )×P2(M)→ R is a viscosity subsolution (resp. supersolution) for (4.3) with initial data U0, then
Ũ : [0,T ) ×H → R given by Ũ(t, X) = U(t, ](X)) is a viscosity subsolution (resp. supersolution) for (4.4) with
initial data Ũ0.

(2) If Ũ : [0,T ) × H → R is an R.I. viscosity subsolution (resp. supersolution) for (4.4) with initial data Ũ0,
then U : [0,T ) × P2(M) → R given by U(t, ](X)) = Ũ(t, X) is a viscosity subsolution (resp. supersolution) for
(4.3) with initial data U0.

20
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Proof. We will only analyze the case of subsolutions below; the same argument settles the case of viscosity
supersolutions.

1. Let (θ, ζ) ∈ ∂+Ũ(t, X) and denote µ := ](X). From the rearrangement invariance of Ũ(t, ·) we deduce, by
Theorem 3.19 (iii), that (θ, ξ ◦ X) ∈ ∂+Ũ(t, X), where ξ ◦ X := proj∇F[X]ζ. Now we use Theorem 3.14 once again
to deduce that (θ, ξ) ∈ ∂•U(t, µ), and so θ + H(t, µ,U(t, µ), ξ) ≤ 0. We use (4.1) to infer that Ũ is a viscosity
subsolution for (4.4).

2. If (θ, ξ) ∈ ∂•U(t, µ), Theorem 3.14 implies that for any X ∈ H such that µ = ](X) we have (θ, ξ ◦
X) ∈ ∂+Ũ(t, X); we deduce θ + H̃(t, X, Ũ(t, X), ξ ◦ X) ≤ 0. But µ = ](X) implies H̃(t, X, Ũ(t, X), ξ ◦ X) =

H(t, µ,U(t, µ), ξ), so if Ũ is a viscosity subsolution for (4.4), then U is a viscosity subsolution for (4.3).

When are we guaranteed that viscosity solutions to (4.4) are R.I.?

Proposition 4.5. Assume H : [0,T ] × H × R × H → R satisfies (4.2). Assume that (4.4) for H has a unique
continuous viscosity solution Ũ with Ũ(0, ·) = Ũ0, where Ũ0 is continuous and R.I. Then Ũ(t, ·) is R.I. for all
t ∈ [0,T ].

Proof. First we shall prove that for any S ∈ G(Ω) we have that Ṽ(t, X) := Ũ(t, X ◦ S ) is a continuous viscosity
solution for (4.4) with initial data Ṽ0(X) := Ũ0(X ◦ S ). For that, let (θ, ζ) ∈ ∂+Ṽ(t, X), so that

Ũ(s,Y ◦ S ) − Ũ(t, X ◦ S ) ≤ θ(s − t) + 〈ζ,Y − X〉 + o(|s − t| + ‖Y − X‖).

But S is invertible (with S −1 measure preserving), so the inequality above is equivalent to

Ũ(s,Y) − Ũ(t, X ◦ S ) ≤ θ(s − t) + 〈ζ,Y ◦ S −1 − X〉 + o(|s − t| + ‖Y ◦ S −1 − X‖),

or, further, to

Ũ(s,Y) − Ũ(t, X ◦ S ) ≤ θ(s − t) + 〈ζ ◦ S ,Y − X ◦ S 〉 + o(|s − t| + ‖Y − X ◦ S ‖),

Clearly, the inequality in the last display is equivalent to (θ, ζ ◦ S ) ∈ ∂+Ũ(t, X ◦ S ). By the hypothesis, we infer
θ +H(t, X ◦ S , Ũ(t, X ◦ S ), ζ ◦ S ) ≤ 0, which, by the invariance property (4.2), implies Ṽ(t, X) = Ũ(t, X ◦ S )
is a continuous viscosity subsolution for (4.4) with initial data Ṽ0(X) := Ũ0(X ◦ S ). Likewise for continuous
supersolutions, so Ṽ is a continuous viscosity solution for (4.4) with initial data Ṽ0. But Ṽ0 ≡ Ũ0, so by the
assumed uniqueness of continuous viscosity solutions, we infer Ũ(t, X) = Ũ(t, X ◦ S ) for any (t, X) ∈ [0,T ]×H
and any invertible, measure-preserving map S . We conclude by using Proposition 2.8 and the continuity of
Ũ(t, ·).

We are now ready to formulate:

Corollary 4.6. Let U0 : P2(M) → R be continuous and assume further that for H̃ : [0,T ] × H × R × H → R
given by (4.1) the problem (4.4) possesses a unique continuous viscosity solution Ũ for the initial data Ũ0(X) :=
U0(](X)). Then Ũ is R.I. and the map U(t, ](X)) := Ũ(t, X) is the unique continuous viscosity solution for (4.3)
with initial data U0.

Proof. Existence for (4.3) follows from the existence assumption on (4.4), by Proposition 4.5 and Theorem 4.4
(2). Uniqueness for (4.3) follows from the uniqueness assumption on (4.4), by Theorem 4.4 (1).

Remark 4.7. Note that we only need continuity for the map X 7→ Ũ(t, X) for all t ∈ (0,T ] in order to prove
Proposition 4.5 (and, consequently, Corollary 4.6).

At this point it is tempting to seek conditions on H which guarantee that (4.4) has a unique solution. Fol-
lowing [11] and [12], we would like H̃ to satisfy the conditions listed below.
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There is a local modulus σ such that

|H̃(t1, X1, r1, ζ1) − H̃(t2, X2, r2, ζ2)| ≤ σ(|t1 − t2| + |r1 − r2| + ‖X1 − X2‖ + ‖ζ1 − ζ2‖,R) (4.9)

for all (ti, Xi, ri, ζi) ∈ [0,T ] ×H × R ×H such that |ri|, ‖Xi‖, ‖ζi‖ ≤ R for i = 1, 2.

There is α > 0 such that
r 7→ H̃(t, X, r, ζ) + α r is nondecreasing (4.10)

for all (t, X, ζ) ∈ [0,T ] ×H ×H.

There is a local modulus σH such that

H̃(t, X, r, ζ) − H̃(t, X, r, ζ + λϑ(X)) ≤ σH(λ, λ + ‖ζ‖) (4.11)

whenever λ ≥ 0, and (t, X, r, ζ) ∈ [0,T ] ×H × R ×H such that ‖X‖ ≥ K (for some K > 0). Here ϑ(X) = X/‖X‖
for X , 0.

Finally, there is a modulus mH such that

H̃(t,Y, r, λϑ(X − Y)) − H̃(t, X, r, λϑ(X − Y)) ≤ mH(λ‖X − Y‖ + ‖X − Y‖) (4.12)

for all X , Y ∈ H, (t, r) ∈ [0,T ] × R and λ ≥ 0.

4.2. Affine Hamiltonians as cornerstone cases for convex Hamiltonians

Let
b : [0,T ] ×M × P2(M)→M

be continuous and such that

for any (t, µ) ∈ [0,T ] × P2(M) the map b(t, ·, µ) ∈ TµP2(M). (b1)

Let
H(t, µ, r, ξ) := 〈b(t, ·, µ), ξ〉µ + F (t, µ, r).

Remark 4.8. By (4.1),
H̃(t, X, r, ζ) = 〈b(t, ·, ](X)) ◦ X, ζ〉 + F̃ (t, X, r),

because, due to the composition b(t, ·, ](X)) ◦ X, we do not need to replace ζ by proj∇F[X]ζ in the expression for
H̃.

Let us from now use the notation b(t, X, µ) to denote b(t, ·, µ) ◦ X.

Assume the following:

Either b is bounded, or (t, y) 7→ b(t, y, µ) · y is bounded and |b(t, y, µ)| ≤ A|y| + B (b2)

for some A, B ≥ 0 and all (t, y, µ) ∈ [0,T ] ×M × P2(M).

There exists a modulus σb such that

‖b(t1, X1, ](X1)) − b(t2, X2, ](X2)‖ ≤ σb(|t1 − t2| + ‖X1 − X2‖) (b3)

for all (ti, Xi) ∈ [0,T ] ×H.

On F we assume the following: there exists a local modulus σ f such that∣∣∣F (t1, µ1, r1) − F (t2, µ2, r2)| ≤ σ f (|t1 − t2| + |r1 − r2| + W2(µ1, µ2),R) (F 1)

for any (ti, ri, µi) ∈ [0,T ] × R × P2(M) such that |ri|, W2(µi, δ0) ≤ R for i = 1, 2.
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There exists β ≥ 0 such that for any (t, µ) ∈ [0,T ] × P2(M)

r 7→ F (t, µ, r) + β r is nondecreasing. (F 2)

There exists a modulus m f such that∣∣∣F (t, µ1, r) − F (t, µ2, r)| ≤ m f (W2(µ1, µ2)) (F 3)

for any (t, r, µi) ∈ [0,T ] × R × P2(M) for i = 1, 2.

Lemma 4.9. Let H̃ be as above, where b satisfies (b1)–(b3) and F satisfies (F 1), (F 2). Let X1, X2, ζ1, ζ2 ∈ H
and t1, t2 ∈ [0,T ].

(i) If ‖Xi‖, ‖ζi‖ ≤ R, then∣∣∣〈b(t1, X1, µ1), ζ1〉 − 〈b(t2, X2, µ2), ζ2〉
∣∣∣ ≤ (AR + B)‖ζ1 − ζ2‖ + Rσb(|t1 − t2| + ‖X1 − X2‖).

(ii) If K > 0 then for any t ∈ [0,T ], r ∈ R and X ∈ H such that ‖X‖ ≥ K we have

H̃(t, X, r, ζ) − H̃(t, X, r, ζ + λϑ(X)) ≤ λmin{K−1‖c‖∞, ‖b‖∞}

where c(t, y, µ) := b(t, y, µ) · y.
(iii) We have ∫

Ω

[
b(t, X1(x), µ1) − b(t, X2(x), µ2)

]
· λϑ(X1 − X2)(x) dx ≤ λσb(‖X1 − X2‖).

Proof. (i) We have∣∣∣〈b(t1, X1, µ1), ζ1〉 − 〈b(t2, X2, µ2), ζ2〉
∣∣∣

=

∣∣∣∣∣ ∫
Ω

[
b(t1, X1(x), µ1) · ζ1(x) − b(t2, X2(x), µ2) · ζ2(x)

]
dx

∣∣∣∣∣
≤ ‖b(t1, ·, µ1)‖µ1‖ζ1 − ζ2‖ + ‖b(t1, X1, µ1) − b(t2, X2, µ2)‖‖ζ2‖

≤ (AR + B)‖ζ1 − ζ2‖ + Rσb(|t1 − t2| + ‖X1 − X2‖),

where we used (b1), (b2).

(ii) We have, if ‖X‖ ≥ K,

H̃(t, X, r, ζ) − H̃(t, X, r, ζ + λϑ(X)) = λ

∫
Ω

b(t, X(x), ](X)) ·
X(x)
‖X‖

dx,

so we get the bound λ‖b‖∞ if b is bounded, or λK−1‖c‖∞ is finite.

(iii) By means of (b2), we readily estimate∫
Ω

[
b(t, X1(x), µ1) − b(t, X2(x), µ2)

]
· λϑ(X1 − X2)(x) dx ≤ λ‖b(t, X1, µ1) − b(t, X2, µ2)‖

≤ λσb(‖X1 − X2‖),

which finishes the proof.

