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HAMILTON-JACOBI EQUATIONS IN THE WASSERSTEIN SPACE
∗

WILFRID GANGBO† , TRUYEN NGUYEN‡ , AND ADRIAN TUDORASCU§

Abstract. We introduce a concept of viscosity solutions for Hamilton-Jacobi equations (HJE)

in the Wasserstein space. We prove existence of solutions for the Cauchy problem for certain Hamil-

tonians defined on the Wasserstein space over the real line. In order to illustrate the link between

HJE in the Wasserstein space and Fluid Mechanics, in the last part of the paper we focus on a

special Hamiltonian. The characteristics for these HJE are solutions of physical systems in finite

dimensional spaces.
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1. Introduction. In this paper we introduce a concept of viscosity solutions for

Hamilton-Jacobi equations in the Wasserstein space P2(R
d
). Throughout this work,

P2(R
d
) denotes the set of Borel probability measures on R

d
with finite second mo-

ments. Let us temporarily set M := P2(R
d
). It is well-known that this is a metric

space with a weak analogue of a differential and Riemannian structure (cf. e.g. [3],

[11]). The tangent space at µ ∈ M is TµM, the closure of {∇ϕ : ϕ ∈ C∞
c (R

d
)} in

L2
(µ). Here, L2

(µ) is the set of vector fields of R
d

onto itself, which are µ–square

integrable. The tangent bundle T M is the union of the sets {µ} × TµM.
We consider “mechanical Lagrangians” L : T M → R of the form

L(µ,w) =
1

2
‖w‖2

µ − V(µ), (µ,w) ∈ T M.

Here, V : M → R. The Hamiltonian associated to L is then

H(µ, ζ) := sup

ξ∈TµM

{

〈ζ, ξ〉µ − L(µ, ξ)
}

,

which is defined for (µ, ζ) ∈ T M. Since the tangent space TµM is a Hilbert space,

we have identified it with its dual. We use this convention in the rest of the paper.

We give sufficient conditions for the value function

U(µ, t) := min
σ∈Pt(·,µ)

{
∫ t

0

L(σ(τ), σ̇(τ))dτ + U0(σ(0))

}

(1)

to be a viscosity subsolution for the Hamilton-Jacobi equation

∂U

∂t
(µ, t) +H(µ,∇µU(µ, t)) = 0, U(µ, 0) = U0(µ). (2)
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Here, ∇µU is the Wasserstein gradient of the function U(·, t) : M → R, as defined in

subsection 3.1. We have denoted by Pt(·, µ) the set of paths σ : [0, t] → M which are

2–absolutely continuous and such that σt = µ. We refer the reader to subsection 2.1

where we recall the definition of 2–absolutely continuous paths and their properties.

Appropriate choices of V , U0 : M → R reveal that the characteristics for (2) are

paths in AC2
(0, T ;P2(R

d
)) satisfying specific systems of partial differential equations.

These systems of equations appear in Fluid Mechanics and the one-dimensional Euler-

Poisson system (see theorem 3.9 and also [9]) is included. Proving that the function in

(1) is a viscosity supersolution seems to be a harder task which we are able to complete

only when d = 1. To achieve that goal, we impose that m → V(m#ν0) =: V̄(m) is

continuously differentiable. In the last section, motivated by the study of the Euler-

Poisson system on the real line, we consider the case where V(µ) is the difference of

one half of the second moment of µ and one fourth of
∫

R×R
|z− z̄|dµ(z)dµ(z̄). Despite

the fact that V̄ fails to be differentiable, we still show existence of viscosity solutions

there.

When d = 1, we establish existence of a minimizing path in (1) by exploiting

the fact that, M can be identified with a subset of L2
(ν0). Here, ν0 is the Lebesgue

measure restricted to the unit interval (−1/2, 1/2). That identification is used to show

that minimizers of (1) satisfy a stronger time regularity property. We use this to prove

that the value function U is also a supersolution.

Before concluding this introduction let us point out that the theory of Hamilton-

Jacobi equation in infinite dimensional spaces has been studied in flat spaces such

as Hilbert spaces (cf, e.g. [4], [5]) and in Banach spaces (e.g. [6], [7]). The theory

developed in these works cannot be applied directly to the metric space M.