In what follows, UCs([0,T ] × P2(M)) denotes the vector space of all functions which are uniformly con-
tinuous in µ uniformly with respect to t and uniformly continuous on bounded sets; UCs([0,T ] ×H) is defined
similarly.

Proposition 4.10. Let H as in Example 4.2, where b satisfies (b1)–(b3) and F satisfies (F 1), (F 2). Let U0 :
P2(M)→ R be uniformly continuous. Then there exists a unique U ∈ UCs([0,T ] ×P2(M)) which is a viscosity
solution for (4.3) with U(0, ·) ≡ U0.
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Proof. Let us begin by checking that H̃ satisfies (4.9)–(4.12). By (F 1), we have∣∣∣F̃ (t1, X1, r1) − F̃ (t2, X2, r2)
∣∣∣ =

∣∣∣F (t1, ](X1), r1) − F (t2, ](X2), r2)
∣∣∣

≤ σ f (|t1 − t2| + |r1 − r2| + W2(](X1), ](X2)),R)
≤ σ f (|t1 − t2| + |r1 − r2| + ‖X1 − X2‖,R),

whenever |ri|, ‖Xi‖ ≤ R (the latter being equivalent to W2(µi, δ0) ≤ R) where µi := ](Xi). This, together with
Lemma 4.9 shows that H̃ satisfies (4.9).

Condition (4.10) follows trivially from (F 2). Then note that (4.11) follows from Lemma 4.9 (ii). We use
(iii) of the same Lemma and (F 3) to see that (4.12) holds with mH := σb + m f .

The assumptions on U0 yield the uniform continuity of Ũ0. According to Existence Theorem 1.1 [12], for
any uniformly continuous Ũ0, there exists a unique Ũ ∈ UCs([0,T ] ×H) which is a viscosity solution for (4.4)
with Ũ(0, ·) ≡ Ũ0. From the properties of H̃, we also infer Ũ(t, ·) is R.I. for all t ∈ [0,T ] (as in the proof
of Proposition 4.5). Then a version of Corollary 4.6 applies, first to give existence of a continuous viscosity
solution U (given by U(t, ](X)) := Ũ(t, X)) for (4.3) with U(0, ·) ≡ U0. From Ũ ∈ UCs([0,T ] ×H) we also get
U ∈ UCs([0,T ] × P2(M)). As for uniqueness, if U ∈ UCs([0,T ] × P2(M)) is a viscosity solution in this class
for (4.3) with U(0, ·) ≡ U0, then it is easy to see that Ũ(t, X) := U(t, ](X)) belongs to UCs([0,T ] × H) and, by
Theorem 4.4 (2), is viscosity solution for (4.4) with Ũ(0, ·) ≡ Ũ0.

Remark 4.11. We have thus proved that if b and F satisfy (b1)–(b3) and (F 1), (F 2), then for any U0 ∈

UC
(
P2(M)

)
there exists a unique U ∈ UCs

(
[0,T ] × P2(M)

)
which is a viscosity solution for the semilinear

transport equation

∂tU(t, µ) + 〈b(t, ·, µ),∇wU(t, µ)〉µ + F (t, µ,U(t, µ)) = 0 for (t, µ) ∈ [0,T ] × P2(Rd) (4.13)

and such that U(0, ·) ≡ U0 in P2(M).

5. Time dependent HJE and convex hamiltonians

In Section 8, we provide examples of Hamiltonians satisfying the assumptions we impose in this section.

5.1. Assumptions

Suppose
H̄ ∈ C

(
[0,T ] ×H ×H) (5.1)

is such that
H̄(t, X, ·) is convex for any (t, X) ∈ [0,T ] ×H (5.2)

and
H̄(0, ·, 0) is bounded. (5.3)

We denote by L̄(t, X, ·) the Legendre transform of H̄(t, X, ·), and for b ∈ ∇xC1
b([0,T ] ×M) (i.e. the set of spatial

gradients of functions in C1([0,T ] ×M) with bounded spatial gradients) we define

H̄b(t, X, ζ) := 〈b(t, ·) ◦ X, ζ〉 − L̄
(
t, X, b(t, ·) ◦ X

)
= 〈b(t, ·) ◦ X, ζ〉 + F̄(t, X)

for (t, X, ζ) ∈ [0,T ] ×H ×H.

We strengthen assumption (4.9) by imposing that there exist a monotone nondecreasing function e on [0,∞)
and a local modulus of continuity σ such that

|H̄(t1, X1, ζ1) − H̄(t2, X2, ζ2)| ≤ σ(|t1 − t2| + ‖ζ1 − ζ2‖,R) + e(R)‖X1 − X2‖ (5.4)
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for all (ti, Xi, ζi) ∈ [0,T ] ×H × R ×H such that ‖ζi‖ ≤ R for i = 1, 2.

We assume that there are monotone nondecreasing functions θl, θh : [0,∞)→ R such that

lim
u→∞

θh(u)
u

= lim
u→∞

θl(u)
u

= ∞, (5.5)

H̄(t, X, ζ) ≥ θh
(
‖ζ‖

)
and L̄(t, X, B) ≥ θl

(
‖B‖

)
(5.6)

for any X, ζ, B ∈ H and t ∈ [0,T ].

We assume that H̄ satisfies the invariance property (4.2) and

H̄(t, X, ζ) ≥ H̃(t, X, ζ), (5.7)

where we have set
H̃(t, X, ζ) = H̄(t, X, proj∇F[X]ζ).

For t ∈ (0,T ] and X,Y ∈ H we define

C̄t(Y, X) := inf
Σ

{∫ t

0
L̄(τ,Στ, Σ̇τ)dτ : Σ0 = Y, Σt = X, Σ ∈ W1,1(0, t;H)}

.

Similarly, we define C̄b
t by replacing L̄ by L̄b in the above definition, where L̄b is the Legendre transform of H̄b.

Additional assumption 5.1. We say that H̄ satisfies (A) if there is a set D dense in H, such that for any X,Y ∈ D
and t ∈ (0,T ] there exist sequences

(bn)n ⊂ W1,∞(
(0, t) ×M;M

)
∩ ∇xC1

b
(
(0, t) ×M

)
, (Σn)n ⊂ W1,1((0, t);H)

such that
∂sΣ

n
s =: Σ̇n

s = bn
s ◦ Σn

s on (0, t),

lim
n

W2

(
](Y), ](Σn

0)
)

= lim
n

W2

(
](X), ](Σn

t )
)

= 0 (5.8)

and

C̄t(Y, X) ≥ lim inf
n→∞

∫ t

0
L̄
(
s,Σn

s , Σ̇
n
s
)
ds .

5.2. Properties of H̄ and L̄

Given (t1, X1, B1) ∈ [0,T ] ×H ×H, since θh is superlinear, we use (5.6) to obtain ζ1 ∈ H such that

H̄(t1, X1, ζ1) + L̄(t1, X1, B1) = 〈ζ1, B1〉. (5.9)

Lemma 5.2. Suppose H̄ satisfies (4.10 – 4.12), (5.4) and (5.6) hold. There are monotone nondecreasing
functions ē, ẽ : [0,∞) → [0,∞) such that the following hold for any (ti, Xi, Bi) ∈ [0,T ] × H × H such tha
‖B1‖, ‖B2‖ ≤ R.

(i) If ζ1 ∈ H is as in (5.9) then ‖ζ1‖ ≤ ē(R). After replacing ē(R) by max{R, ē(R)} we may assume that
ē(R) ≥ R.

(ii) We have

|L̄(t1, X1, B1) − L̄(t2, X2, B2)| ≤ σ
(
|t1 − t2|, ẽ(R)

)
+ ẽ(R)

(
‖X1 − X2‖ + ‖B1 − B2‖

)
.
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Proof. Let us assume without loss of generality that H̄(0, 0, 0) = 0.

(i) By the maximality property of ζ1 and (5.4),

〈ζ1, B1〉 − H̄(t1, X1, ζ1) ≥ −H̄(t1, X1, 0) ≥ −σ(t1, 0) − e(0)R.

By (5.6)
[‖ζ1‖ + e(0)]R + σ(T, 0) ≥ θh(‖ζ1‖).

Since θh is superlinear (see (5.5)), we conclude the proof of (i).

(ii) Suppose, without loss of generality, that

L̄(t1, X1, B1) ≥ L̄(t2, X2, B2).

We have

L̄(t1, X1, B1) − L̄(t2, X2, B2) ≤ 〈ζ1, B1 − B2〉 + H̄(t2, X2, ζ1) − H̄(t1, X1, ζ1)
≤ ē(R)‖B1 − B2‖ + σ

(
|t2 − t1|, ē(R)

)
+ e

(
ē(R)

)
‖X1 − X2‖.

We conclude the proof of (ii) by interchanging the roles of (t1, X1, B1) and (t2, X2, B2) .

Remark 5.3. Assume H̄ satisfies (4.2), (4.10 – 4.12) and (5.3 – 5.7). If BR ⊂ H is the ball of radius R then H̄ is
bounded on [0,T ] ×H × BR.

Proof. Suppose (t, X, B) ∈ [0,T ] ×H × BR. Then

|L̄(t, X, B)| ≤ |L̄(t, X, B) − L̄(t, X, 0)| + |L̄(t, X, 0) − L̄(0, X, 0)| + |L̄(0, X, 0)|.

We apply Lemma 5.2 (ii) to obtain

|L̄(t, X, B)| ≤ ẽ(R)R + σ(T, ẽ(0)) + |L̄(0, X, 0)|.

Since − supX |H(0, X, 0)| ≤ L̄(0, X, 0) ≤ −θh(0), we conclude the proof.

Lemma 5.4. If t ∈ [0,T ], X, B ∈ H and S ∈ S(Ω), then

L̄(t, X ◦ S , B ◦ S ) = L̄(t, X, B).

Proof. We have

L̄(t, X ◦ S , B ◦ S ) = sup
ζ̃∈H

{
〈ζ̃, B ◦ S 〉 − H̄(t, X ◦ S , ζ̃)

}
≥ sup

ζ∈H

{
〈ζ ◦ S , B ◦ S 〉 − H̄(t, X ◦ S , ζ ◦ S )

}
and so (4.2) and 〈ζ ◦ S , B ◦ S 〉 = 〈ζ, B〉 imply

L̄(t, X ◦ S , B ◦ S ) ≥ L̄(t, X, B). (5.10)

We apply Proposition 2.8 with X0 = id and X = S to obtain a sequence of maps S n ∈ G(Ω) such that S n

converges to S . We apply (5.10) to obtain

L̄(t, X, B) = L̄(t, X ◦ S n ◦ S −1
n , B ◦ S n ◦ S −1

n ) ≥ L̄(t, X ◦ S n, B ◦ S n).

Since {X ◦ S n}n converges to X ◦ S and {B ◦ S n}n converges to B ◦ S , by Lemma 5.2 (ii) (which implies that L̄ is
continuous) we conclude that L̄(t, X, B) ≥ L̄(t, X ◦S , B◦S ). This, together with (5.10), completes the proof.
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By Corollary 2.10, the following functions are well–defined:

H(t, µ, ξ) := H̄(t, X, ξ ◦ X) for all (t, µ) ∈ [0,T ] × P2(M) and all ξ ∈ TµP2(M),

where X ∈ H is such that µ = ](X). Similarly, if b ∈ TµP2(M) then

L(t, µ, b) := L̄(t, X, b ◦ X).

Remark 5.5. Let t ∈ [0,T ], µ ∈ P2(M), ζ ∈ H and X ∈ H be such that µ = ](X).

(i) The Legendre transform of L(t, µ, ·) is H(t, µ, ·).
(ii) If ξ ∈ TµP2(M) and proj∇F[X]ζ = ξ ◦ X then H(t, µ, ξ) = H̄(t, X, proj∇F[X]ζ).

Proof. One obtains (ii) by using the definition of H. Therefore, only (i) needs to be proved. Observe that if
ξ ∈ TµP2(M) then

〈b, ξ〉µ − H(t, µ, ξ) = 〈b ◦ X, ξ ◦ X〉 − H̄(t, X, ξ ◦ X) ≤ L̄(t, X, b ◦ X) = L(t, µ, b).

Maximizing over ξ ∈ TµP2(M) we obtain (this is how we define the left-hand-side below)(
H(t, µ, ·)

)∗(b) ≤ L(t, µ, b).

If ζ ∈ H then, by (5.7),

〈ζ, b ◦ X〉 − H̄(t, X, ζ) ≤ 〈proj∇F[X]ζ, b ◦ X〉 − H̄(t, X, proj∇F[X]ζ).

Writing proj∇F[X]ζ = ξ ◦ X for ξ ∈ TµP2(M) we conclude that

〈ζ, b ◦ X〉 − H̄(t, X, ζ) ≤ 〈ξ ◦ X, b ◦ X〉 − H̄(t, X, ξ ◦ X) = 〈ξ, b〉µ − H(t, µ, ξ) ≤
(
H(t, µ, ·)

)∗(b).

Maximizing over ζ ∈ H we conclude that

L(t, µ, b) = L̄(t, X, b ◦ X) ≤
(
H(t, µ, ·)

)∗(b).

Lemma 5.6. Suppose H̄ satisfies (A), (4.10 – 4.12), (5.4) and (5.6) hold. If b ∈ W1,∞(M;M) ∩ Cb(M;M), then
H̄b satisfies (4.9 – 4.12) for appropriate moduli of continuity.

Proof. Apply Lemma 4.9 when F̃ ≡ 0, to obtain that for appropriate moduli of continuity,

(t, X, ζ)→ 〈b(t, ·) ◦ X, ζ〉

satisfies (4.9 – 4.12). It remains to check that F̄ satisfies (4.9 – 4.12) for appropriate local modulus of continuity.
By Lemma 5.2 (ii), F̄ satisfies (4.9). Since F̄ is independent of r ∈ R and ζ ∈ H, it satisfies (4.10 – 4.11). By
Lemma 5.2 (ii), if t ∈ [0,T ] and X ∈ H, then

F̄(t2,Y) − F̄(t1, X) = L̄
(
t1, X, b(t1, ·) ◦ X

)
− L̄

(
t2,Y, b(t2, ·) ◦ Y

)
≤ σ

(
|t2 − t1|, ẽ(‖b‖∞)

)
+ ẽ(‖b‖∞)

)(
‖X − Y‖ + ‖b(t1, X) − b(t2,Y)‖

)
≤ σ

(
|t2 − t1|, ẽ(‖b‖∞)

)
+ ẽ(‖b‖∞)

)
(Lip(b) + 1)

(
‖X − Y‖ + |t1 − t2|

)
.

This concludes the proof.

For t ∈ [0,T ], µ ∈ P2(M) and ξ ∈ L2(µ), set

Hb(t, µ, ξ) := H̄b(t, X, ξ ◦ X),

where X ∈ H is such that µ = ](X). Using the definition of H̃ given in (4.1) and applying Remark 4.8, we get

H̃b(t, X, ζ) = H̄b(t, X, ζ) for all (t, X, ζ) ∈ [0,T ] ×H ×H.
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5.3. Comparison principle

We define
Ū(t, X) = inf

Y

{
C̄t(Y, X) + Ũ0(Y)

}
, Ūb(t, X) = inf

Y

{
C̄b

t (Y, X) + Ũ0(Y)
}

for t ∈ (0,T ] and X ∈ H.

Theorem 5.7 (Comparison principle). Assume H̄ satisfies (4.2), (4.10 – 4.12) and (5.3 – 5.7). Suppose U0 ∈

UC(P2(M)) and H̄(0, ·, 0) are bounded and let U± ∈ C
(
[0,T ] × P2(M)

)
.

(i) If U+(t, ·) ∈ UC
(
P2(M)

)
uniformly in t ∈ [0,T ] and U+ is a viscosity supersolution for (4.3) with initial

condition U0, then Ū ≤ Ũ+.

(ii) Ū(t, ·) is R.I. and so, U(t, µ) := Ū(t, X) is well–defined for µ ∈ P2(M), where X ∈ H and µ = ](X)
(iii) If U−(t, ·) ∈ UC

(
P2(M)

)
uniformly in t ∈ [0,T ] and U− is a viscosity subsolution for (4.3) with initial

condition U0, then Ū ≥ Ũ−.
(iv) There is at most one U ∈ C

(
[0,T ]×P2(M)

)
viscosity solution for (4.3) with initial condition U0 such that

U(t, ·) ∈ UC
(
P2(M)

)
uniformly in t ∈ [0,T ]

Proof. (i) Since H̄ satisfies (4.10 – 4.12) and (5.4), by the theory of viscosity solution in Banach spaces (cf. e.g.
[11] [12] [13]), Ū is the unique viscosity solution for

∂tŪ(t, X) + H̄(t, X, Ū(t, X),∇Ū(t, X)) = 0 for (t, X) ∈ [0,T ) ×H,

with initial data Ũ0. Furthermore, Ū ∈ BUC
(
[0,T ] × H

)
. Since U+ is a viscosity supersolution for (4.3) with

initial condition U0, applying Theorem 4.4, we obtain that Ũ+ is a viscosity supersolution for (4.4) with initial
data Ũ0. By the fact that H̃ ≤ H̄, we conclude that Ũ+ is a viscosity supersolution for

∂tŨ+(t, X) + H̄(t, X, Ũ+(t, X),∇Ũ+(t, X)) = 0 for (t, X) ∈ [0,T ) ×H

with initial data Ũ0. We can compare it then to the viscosity solution Ū (which is thus a subsolution); we invoke
the comparison principle [11] [12] (using H̄ as our Hamiltonian), to conclude the proof of (i).

(ii) Since H̄ satisfies the invariance property (4.2), we may use the uniqueness property of viscosity solution
on Banach spaces (cf. e.g. [11] [12] [13]) to conclude that Ū(t, X ◦ S ) = U(t, X) for any (t, X) ∈ [0,T ] ×H and
any S ∈ S(Ω). Since Ū is continuous, we use Corollary 2.10 to infer that Ū(t, ·) is R.I.

(iii) Under the additional assumptions imposed in (iii), fix t̄ ∈ (0,T ] and X̄,Y ∈ H. We are to prove that

Ct̄(Y, X̄) + Ũ0(Y) ≥ Ũ−(t̄, X̄). (5.11)

Let {(bn,Σn)}n be the sequence from the assumption 5.1. Given ε > 0 arbitrary, we choose n such that

C̄t̄(X̄,Y) ≥ −ε +

∫ t̄

0
L̄
(
s,Σn

s , Σ̇
n
s
)
ds. (5.12)

Observe that the Legendre transform of H̄bn (t, X, ·) is L̄bn (t, X, ·) given by

L̄bn (t, X, B) =

 L̄
(
t, X, bn(t, ·) ◦ X

)
if B = bn(t, ·) ◦ X a.e.

∞ if B , bn(t, ·) ◦ X a.e.

The (unique) viscosity solution Ṽ of

∂tṼ(t, X) + H̃bn

(
t, X,∇Ṽ(t, X)

)
= 0 for (t, X) ∈ [0,T ) ×H (5.13)

with initial data Ũ0 is therefore

Ṽ(t, X) := inf
Σ

{
Ũ0(Σ(0)) +

∫ t

0
L̄
(
s,Σ(s), Σ̇(s)

)
ds : Σ̇ = bn

(
·,Σ

)
, Σ(t) = X

}
. (5.14)
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Remark 5.5 gives that the Legendre transform on L(t, µ, ·) is H(t, µ, ·) and so, Hbn ≤ H. We conclude that Ũ− is
a viscosity subsolution for

∂tŨ−(t, µ) + Hbn

(
t, µ,∇wŨ−(t, µ)

)
= 0 for (t, µ) ∈ [0,T ) × P2(M),

with initial data U0. Thanks to Theorem 4.4, Ũ− is a viscosity subsolution for (5.13) with initial data Ũ0.
Viscosity solutions being also a viscosity supersolutions, we use the comparison principle [11] for (5.13) to
conclude that Ũ− ≤ Ṽ. In particular,

Ũ−
(
t̄,Σn

t̄
)
≤ Ṽ

(
t̄,Σn

t̄
)
≤ Ũ0

(
Σn

0
)

+

∫ t̄

0
L̄
(
s,Σn

s , Σ̇
n
s
)
ds ≤ Ũ0

(
Σn

0
)

+ C̄t̄(Y, X̄) + ε,

where we have used (5.12). Since (5.8) holds and U− and U0 are continuous, we conclude that

U−
(
t̄, ](X̄t)

)
≤ U0

(
](Y0)

)
+ C̄t̄(Y, X̄) + ε.

By the fact that ε > 0 is arbitrary, we conclude the proof of (iii).

(iv) is an obvious consequence of (i) and (iii).

5.4. Lipschitz property of subsolutions to the Eikonal equation

The eikonal equations studied here will later be used to show that subsolutions for Hamilton–Jacobi equa-
tions are Lipschitz when the Hamiltonian is coercive. Consider the equation

‖∇wV(µ)‖µ = λ in P2(M). (5.15)

Proposition 5.8. For any real constant λ ≥ 0, any viscosity subsolution U ∈ BUC(P2(M)) of (5.15) is λ–
Lipschitz.

Proof. Note that any viscosity subsolution U for (5.15) is also a viscosity subsolution for

∂tW(t, µ) +
1
2
‖∇wW(t, µ))‖2 −

1
2
λ2 = 0, W(0, ·) = U. (5.16)

By [19], a viscosity solution for (5.16) is given by the Hopf-Lax type formula,

V(t, µ) = inf
ν∈P2(M)

{
U(ν) +

1
2t

W2
2 (µ, ν)

}
+
λ2

2
t.

In fact, if m is a modulus a continuity for U and |U | ≤ M, the proof of Proposition 4.7 [16] shows that

m̄(δ) := 2m
( √

(2M + 1)δ
)

+ 2(1 + λ2)δ

is a modulus of continuity for V(t, ·). Thanks to the comparison principle in Theorem 5.7 applied to (5.16), since
V is a viscosity supersolution, we infer

1
2t

W2(µ, ν) +
λ2

2
t ≥ U(µ) − U(ν) for all t > 0, µ, ν ∈ P2(M).

The desired Lipschitz continuity follows by minimizing the left hand side with respect to t.

29
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6. A stationary HJE

Consider the following problem

U(µ) + H(µ,U(µ),∇wU(µ)) = 0 in P2(M) (6.1)

and let us attempt to identify sufficient conditions on H which yield uniqueness of viscosity solutions in
BC(P2(M)) (the set of all bounded, continuous functions on P2(M)). First, let us assume there exists H̃ :
H × R ×H→ R continuous such that

H̃(X, r, ξ ◦ X) = H(](X), r, ξ) for all X ∈ H, r ∈ R, ξ ∈ L2(](X)).

Let us further assume that

H̃(X, r, ζ) ≥ H̃(X, r, proj∇F[X]ζ) for all (r, X, ζ) ∈ R ×H ×H, (6.2)

lim
‖ζ‖→∞

H̃(X, r, ζ) = ∞ uniformly with respect to (r, X) ∈ R ×H, (6.3)

ζ 7→ H̃(X, r, ζ) is H–weakly l.s.c. for each (r, X) ∈ R ×H, (6.4)

ζ 7→ H̃(X, r, ζ) is quasiconvex for any (r, X) ∈ R ×H, (6.5)

i.e. the sublevel sets {ζ : H̃(X, r, ζ) ≤ α} are convex for all α ∈ R and all (r, X) ∈ R ×H.

Furthermore, (4.10) is replaced by:

r 7→ H̃(X, r, ζ) is nondecreasing for all (X, ζ) ∈ H ×H. (6.6)

For example, if H(µ, r, ξ) = 1
2‖ξ‖

2 + F (µ), we see that H̃ is uniquely determined as

H̃(X, r, ζ) :=
1
2
‖ζ‖2 + F (X]χ) =

1
2
‖ζ‖2 + F̃ (X).

If F is continuous and bounded, then H̃ satisfies the conditions for existence and uniqueness (4.9)-(4.12) (also,
see [11] and [12]), plus (6.2)-(6.5).

Our strategy is the following:

(1) First note that any viscosity subsolution U of (6.1) is also a viscosity subsolution for (5.15), where λ ∈ R is
determined by H̃(X, r, ζ) ≤ ‖U‖∞; indeed, if ξ ∈ ∂•U(µ), then U(µ) + H(µ,U(µ), ξ) ≤ 0, which by (6.3) implies
the existence of λ ∈ R (depending only on ‖U‖∞) such that ‖ξ‖µ ≤ λ.

(2) For any real constant λ ≥ 0, we know by Proposition 5.8 that any viscosity subsolution for (5.15) lying in
BC(P2(M)) is also Lipschitz continuous on P2(M). (Note that this is known to be true in the finite-dimensional
and also the L2 settings [13]).

(3) From (1) and (2) it follows that any viscosity subsolution U (in BC(P2(M)); we always discuss such solutions
only) of (6.1) is Lipschitz continuous on P2(M). Thus, Ũ is Lipschitz continuous in H. So, in particular, if a
viscosity subsolution lies in BC(P2(M)), then it, in fact, lies in BUC(P2(M)) (bounded, uniformly continuous
real valued functions on P2(M)).

(4) Finally, we show that if U ∈ BC(P2(M)) is a viscosity solution for (6.1), then Ũ is a viscosity solution for

Ũ(X) + H̃(X, Ũ(X),∇Ũ(X)) = 0 in H. (6.7)

Since [11] guarantees a unique viscosity solution for (6.7) in BUC(H), we obtain uniqueness for (6.1) in light of
the equivalence between U ∈ BUC(P2(M)) and Ũ ∈ BUC(H). The local Lipschitz continuity of the viscosity
solution Ũ will benefit our analysis as follows: it is known [20] that a locally Lipschitz continuous map V on
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H is differentiable at any X in a dense subset of H. Furthermore, the superdifferential set at any point X satisfies
(see, e.g., [6] page 49)

∂+V(X) ⊂ conv
{
weak − lim

k→∞
∇V(Xk) : Xk → X

}H−weak
, (6.8)

i.e. for any ζ ∈ ∂+V(X) there exists a sequence {ζn}n ∈ H which converges weakly to ζ and such that

ζn =

mn∑
i=1

λi
nϑ

i
n, where λi

n ≥ 0,
mn∑
i=1

λi
n = 1

and there exist sequences {Xn,i
k }k converging strongly to X such thatV is differentiable at each Xn,i

k and

∇V(Xn,i
k ) ⇀ ϑi

n weakly as k → ∞.

We use (6.4) to conclude

lim inf
k→∞

H̃(Xn,i
k ,V(Xn,i

k ),∇V(Xn,i
k )) ≥ H̃(X,V(X), ϑi

n) for each i = 1...mn

and so (6.5) implies

lim inf
k→∞

max
i=1...mn

H̃(Xn,i
k ,V(Xn,i

k ),∇V(Xn,i
k )) ≥ max

i=1...mn

H̃(X,V(X), ϑi
n) ≥ H̃(X,V(X), ζn).

It follows
lim inf

n→∞
lim inf

k→∞
max

i=1...mn

H̃(Xn,i
k ,V(Xn,i

k ),∇V(Xn,i
k )) ≥ H̃(X,V(X), ζ). (6.9)

But, ifV := Ũ (where U is a viscosity solution for (6.1)), we know that at all points of differentiability Xn,i
k we

have that U is also differentiable at µn,i
k := ](Xn,i

k ) and so

Ũ(Xn,i
k ) + H̃(Xn,i

k , Ũ(Xn,i
k ),∇Ũ(Xn,i

k )) = U(µn,i
k ) + H(µn,i

k ,U(µn,i
k ),∇wU(µn,i

k )) = 0.

In light of the strong convergence of Xn,i
k to X as k → ∞, the above equality and (6.9) imply

Ũ(X) + H̃(X, Ũ(X), ζ) ≤ 0.

Thus, Ũ is a viscosity subsolution for (6.7). Just as in the previous section, it is easy to show that Ũ is a
viscosity supersolution: indeed, if ζ ∈ ∂−Ũ(X), we know proj∇F[X]ζ =: ξ ◦ X ∈ ∂−Ũ(X), which is equivalent to
ξ ∈ ∂•U(](X)). Thus, by virtue of (6.2), we have (for µ := ](X))

Ũ(X) + H̃(X, Ũ(X), ζ) ≥ Ũ(X) + H̃(X, Ũ(X), proj∇F[X]ζ) = U(µ) + H(µ,U(µ), ξ) ≥ 0.

We conclude that Ũ is, indeed, a viscosity solution for (6.7).

We have thus proved:

Theorem 6.1. If H̃ satisfies (4.9), (4.11), (4.12), and (6.2)–(6.6), then (6.1) admits a unique viscosity solution
in BC(P2(M)).

Remark 6.2. Thus, we have a comparison principle for locally Lipschitz viscosity solutions U ∈ BUC(P2(M))
for (6.1). Furthermore, note that the same argument will work if H̃ satisfies the conditions for existence and
uniqueness (4.9)-(4.12) (also, see [11] and [12]), plus

H̃(X, r, ζ) ≤ H̃(X, r, proj∇F[X]ζ) for all (r, X, ζ) ∈ R ×H ×H, (6.10)

lim
‖ζ‖→∞

H̃(X, r, ζ) = −∞ uniformly with respect to (r, X) ∈ R ×H, (6.11)

ζ 7→ H̃(X, r, ζ) is L2(Ω;Rd)–weakly u.s.c. for each (r, X) ∈ R ×H, (6.12)
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ζ 7→ H̃(X, r, ζ) is quasiconcave for any (r, X) ∈ R ×H. (6.13)

Indeed, note that H̃ satisfies (4.9)-(4.12) and (6.11)-(6.13) if and only if −H̃ satisfies (4.9)-(4.12) and (6.3)-(6.5).

Such a Hamiltonian is provided by

H̃(X, ζ) := −
1
2
‖ζ‖2 + F̃ (X),

which corresponds to H(µ, ξ) = −‖ξ‖2µ/2 + F (µ).

7. Appendix I: A particular stationary problem revisited

We will now specialize to a particular equation of type (7.1), namely take λ ∈ R and consider

U(µ) +
1
2
‖∇wU(µ)‖2µ = λ. (7.1)

We will show uniqueness of viscosity solutions without the need to a priori prove that the solution is Lipschitz
continuous (so that we will not need the deep result (6.8) by [20]).

Theorem 7.1. For any λ ∈ R the problem (7.1) has the comparison principle in C(P2(M)).

Proof. Note that any viscosity subsolution U of (7.1) is a viscosity subsolution for

V(µ) + 〈∇wV(µ), b〉µ −
1
2
‖b‖2µ = λ. (7.2)

for any b ∈ C1
c (Rd;Rd). The Hamiltonian for (7.2) is

H(µ, ζ) := 〈ζ, b〉µ −
1
2
‖b‖2µ − λ,

so the corresponding Lagrangian is L(µ, ξ) = λ+ ‖b‖2µ/2 if ξ ≡ b µ-a.e. and L(µ, ξ) = +∞ else. Since H is, again,
a Hamiltonian as in Subsection 4.2 (time-independent), and b is sufficiently regular for conditions (b1)-(b2),
(F 1), (F 2) to be satisfied, we have that (7.2) is equivalent to

Ṽ(X) + 〈∇Ṽ(X), b ◦ X〉 −
1
2
‖b ◦ X‖2 = λ, X ∈ H. (7.3)

So, Ũ is a viscosity subsolution for (7.3). But

Ũ[b](X) := inf
σ(0)=X

1
2

∫ ∞

0
e−sL̃(σ(s), σ̇(s)) ds = λ +

1
2

∫ ∞

0
e−s‖ ˙̃σ(s) ◦ X‖2 ds,

is the unique viscosity solution for (7.3), where ∂sσ̃(s; y) = b(σ̃(s; y)), σ̃(0; y) = y, s ∈ [0,∞), y ∈ Rd. By the
comparison principle for (7.3), we get

Ũ[b](X) ≥ Ũ(X) for all X ∈ H and any b ∈ C1
c (Rd;Rd).

In particular, for b ≡ 0 we get
λ ≥ Ũ(X) for all X ∈ H.

But we know that any continuous viscosity supersolution V of (7.1) yields a continuous viscosity supersolution
Ṽ for

Ũ(X) +
1
2
‖∇Ũ(X)‖2 = λ.

The comparison principle for this problem applied to the continuous viscosity supersolution Ṽ and the (obvious)
continuous viscosity solution (and, thus, subsolution) W̃ ≡ λ yields

Ṽ(X) ≥ λ for all X ∈ H.

So, V(µ) ≥ λ ≥ U(µ) for all µ ∈ P2(M), for all continuous viscosity subsolutions U and all continuous viscosity
supersolutions V .
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8. Appendix II: Examples

Throughout this section, F ∈ Cb(P2(M)) (continuous and bounded) and satisfies (F 1), (F 2) and (F 3). Let
F̄ : H→ R be defined by

F̄ (X) := F (](X)).

Let
f ∈ W1,∞(

(0,T ) ×M;M
)
∩Cb

(
[0,T ] ×M;M

)
, F̄ ∈ C1(H) ∩Cb(H) ∩ Lip(H).

Let
l̄ ∈ C2([0,T ] ×M

)
and set

l(t, x, v) = l̄(x, v) + 〈 f (t, x), v〉x.

We suppose that
l̄(x, ·) is a convex function for all x ∈M

and there are constants κ0, κ2, κ4 > 0, κ1, κ3 such that

κ2l(s̄, x̄, v̄) + κ3 ≥ l(s, x, v) ≥ κ0|v|2 − κ1 (8.1)

for any s, s̄ ∈ [0,T ] and any x, v, x̄, v̄ ∈M such that |v| ≤ |v̄|.

Suppose here exist a local modulus of continuity σ and a monotone nondecreasing function ẽ : [0,∞) →
[0,∞) such that

l(s̄, x̄, v̄) − l(s, x, v) ≤ ẽ(R)
(
|s − s̄| + |x̄ − x|

)
+ σ(|v̄ − v|, ẽ(R)) (8.2)

if s, s̄ ∈ [0,T ], x, x̄, v, v̄ ∈M and |v|, |v̄| ≤ R. For instance, if p ≥ 2, a ∈ C2(Ω̄) is positive, and f ≡ 0, then

l̄(x, v) := a(x)
|v|p

p

satisfies (8.1 – 8.2) with

κ2 =
max a
min a

, κ3 = 0, ẽ(R) = Lip(a)
Rp

p
, σ(u, τ) = 2‖a‖∞

( pτ
Lip(a)

) p−1
p

u.

Any positive linear combination of functions satisfying (8.1 – 8.2) also satisfies (8.1 – 8.2).

Let h be the Legendre transform of l. We define

H̄(t, X, ζ) :=
∫

Ω

h(t, X(ω), ζ(ω))dω + F̄ (X), L̄(t, X, B) :=
∫

Ω

l(t, X(ω), B(ω))dω − F̄ (X)

for t ∈ R and X, ζ, B ∈ H. We obtain that L̄(t, X, ·) is the Legendre transform of H̄(t, X, ·).

Similarly, we obtain that L(t, µ, ·) is the Legendre transform of H(t, µ, ·) if we define

H(t, µ, ξ) :=
∫
M

h(t, x, ξ)µ(dx) + F (µ), L(t, µ, b) :=
∫
M

l(t, x, b)µ(dx) − F (µ)

for t ∈ R, µ ∈ P2(M) and ξ, b ∈ L2(µ).

For X,Y ∈ H and T > 0, we define

C̄T
0 (X,Y) := inf

Σ

{∫ T

0
L̄(t,Σt, Σ̇t)dt : Σ0 = X, ΣT = Y; Σ ∈ AC2

(
0,T ;H

)}
.
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For µ, ν ∈ P2(M) we define

CT
0 (µ, ν) := inf

(σ,v)

{∫ T

0
L(t, σt, vt)dt : σ0 = µ, σT = ν; σ ∈ AC2

(
0,T ;P2(M)

)}
,

where the infimum is performed over the set of (σ, v) such that v : (0,T ) ×M→M is a Borel field such that

∂tσ + ∇ · (σv) = 0 inD′
(
(0,T ) × M

)
. (8.3)

Lemma 8.1. Suppose (Σn)n ⊂ W1,2(0,T ;H
)

converges to Σ in L2(0,T ;H
)

and (Σ̇n)n converges weakly to Σ̇ in
L2(0,T ;H

)
.

(i) If l̄ ≡ 0 (meaning we drop l̄ from the definition of L̄) then

lim
n→∞

∫ T

0
L̄(t,Σn

t , Σ̇
n
t )dt =

∫ T

0
L̄(t,Σt, Σ̇t)dt. (8.4)

(ii) If we further assume that (Σ̇n)n converges pointwise to Σ̇ and there exists a nonnegative function g ∈
L1(0,T ;H

)
such that ∫

(0,T )×Ω

l̄(Σn
t , Σ̇

n
t )dtdω ≤

∫
(0,T )×Ω

g(t, ω)dtdω, (8.5)

then (8.4) continues to hold for any l̄ which satisfies (8.1 – 8.2).

Proof. (i) Since F̄ is Lipschitz, applying Jensen’s inequality, we have

|F̄ (Σn
t ) − F̄ (Σt)| ≤ Lip(F̄ )‖Σ(t, ·) − Σn(t, ·)‖.

Hence,

lim
n→∞

∫ T

0
|F̄ (Σn

t ) − F̄ (Σt)|dt ≤ Lip(F̄ ) lim
n→∞

(∫ T

0
‖Σn(t, ·) − Σ(t, ·)‖2dt

) 1
2

= 0. (8.6)

We have

〈 f (t,Σn(t, ·), Σ̇n(t, ·)〉 − 〈 f (t,Σ(t, ·), Σ̇(t, ·)〉 = 〈 f (t,Σn(t, ·), Σ̇n(t, ·)〉 − 〈 f (t,Σ(t, ·), Σ̇n(t, ·)〉
+ 〈 f (t,Σ(t, ·), Σ̇n(t, ·)〉 − 〈 f (t,Σ(t, ·), Σ̇(t, ·)〉.

Since (Σ̇n)n is weakly pre–compact, its norm is bounded by a finite number, say, M. We have∣∣∣∣ ∫ T

0

(
〈 f (t,Σn(t, ·), Σ̇n(t, ·)〉 − 〈 f (t,Σ(t, ·), Σ̇(t, ·)〉

)
dt

∣∣∣∣
≤ M Lip( f )

(∫ T

0
‖Σn(t, ·) − Σ(t, ·)‖2dt

) 1
2

+
∣∣∣∣ ∫

(0,T )×Ω

f (t,Σ(t, ω)) ·
(
Σ̇n(t, ω) − Σ̇(t, ω)

)
dtdω

∣∣∣∣.
By the fact that f (t,Σ(t, ω)) ∈ L2((0,T ) × Ω,M

)
, the last expression tends to 0 as n tends to ∞. We use (8.6) to

conclude the proof of (i).

(ii) Further assume that (Σ̇n)n converges pointwise to Σ̇ and (8.5). We apply the monotone convergence
theorem to obtain that

lim
n→∞

∫
(0,T )×Ω

l̄(Σn
t , Σ̇

n
t )dtdω =

∫
(0,T )×Ω

l̄(Σt, Σ̇t)dtdω.

This, together with (i), yields the proof of (ii).
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Observe that if Σ ∈ W1,1(0,T ;H
)

is such that∫ T

0
ds

∫
Ω

L̄(s,Σs, Σ̇s)dω ≤ C̄0 < ∞, (8.7)

then, by (8.1), Σ ∈ W1,2(0,T ;H
)
.

Lemma 8.2 (Approximation by time–Lipschitz/Space–bounded functions). Let X,Y ∈ H be such that |X|, |Y | ≤
C for a constant C > 0. Let Σ ∈ W1,2(0,T ;H

)
be such that Σ0 = Y, ΣT = X and (8.7) holds. For any ε > 0 and

δ > 0, there exists
Σ̄ ∈ W1,∞(

0,T ;H
)
∩ L∞((0,T ) ×Ω;M)

such that Σ̄0 = Y, ‖Σ̄T − X‖ ≤ δ and∫ T

0
L̄(s, Σ̄s,

˙̄Σs)ds ≤ ε +

∫ T

0
L̄(s,Σs, Σ̇s)ds.

Proof. For r > 0 we define

φr(t) =


−r if t ≤ −r

t if r ≤ t ≤ r

r if t ≥ r
, ∀ s ∈ R, Φr(x) =

(
φr(x1), · · · , φr(xd)

)
∀ s ∈M .

Set

Σr
t (ω) := Σ0(ω) +

∫ t

0
Φr(Σ̇s(ω)

)
ds .

We have
Σr

0 = Y, |Σr
t | ≤ ‖Σ0‖∞ + Tr, |Σ̇r

t | ≤ |Σ̇t |, |Σ̇r
t | ≤ r. (8.8)

For each ω ∈ Ω we define

Er(ω) :=
d⋃

i=1

{
s ∈ [0,T ] : |Σ̇i

s(ω)| ≥ r
}

and

Er :=
d⋃

i=1

{
(s, ω) ∈ [0,T ] ×Ω : |Σ̇i

s(ω)| ≥ r
}
.

Since |Σ̇| is square integrable, we have

lim
r→∞

(
L1 ⊗ Ld)(Er) = lim

r→∞

∫
Er
‖Σ̇t(ω)‖2dtdω = 0. (8.9)

By the fact that

|Σr
t (ω) − Σt(ω)| ≤

∫
[0,t]∩Er(ω)

|Σ̇s(ω)|ds,

we obtain the time pointwise estimate

‖Σr
t − Σt‖

2 ≤
(
L1 ⊗ Ld)(Er)

∫
Er
‖Σ̇t(ω)‖2dtdω. (8.10)

Thanks to (8.9) we conclude that
lim
r→∞
‖Σr

t − Σt‖
2 = 0 ∀ t ∈ [0,T ]. (8.11)

Furthermore, ∫ T

0
‖Σr

t − Σt‖
2dt ≤ T

(
L1 ⊗ Ld)(Er)

∫
Er
‖Σ̇t(ω)‖2dtdω. (8.12)
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Similarly, ∫ T

0
‖Σ̇r

t − Σ̇t‖
2dt ≤

∫
Er
|Σ̇s(ω)|2dsdω. (8.13)

Thus, {Σr}r converges to Σ in W1,2(0,T ;H
)
. Thanks to (8.1) and the second inequality in (8.8), we infer

l̄
(
Σr

t , Σ̇
r
t
)
≤ κ2 l̄

(
Σt, Σ̇t

)
+ κ3.

We apply Lemma 8.1 to conclude the proof.

Lemma 8.3 (Approximation by time-C1/space-C∞ bounded functions). Let X,Y ∈ H and let Σ ∈ W1,2(0,T ;H)
be such that Σ, Σ̇ ∈ L∞((0,T ) × Ω;M), Σ0 = Y, ΣT = X and (8.7) holds. Suppose X,Y ∈ L∞(Ω;M). Then for
any ε > 0 and δ̄ > 0, there exist

Σ̄ ∈ W1,∞(
0,T ;H

)
∩ L∞

(
(0,T ) ×Ω;M

)
and Σ∗ ∈ C∞

(
[0,T ];H

)
∩ L∞

(
(0,T ) ×Ω;M

)
such that

(i) Σ̄0 = Y, Σ̄T = X, |Σ̄| ≤ ‖Σ‖∞, and | ˙̄Σ| ≤ ‖Σ̇‖∞,∫ T

0
L̄(s, Σ̄s,

˙̄Σs)ds < ε +

∫ T

0
L̄(s,Σs, Σ̇s)ds.

(ii) ‖Σ̄0 − Y‖, ‖Σ̄T − X‖ ≤ δ̄, |Σ̄| ≤ ‖Σ‖∞, | ˙̄Σ| ≤ ‖Σ̇‖∞ and∫ T

0
L̄(s,Σ∗s, Σ̇

∗
s)ds ≤ ε +

∫ T

0
L̄(s,Σs, Σ̇s)ds. (8.14)

Proof. (i) Assume |Σ| ≤ R1 and |Σ̇| ≤ R2. Choose n > 1 integer and set

δ :=
T
n
, ti := δi, Σδs :=

(
1 −

s − ti
δ

)
Σti +

s − ti
δ

Σti+1 ∀s ∈ [ti, ti+1] ∀ i = 0, · · · , n.

Clearly, |Σδ| ≤ R1. If s ∈ [ti, ti+1] then

‖Σti − Σs‖
2 =

∥∥∥∥∫ ti+1

ti
Σ̇τdτ

∥∥∥∥2
≤ δ

∫
Ω

∫ ti+1

ti
|Σ̇τ|

2dτdω ≤ δ
∫ T

0
‖Σ̇t‖

2dt.

Thus,

‖Σδs − Σs‖
2 ≤ δ

∫ T

0
‖Σ̇t‖

2dt . (8.15)

If s ∈ [ti, ti+1] then

| ˙̄Σs| =
|Σti+1 − Σti |

δ
=

∫ ti+1

ti
|Σ̇t |dt

δ
≤
δR2

δ
= R2.

This, together with (8.15), implies that {Σδ}δ converges to Σ in L2(0,T ;H) and {Σδ}δ is weakly pre–compact in
W1,2(0,T ;H). Hence, {Σ̇δ}δ weakly converges to Σ̇ in L2(0,T ;H). By Lemma 8.2 (i)

lim
δ→0

∫ T

0

(
〈 f (t,Σδ), Σ̇δ〉 − F̄

(
Σδ

))
dt =

∫ T

0

(
〈 f (t,Σ), Σ̇〉 − F̄ (Σ)

)
dt. (8.16)

Since l̄(Σ∗ti , ·) is convex, by Jensen’s inequality∫ ti+1

ti
l̄(Σti , Σ̇s)ds ≥ δl̄(Σti , Σ̇

δ
s) =

∫ ti+1

ti
l̄(Σti , Σ̇

δ
s)ds. (8.17)
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Note that ∫ ti+1

ti
l̄(Σs, Σ̇s)ds −

∫ ti+1

ti
l̄(Σδs, Σ̇

δ
s)ds =

∫ ti+1

ti

(
l̄(Σs, Σ̇s) − l̄(Σti , Σ̇s)

)
ds

+

∫ ti+1

ti

(
l̄(Σti , Σ̇s) − l̄(Σti , Σ̇

δ
s)
)
ds

+

∫ ti+1

ti

(
l̄(Σti , Σ̇

δ
s) − l̄(Σδs, Σ̇

δ
s)
)
ds.

Thanks to (8.17) we conclude that∫ ti+1

ti
l̄(Σs, Σ̇s)ds −

∫ ti+1

ti
l̄(Σδs, Σ̇

δ
s)ds ≥

∫ ti+1

ti

(
l̄(Σs, Σ̇s) − l̄(Σti , Σ̇s)

)
ds

+

∫ ti+1

ti

(
l̄(Σti , Σ̇

δ
s) − l̄(Σδs, Σ̇

δ
s)
)
ds. (8.18)

We use (8.2) and the fact that |Σ̇| ≤ R2 to conclude that∣∣∣l̄(Σti , Σ̇
δ
s) − l̄(Σδs, Σ̇

δ
s)
∣∣∣ ≤ ẽ(R2)|Σti − Σδs | ≤ ẽ(R)|Σti − Σti+1 | ≤ ẽ(R2)

∫ ti+1

ti
|Σ̇τ|dτ

for any s ∈ [ti, ti+1]. Thus, ∫ ti+1

ti
|l̄(Σti , Σ̇

δ
s) − l̄(Σδs, Σ̇

δ
s)|ds ≤ δẽ(R2)

∫ ti+1

ti
|Σ̇τ|dτ. (8.19)

Similarly, ∫ ti+1

ti
|l̄(Σs, Σ̇s) − l̄(Σti , Σ̇s)|ds ≤ ẽ(R2)|Σs − Σti |dt ≤ δẽ(R2)

∫ ti+1

ti
|Σ̇τ|dτ. (8.20)

We combine (8.18 – 8.20) to obtain∫ T

0
ds

∫
Ω

(
l̄(Σs, Σ̇s) + 2δẽ(R2)|Σ̇s|

)
dω ≥

∫ T

0
ds

∫
Ω

l̄(Σδs, Σ̇
δ
s)dω, (8.21)

which, together with (8.16), concludes the proof of (i).

(ii) By a first approximation, we may assume without loss of generality that Σ satisfies the same properties
as Σ̄ found in (i). First, extend Σ(·, ω) by setting

Σt(ω) := Σ(t, ω) :=
 Σ0(ω) if t < 0

ΣT (ω) if t > T.

Let % ∈ C∞c (R) be a non negative probability density supported in [−1, 1]. Set

%̄ε(t) := ε−1%̄(ε−1t), Σεt (ω) := %̄ε ∗ Σ(·, ω), ∀(t, ω) ∈ R ×Ω.

We have
C∞

(
[0,T ];H

)
∩ L∞

(
(0,T ) ×Ω;M

)
,

and
|Σε | ≤ ‖Σ‖∞, |Σ̇ε | ≤ ‖Σ̇‖∞, |Σε(t, ω) − Σ(t, ω)| ≤ ε‖Σ̇‖∞

∫
R
|s|%̄(s)ds . (8.22)

Furthermore,
lim
ε→0+
‖Σ̇ε − Σ̇‖ = 0. (8.23)

By (8.22), (8.23) and Lemma 8.1 we can choose ε small enough and set Σ∗ := Σε to see that (8.14) holds.
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Lemma 8.4 (Existence of Eulerian coordinates). Let X,Y ∈ H ∩ L∞(Ω;M) and let Σ ∈ W1,2(0,T ;H) be such
that Σ, Σ̇ ∈ L∞((0,T ) ×Ω;M) and Σ0 = Y, ΣT = X and (8.7) holds. Then, for any ε > 0 and δ > 0, there exist

Σε ∈ C∞
(
[0,T ] ×Ω;M

)
such that Σ̇ε ∈ L∞

(
(0,T ) ×Ω;M

)
(8.24)

and the pair (σε , vε) consisting of the path of Borel probability densities σε(t, ·), t ∈ [0,T ] and its corresponding
velocity field vε such that

0 < σε ∈ W1,∞([0,T ]; C∞(M)), vε ∈ C∞([0,T ] ×M;M) (8.25)

and
∂tσ

ε + ∇ · (σεvε) = 0 inD′
(
(0,T ) × M

)
. (8.26)

We also have that for any ball B ⊂M there exists a positive R such that∫ T

0

(
sup

B
|vεt | + Lip(vεt , B)

)
dt,

∫ T

0
L(t, σεt , v

ε
t )dt < ∞, |vε | ≤ R. (8.27)

Furthermore, there exists a unique solution to the initial value differential equation

Ṡ ε
t = vεt ◦ S ε

t , S 0 = id (8.28)

and, if we set Σεt := S ε
t ◦ Σε0, we have∫ T

0
L̄(t,Σεt , Σ̇

ε
t )dt ≤

∫ T

0
L̄(t,Σt, Σ̇t)dt + εc1MT + Tm f (ε‖id‖%) (8.29)

for some positive M, and
W2

(
](X), σεT

)
, W2

(
](Y), σε0

)
≤ δ. (8.30)

Proof. By a first approximation argument, thanks to Lemma 8.3, we may assume that Σ equals the Σ∗ found
there and so, in particular,

Σ ∈ C∞
(
[0,T ];H

)
∩ L∞

(
(0,T ) ×M;M

)
, |Σ|, |Σ̇| ≤ R

for some R > 0. Set
%ε(z) := (2πε)−

d
2 e−

|x|2
2ε

and define
σε(t, x) :=

∫
Ω

%ε
(
x − Σt(ω)

)
dω

and
Eε(t, x) :=

∫
Ω

%ε
(
x − Σt(ω)

)
Σ̇t(ω)dω and vε(t, x) :=

Eε(t, x)
σε(t, x)

.

Observe that (8.24) holds and

σε ∈ C∞([0,T ] ×M), Eε ∈ C∞([0,T ] ×M;M), (8.31)

and so, since σε > 0, we reach the second assertion in (8.25). We also obtain the first inequality in (8.27). Since
|Σ̇| ≤ R, the third inequality in (8.27) holds. Direct computations give (8.26). We combine the latter property
together with the first and third inequalities in (8.27) and apply Lemma 8.1.4 [3] to conclude that the differential
equation (8.28) admits a unique solution S ε . Set

σ̄εt := S ε
t ]σ

ε
0

to see, by (8.28), that
∂tσ̄

ε + ∇ ·
(
σ̄εvε

)
inD′

(
(0,T ) × M

)
.
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Since σ̄ε0 = σε0, thanks to (8.27) we may apply Proposition 8.1.7 [3] to infer that σ̄εt = σεt for any t ∈ [0, 1].

Let Σε0 ∈ H be such that ](Σε0) = σε0. Although it does not matter here, in fact, the optimal transportation
theory ensures that we can choose Σε0 to be the gradient of a convex function. Set

Σεt := S ε
t ◦ Σε0.

Observe that
](Σεt ) = σεt and Σ̇εt = vεt ◦ Σεt ∀ t ∈ [0,T ]. (8.32)

Since by (8.25) and (8.28), S ε ∈ C∞
(
[0,T ] ×M;M

)
, we obtain the first assertion in (8.24). The second one

follows from the inequality in (8.27) and the first identity in (8.28).

In order to estimate
∫ T

0 L(t, σεt , vεt )dt we introduce the function

l0(t, x,m, ρ) =


l
(
t, x,

m
ρ

)
ρ if ρ > 0

0 if ρ = 0,m = 0
∞ if (ρ = 0,m , 0) or ρ < 0 .

One checks that for any t ∈ R and x ∈ M, the bi–Legendre transform of l0(t, x, ·, ·) equals l0(t, x, ·, ·). Hence,
l0(t, x, ·, ·) is a convex lower semicontinuous function. Furthermore, it is 1–homogeneous. We have

l0
(
t, x, Eε(t, x), σε(t, x)

)
= l0

(
t, x,

∫
Ω

%ε
(
x − Σt(ω)

)(
Σ̇t(ω), 1

)
dω

)
. (8.33)

We use Jensen’s inequality to conclude that

l0
(
t, x, Eε(t, x), σε(t, x)

)
≤

∫
Ω

%ε
(
x − Σt(ω)

)
l0
(
t, x,

(
Σ̇t(ω), 1

))
dω . (8.34)

We combine (8.33) and (8.34) to conclude that

l
(
t, x, vε(t, x)

)
σε(t, x) ≤

∫
Ω

%ε
(
t, x − Σt(ω)

)
l
(
t, x, Σ̇t(ω)

)
dω.

We exploit (8.1) and the third inequality in (8.27) to obtain

l
(
t, x, vε(t, x)

)
σε(t, x) ≤

∫
Ω

%ε
(
x − Σt(ω)

)
l
(
t,Σt(ω), Σ̇t(ω)

)
dω

+ M
∫

Ω

%ε
(
x − Σt(ω)

)
|x − Σt(ω)|dω, (8.35)

where
M := κ3 + κ2 sup

|v|≤R
l̃(0, 0, v).

Observe that if we set σt := ](Σt), then∫
M

dx
∫

Ω

%ε
(
x − Σt(ω)

)
|x − Σt(ω)|dω =

∫
M

dx
∫
M
%ε(x − y)|x − y|σt(dy) = εc1, (8.36)

where c1 :=
∫
M |x|%1(x)dx. We combine (8.35 – 8.36) to conclude that∫

(0,T )×M
l
(
t, x, vε(t, x)

)
σε(t, x)dtdx ≤ εMTc1 +

∫
(0,T )×Ω

l
(
t,Σt(ω), Σ̇t(ω)

)
dtdω . (8.37)

Since σεt = %ε ∗ σt, we have (cf. e.g. Lemma 5.19 [14])

W2
2 (σt, σ

ε
t ) ≤ ε2‖id‖2%,
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which proves (8.30). Furthermore, since F satisfies (F 3) ,∣∣∣∣ ∫ T

0
F̄ (Σεt )dt −

∫ T

0
F (σt)dt

∣∣∣∣ =
∣∣∣∣ ∫ T

0
F (σεt )dt −

∫ T

0
F (σt)dt

∣∣∣∣ ≤ Tm f (ε‖id‖%).

This, together with (8.37) implies∫ T

0
L(t, σεt , v

ε
t )dt ≤

∫ T

0
L̄(t,Σt, Σ̇t)dt + εc1MT + Tm f (ε‖id‖%). (8.38)

By (8.32) we have ∫ T

0
L(t, σεt , v

ε
t )dt =

∫ T

0
L̄(t,Σεt ,Σ

ε
t )dt.

This, together with (8.38), is all we need to conclude the proof.

Theorem 8.5 (Eulerian coordinates with Lipschitz velocity). Let X,Y ∈ H∩L∞(Ω;M) and let Σ ∈ W1,2(0,T ;H
)

be such that Σ0 = Y, ΣT = X. Then for any ε > 0 and δ > 0, there exists

Σ∗ ∈ W1,2(0,T ;H
)

such that Σ̇∗ ∈ C
(
[0,T ] ×Ω;M

)
, (8.39)

and
v∗ ∈ W1,∞(

(0,T ) ×M;M
)

such that
Σ̇∗t = v∗t ◦ Σ∗t

and
∂tσ

∗ + ∇ · (σ∗v∗) = 0 inD′
(
(0,T ) ×M

)
.

Furthermore,
W2

(
](Y), σ∗0

)
, W2

(
](X), σ∗T

)
≤ δ∫ T

0
L(s, σ∗s, v

∗
s)ds =

∫ T

0
L̄(s,Σ∗s, Σ̇

∗
s)ds ≤ ε +

∫ T

0
ds

∫
Ω

L̄(s,Σs, Σ̇s)ds.

Proof. If (8.7) fails, there is nothing to prove. Assume in the sequel that (8.7) holds. We apply the successive
approximation results in Lemmas 8.2, 8.3 and 8.4 to assume, without loss of generality, that Σ satisfies the same
properties as Σε exhibited in Lemma 8.4. More precisely,

Σ ∈ W1,∞(
0,T ;H

)
,

Σ ∈ C∞
(
[0,T ];H

)
, Σ̇ ∈ L∞

(
(0,T ) ×Ω;M

)
. (8.40)

Also, there are
0 < σ ∈ C∞([0,T ] ×M), v ∈ C∞([0,T ] ×M;M) (8.41)

such that
∂tσ + ∇ · (σv) = 0 inD′

(
(0,T ) ×M

)
, (8.42)

and for any ball B ⊂M there exists 0 < R < ∞ such that∫ T

0

(
sup

B
|vt | + Lip(vt, B)

)
dt,

∫ T

0
L(t, σt, vt)dt < ∞, |v| ≤ R. (8.43)

Furthermore, there exists a unique solution to the initial value differential equation

Ṡ t = vt ◦ S t, S 0 = id (8.44)

and Σt = S t ◦ Σ0.
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Gangbo & Tudorascu / Journal de Mathématiques Pures et Appliquées 00 (2018) 1–47 41

Let Φr ∈ C∞(M;M) be such that Lip(Φr) ≤ 2, |Φr | ≤ r + 2, and

Φr(x) =


x if |x| ≤ r

(r + 2)
x
|x|

if |x| ≥ r + 2

and set
vr(t, x) := v

(
t,Φr(x)

)
.

Observe that
vr ∈ C∞

(
[0,T ] ×M;M

)
, |vr | ≤ ‖v‖∞, Lip(vr) ≤ 2Lip(v|[0,T ]×Br+2 ), (8.45)

where Br+2 is the closed ball of radius r + 2 centered at the origin. Let S r ∈ C∞
(
[0,T ] ×M;M

)
be the unique

solution to the differential equation
Ṡ r

t = vr
t ◦ S r

t , S r
0 = id (8.46)

and set Σr
t := S r

t ◦ Σ0. Observe that S r
t maps Br−TR into Br and so, S r

t (x) = S t(x) for all x ∈ Br−TR. Thus, if we
set

M \ Er := {ω ∈ Ω : |Σ0(ω)| ≤ r − TR},

we have
Σr

t (ω) = Σt(ω) ∀ω ∈M \ Er, (8.47)

and also, since |Σ0| ∈ L1(Ω),
lim
r→∞
Ld(Er) = 0. (8.48)

Using the last inequality in (8.43) and the first one in (8.45) we have

‖Σr
t − Σt‖

2 =

∫
Er

∣∣∣∣ ∫ t

0

[
Σ̇r

t (ω) − Σ̇t(ω)
]
dτ

∣∣∣∣2dω ≤ 4R2TLd(Er).

This, together with (8.48) proves that {Σr}r converges to Σ in L2(0,T ;H
)

and

W2

(
](Σr), ](Σt)

)
= 0, ∀ t ∈ [0,T ].

Similarly, since

‖Σ̇r
t − Σ̇t‖

2 =

∫
Er

∣∣∣∣Σ̇r
t (ω) − Σ̇t(ω)

∣∣∣∣2dω ≤ 4R2TLd(Er),

{Σ̇r}r converges to Σ̇ in L2(0,T ;H
)
. By (8.1),

l(t,Σr
t , Σ̇

r
t ) ≤ κ2l(0, 0, Σ̇r

t ) + κ3 ≤ κ3 + κ2 sup
|v|≤R

l(0, 0, v).

We use the fact that Σ̇r
t = vr

t ◦ Σr
t and apply Lemma 8.1 to conclude the proof of the theorem.

Remark 8.6. Let t ∈ [0,T ] and X ∈ H and assume f (t, ·) = ∇g(t, ·) for some Lipschitz function g(t, ·) ∈
C1(M) ∩Cb(M). If ζ ∈ H, then

H̄(t, X, proj∇F[X]ζ) ≤ H̄(t, X, ζ).

Proof. Since ∇g(t, ·) ◦ X ∈ F[X], we infer that for any ζ ∈ H,

proj∇F[X]
(
ζ − ∇g(t, ·) ◦ X

)
= proj∇F[X]ζ − ∇g(t, ·) ◦ X.

This concludes the proof.

9. Appendix III: Joint measurability of parameter-dependent optimal maps

For any integer m ≥ 1 let Bm denote the ball centered at the origin with Lm(Bm) = 1.
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9.1. Some preliminaries

This subsection contains a Lemma and its corollary, both considered as part of the folklore in optimal
transport theory.

Lemma 9.1. Let µ0 and µ1 be Borel probability measures on Bk, absolutely continuous with respect to Lk
Bk

.
Then there exist a convex function φ : Rk → R and a Borel set B ⊂ Bk such that

(i) φ is Lipschitz and the range of ∂iφ is contained in [0, 1] for every i ∈ {1, · · · , k}.
(ii) ∇φ]µ0 = µ1.

(iii) µ0(Bk \ B) = 0 .
(iv) If φ̄ : Rk → R is any convex function such that ∇̄φ]µ0 = µ1, then {∇φ , ∇φ̄} ∩ B = ∅.

As a direct application of Lemma 9.1, we obtain the following corollary.

Corollary 9.2. Assume {µn
0}n = {λn

0L
d
Bk
}n and {µn

1}n = {λn
1L

d
Bk
}n are sequences of Borel probability measures on

Bk, absolutely continuous with respect to Lk
Bk

. Assume {λn
0}n converges to λ0 in L1(Bk), µ0 = λ0L

d
Bk

and {λn
1}n

converges narrowly to λ1 in L1(Bk), µ1 = λ1L
d
Bk

. Let φn : Rk → R be a convex function such that ∇φn]µ
n
0 = µn

1
and ∂·φn(x) is contained in Bk for every x ∈ Bd. Then

lim
n
‖∇φn − ∇φ‖L2(B;Rk) = 0,

where φ and B are as in Lemma 9.1. If we further assume that λn
0, λ

n
1, λ0, λ1 are positive and continuous on the

closure of Bk and φn and φ are differentiable on Bk, then

lim
n
∇φn(x) = ∇φ(x) for all x ∈ Bk.

9.2. Measurability

We skip the proof of the first proposition below, as it can be obtained by standard mollification and renor-
malization arguments.

Proposition 9.3. Let d, k ≥ 1 be integers and let λ : Bk × Bd → [0,∞) be Lebesgue measurable such that
λ(·, x) is a probability density for a.e. x ∈ Bd. Then there exists a sequence of strictly positive functions
{λn}n ⊂ C∞(B̄k × B̄d) and a Borel set T ⊂ Bd such that Ld(Bd\T ) = 0 and

lim
n→∞
‖λn(·, x) − λ(·, x)‖L1(Bk) = 0 for all x ∈ T (9.1)

and,
lim
n→∞
‖λn − λ‖L1(Bk×Bd) = 0. (9.2)

Proposition 9.4. For i = 1, 2 let λi ∈ C∞(B̄k × B̄d) such that for all x ∈ B̄d the functions λi(·, x) are positive
probability densities. For each x ∈ B̄d denote by Λ(·, x) the optimal map (with respect to the quadratic cost)
pushing λ1(·, x) forward to λ2(·, x), and by Λ̃(·, x) the optimal map pushing λ2(·, x) forward to λ1(·, x). Then

(i) Λ(·, x), Λ̃(·, x) ∈ C∞(B̄k; B̄k) for each x ∈ B̄d.

(ii) Moreover, there exists θ ∈ (0, 1) such that

θIk ≤ ∇sΛ(s, x) ≤ θ−1Ik, θIk ≤ ∇sΛ̃(s, x) ≤ θ−1Ik

for all (s, x) ∈ Bk × Bd, where Ik denotes the k × k identity matrix.

(iii) The maps Λ, Λ̃ belong to C(B̄k × B̄d; B̄k).
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Proof. The first claim follows readily from a celebrated result by Caffarelli [7]. Obviously, the same regularity
is enjoyed by Λ̃(·, x), which we use to denote the optimal map pushing λ2(·, x) forward to λ1(·, x). Next, note
that λi ∈ C∞(B̄k × B̄d) for i = 1, 2 implies the existence of constants m,C ∈ (0, 1) such that

m ≤ λi(·, x) ≤ m−1, ‖λi(·, x)‖C0,1(B̄k) ≤ C−1 for all x ∈ B̄d and i = 1, 2.

Another fundamental result on the regularity of optimal transport maps from [7] yields (ii) for some θ ∈ (0, 1)
depending solely on m, C. To prove (iii), fix (s0, x0) ∈ B̄k × B̄d. Since

|Λ(s, x) − Λ(s0, x0)| ≤ |Λ(s, x) − Λ(s0, x)| + |Λ(s0, x) − Λ(s0, x0)|,

we see that it suffices to prove that the continuity of Λ(·, x) at s0 is uniform in x and Λ(s0, ·) is continuous at x0.
As far as the former is concerned, we have

(t − t0) ·
[
Λ̃(t, y) − Λ̃(t0, y)

]
=

∫ 1

0
∇sΛ̃((1 − τ)t0 + τt)(t − t0) · (t − t0) dτ

≥ θ|t − t0|2 for all t0, t ∈ B̄k, y ∈ B̄d.

Set y := x and t := Λ(s, x), t0 := Λ(s0, x) to get

(s − s0) ·
[
Λ(s, x) − Λ(s0, x)

]
≥ θ

∣∣∣Λ(s, x) − Λ(s0, x)
∣∣∣2,

which implies
θ−1|s − s0| ≥

∣∣∣Λ(s, x) − Λ(s0, x)
∣∣∣,

so Λ(·, x) is Lipschitz uniformly with respect to x.

In order to show that Λ(s0, ·) is continuous at x0, let {xm}m ∈ B̄d converge to x0. Note that λ(·, xm) converges
to λ(·, x0) uniformly. We apply Corollary 9.2 to conclude that {Λ(s0, xm)}m converges to Λ(s0, x0).

Assume A ⊂ Bd is a Borel set with Ld(A) > 0. Let

λi : Bk × A→ [0,∞) i = 1, 2

be Borel maps such that λi(·, x) are Borel probability densities for a.e. x ∈ A. We extend λi to Bk ×Bd by setting
λi(s, x) = 1 if s ∈ Bk and x ∈ Bd \ A. Set

µi = λiL
k+d
Bk×Bd

.

We obtain the disintegration (µi
x) of µi given by

µi
x = λi(·, x)Lk

Bk

and so, λi(·, x) is a well–defined function for almost every x ∈ Bd, say x ∈ Ω∗d.

Let
Ki := {λi > 0}, Kx

i = {s ∈ Bk : (s, x) ∈ Ki} (∀ x ∈ Bd),

and denote by proj the orthogonal projection of Rk+d onto Rk.

Lemma 9.5. There exist a Fσ–set Fi (in fact, a countable union of compact sets) and a null measure Borel set
F∞i such that

(i) Ki = Fi ∪ F∞i .
(ii) Kx

i × {x} =
(
F x

i × {x}
)
∪

(
(F∞i )x × {x}

)
, Kx

i = F x
i ∪ (F∞i )x.

(iii) For any x ∈ Bd, F x
i is a Borel set.

(iv) For Ld–almost every x ∈ Bd, (F∞i )x is of null measure in Rk and so, for these x, Ni(x) := Kx
i \ F x

i is of
null measure.

(v) ∪x∈Bd (F x
i × {x}) = Fi and so, it is a Borel set of full measure in Ki.
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Proof. (i) For each integer n, there exists a compact set Fn
i ⊂ Ki such that Lk+d(Ki \ Fn

i ) ≤ n−1 and Fn
i ⊂ Ki. Set

Fi :=
⋃
n≥1

Fn
i , F∞i := Ki \ Fi. (9.3)

Note that Fi and F∞i are Borel sets such that the latter set is of null measure.

(ii) We have

Kx
i × {x} = Ki ∩ (Bk × {x}) =

(
Fi ∪ F∞I

)
∩ (Bk × {x}) =

(
Fi ∩ (Bk × {x})

)
∪

(
F∞i ∩ (Bk × {x})

)
.

This is enough to conclude the proof of (ii).

(iii) Observe that
F x

i = proj (F x
i × {x}) =

⋃
n≥1

proj
(
Fn

i ∩ (Bk × {x})
)
.

Since the projection of any compact set is a compact set, we obtain that F x
i is a Borel set as a countable union

of compact sets.

(iv) By Fubini’s Theorem,

0 = Lk+d(F∞i ) =

∫
Bd

Lk((F∞i )x)dx

and so, forLd–almost every x ∈ Bd, (F∞i )x is of null measure in Rk. Since Kx
i = F x

i ∪(F∞i )x, if s ∈ Ni(x) = Kx
i \F

x
i

then x < F x
i and so, x ∈ (F∞i )x. In other words, Ni(x) ⊂ (F∞i )x. Thus, Ni(x) is of null measure in Rk.

(v) The proof of (v) is obvious.

Remark 9.6. Since F∞i is a set of null measure,
∫

Fi
λidsdx = 1 and so, modifying λi on a set of null measure,

we may assume that F∞i = ∅.

Theorem 9.7. There exists a Borel map Λ̄ : F1 → F2 such that forLd–almost every x, Λ̄(·, x) pushes µ1
x forward

to µ2
x and

W2
2 (µ1

x, µ
2
x) =

∫
Fx

1

|Λ̄(s, x) − s|2µ1
x(ds).

Proof. By Proposition 9.3 there exist λn
i ∈ C∞(B̄k × B̄d) positive functions such that λn

i (·, x) is a probability
density for every x ∈ Bd and

lim
n
‖λn

i − λi‖L1(Bk×Bd) = 0. (9.4)

From the proof of said proposition we also see that there are Borel sets T ⊂ Bd of full measure in Bd and
J ⊂ Bk × Bd of full measure in Bk × Bd such that

lim
n→∞

λn
i (s, x) = λi(s, x) ∀ (s, x) ∈ J, (9.5)

and
‖λn

i (·, x) − λi(·, x)‖L1(Bk) = 0 if x ∈ T . (9.6)

For each x ∈ T , let Λn(·, x) be the unique optimal map that pushes λn
1(·, x)Lk

Bk
forward to λn

2(·, x)Lk
Bk

. Then, by
Proposition 9.4, Λn is continuous on B̄k × B̄d and

|Λn| ≤ diam(Bk) . (9.7)

For x ∈ Ω∗d ∩ T , let Λ(·, x) be the unique optimal map that pushes µ1
x forward to µ2

x. By Corollary 9.2, there
exists a Borel set Bx ⊂ Bk such that µ1

x(Bk \ Bx) = 0 and

lim
n

∫
Bx
|Λn(·, x) − Λ(·, x)|2dx = 0, ∀ x ∈ Ω∗d ∩ T. (9.8)
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Since ∫
Bd

µ1
x(Bk)dx =

∫
Bk×Bd

λ1(s, x)dsdx =

∫
F1

λ1(s, x)dsdx =

∫
Bd

µ1
x(F x

1)dx,

we conclude that for almost every x ∈ Bd, say without loss of generality x ∈ Ω∗d ∩ T ,

1 = µ1
x(Bk) = µ1

x(F x
1).

Thus, µ1
x(F x

14Bx) = 0 for almost every x ∈ Bd. This, together with (9.8), implies that for a.e. x ∈ Bd

lim
n

∫
Fx

1

|Λn(·, x) − Λ(·, x)|2dx = 0, ∀ x ∈ Ω∗d ∩ T . (9.9)

Set
fn,m(x) := ‖Λn(·, x) − Λm(·, x)‖L2(Fx

1 ), fn(x) := ‖Λn(·, x) − Λ(·, x)‖L2(Fx
1 ).

Claim 1. fn,m is a Borel function.

Proof 1. Let F l
1 be the compact sets in (9.3) so that the sets Gl

1 = Bk \ F l
1 are open. Since χGl

1
is lower

semicontinuous, so is |Λn(s, ·) − Λm(s, ·)|2χGl
1
(s, ·), and so we use Fatou’s Lemma to conclude that

x→ g2
n,m,l(x) :=

∫
Bk

|Λn(s, x) − Λm(s, x)|2χGl
1
(s, x)ds

is lower semicontinuous. Since

x→ h2
n,m(x) :=

∫
Bk

|Λn(s, x) − Λm(s, x)|2ds = f 2
n,m,l(x) + g2

n,m,l(x)

is continuous, f 2
n,m,l is upper semicontinuous. By the monotone convergence theorem

fn,m(x) = sup
l≥1

fn,m,l(x)

and so, fn,m is a Borel function as a supremum of Borel functions.

Claim 2. χT∩Ω∗d
fn is a Borel function.

Proof 2. We use the triangle inequality to obtain

| fn,m(x) − fn(x)| ≤ fm(x) if x ∈ T ∩Ω∗d (9.10)

and so, by (9.9),
lim

n
fn,m(x) = fm(x) if x ∈ T ∩Ω∗d . (9.11)

Thus, χT∩Ω∗d
fn is a Borel function as a limit of Borel functions.

Claim 3. (Λn)n is a Cauchy sequence in L2(F1).

Proof 3. We use again (9.9) to conclude, in view of (9.7), that ( fn)n converges to 0 in L2(Bd). Since

‖ fn,m‖2L2(F1) ≤ 2‖ fn‖2L2(F1) + 2‖ fm‖2L2(F1),

we conclude that (Λn)n is a Cauchy sequence in L2(Bk × Bd).
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Thus, there exists a Borel map Λ̄ ∈ L2(F1) such that (Λn)n converges to Λ̄ in L2(F1). By (9.9), there exists a
Borel set T0 ⊂ T ∩Ω∗d of full measure such that, if x ∈ T0, then∫

Fx
1

|Λ̄(s, x) − Λ(s, x)|2ds = 0.

Thus, if x ∈ T0
Lk({s ∈ F x

1 | Λ̄(s, x) , Λ(s, x)}
)

= 0. (9.12)

We use (9.12) to conclude that for x ∈ T0 and F ∈ Cb(Rk) we have∫
Fx

1

F
(
Λ̄(s, x)

)
λ1(s, x)ds =

∫
Fx

1

F
(
Λ(s, x)

)
λ1(s, x)ds =

∫
Fx

2

F
(
s
)
λ2(s, x)ds.

Thus,
Λ̄(·, x)]µx

1 = µx
2.

We conclude by noting that∫
Fx

1

|Λ̄(s, x) − s|2λ1(s, x)ds =

∫
Fx

1

|Λ(s, x) − s|2λ1(s, x)ds = W2
2 (µx

1, µ
x
2).

An immediate consequence of Theorem 9.7 is:

Corollary 9.8. Let A ⊂ Bd be a Borel set of positive volume and λ1, λ2 : Bk × A → [0,∞) be Lebesgue
measurable such that λi(·, x) is a probability density for all x ∈ A, i = 1, 2. Then there exists a Borel map
Λ : Bk × A→ Rk such that for Ld-a.e. x ∈ A the map Λ(·, x) pushes λ1(·, x) forward to λ2(·, x) optimally.

Corollary 9.9. Let A, B ⊂ Bd be Borel sets of positive volume. Let f1, f2 : Bk × A→ A be Borel functions such
that for all x ∈ A we have

Lk( f1(·, x)−1(B)) = Lk( f2(·, x)−1(B)) > 0.

Then there exists an optimal map pushing Lk | f1(·,x)−1(B) forward to Lk | f2(·,x)−1(B) which is jointly Borel on Bk × A.

Proof. Since s ∈ fi(·, x)−1(B) is equivalent to (s, x) ∈ f −1
i (B), we infer

gi(s, x) := 1 fi(·,x)−1(B)(s) = 1 f −1
i (B)(s, x), i = 1, 2,

are Borel in (s, x); obviously, so are

λi(s, x) :=
gi(s, x)

Lk( fi(·, x)−1(B))
=

gi(s, x)∫ 1
0 gi(τ, x)dτ

, i = 1, 2.

It follows (from previous theorem) that there exists a version Λ(·, x) of the optimal map pushing λ1(·, x) forward
to λ2(·, x) such that Λ is jointly Borel. But∫ 1

0
g1(τ, x)dτ =

∫ 1

0
g2(τ, x)dτ

implies that Λ(·, x) is also the optimal map that pushes g1(·, x) forward to g2(·, x), so we are done.
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[4] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. XLIV (1991),
375–417.

[5] Y. Brenier, W. Gangbo, Lp approximation of maps by diffeomorphisms, Calc. Var. Partial Differential Equations 16, no. 2 (2003),
147–164.

[6] J.M. Borwein, Q.J. Zhu, A survey of subdifferential calculus with applications, Nonlin. Anal. 38 (1999), 687–773.
[7] L. Caffarelli, Boundary regularity of maps with convex potentials, Ann. Math. (Second Series), 144, No. 3 (1996), pp. 453–496.
[8] L. Caravenna, S. Daneri, The disintegration of the Lebesgue measure on the faces of a convex function, J. Funct. Anal. 258 (2010),

3604–3661.
[9] P. Cardaliaguet, Notes on Mean-Field Games, lectures by P.L. Lions, Collège de France, 2010.
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