1.1. Notation and Definitions. -We suppose that T > 0 is a constant. We

sometimes give it a specific value, such as T = 1.
- | · | is the euclidean norm on R

d
and 〈·, ·〉 is the standard inner product.

- C∞
c (R

d
) is the set of functions on R

d
which are infinitely differentiable and of

compact support.

- If ψ : R
d → R ∪ {±∞}, ψ∗

is its Legendre transform.

- id denotes the identity map on R
d

for d ≥ 1.
- As usual, we denote by Ld

the Lebesgue measure on R
d
.

- X denotes the unit cube in R
d
, centered at the origin. In particular, if d = 1, then

X = (−1/2, 1/2). We set XT := X × (0, T ). Similarly, X2

T := X × X × (0, T ). The

measure ν0 is the restriction of Ld
to X and so it is a Borel probability measure.

We write ν0 = Ld|X . The product measure of ν0 by L1|
(0,T )

is the measure on XT

denoted by νT . We do not display explicitly its dependence on T since this does not

create any confusion in this manuscript.

- P2(R
d
) stands for the set of Borel probability measures µ on R

d
with finite second

moments:

∫

Rd

|y|2dµ(y) <∞.

- Given µ, ν ∈ P2(R
d
), Γ(µ, ν) is the set of Borel probability measures on R

d × R
d

which have µ and ν as their marginals. The Wasserstein distance W2 between µ and

ν is defined by

W 2

2
(µ, ν) = min

γ∈Γ(µ,ν)

∫

Rd×Rd

|x− y|2dγ(x, y).
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The set of γ where the minimum is achieved is nonempty and is denoted by Γo(µ, ν).
We refer the reader to [3] chapter 7 for the properties ofW2 and Γo(µ, ν). (P2(R

d
),W2)

is a metric space which is complete and separable.

- If µ ∈ P2(R
d
), L2

(µ) is the set of functions ξ : R
d → R

d
which are µ measurable and

such that
∫

Rd |ξ|
2dµ is finite. This is a separable Hilbert space for the inner product

〈ξ, ξ̄〉µ =
∫

Rd〈ξ, ξ̄〉dµ. We denote the associated norm by ‖ · ‖µ. When m = L1|
(0,T )

,

we write ‖ · ‖L2
(0,T )

for ‖ · ‖m to distinguish between the space and time variables.

- If µ ∈ P2(R
d
), we denote by TµP2(R

d
) the closure of {∇ϕ : ϕ ∈ C∞

c (R
d
)} in L2

(µ).
We refer to TµP2(R

d
) as the tangent space to P2(R

d
) at µ (see section 8.5 of [3]).

When d = 1 it is easy to check that TµP2(R) = L2
(µ).

- If (Z, | · |) is a norm space, L2
(0, T ;Z) is the set of Borel functions M : (0, T ) → Z

such that
∫ T

0
|Mt|2Zdt < ∞. Here and throughout this work, we write Mt in place

of M(t). When µ is a Borel probability measure on R
d

and Z = L2
(µ), we identify

L2
(0, T ;L2

(µ)) with L2
(µ× L1|

(0,T )
).

- If U : P2(R
d
) → R ∪ {±∞}, we denote by ∂·U(µ) the subdifferential of U at µ, as

introduced in [2] (see definition 3.1). As shown in [2], for λ-convex functionals, this

definition coincides with the one in (10.3.12) of [3]. Since ‖ · ‖µ is uniform and ∂·U(µ)

is a closed convex subset of L2
(µ), it admits a unique element of minimal norm. As

it is customary in subdifferential analysis, we denote that element by ∇µU(µ). We

refer to it as the gradient of U with respect to the Wasserstein distance W2. The

superdifferential of U at µ is denoted by ∂·U(µ) and consists of all ξ such that −ξ
belongs to ∂·(−U)(µ). We say that U is differentiable at µ if ∂·U(µ) and ∂·U(µ) are

nonempty. In that case, both sets coincide and contain a unique element. Observe that

there is no confusion denoting the element of minimal norm of ∂·U(µ) by ∇µU(µ).
- We also recall that if M : R

d → R
d

is a Borel map and µ ∈ P2(R
d
) then M#µ is the

Borel measure defined by

M#µ[C] = µ[M−1

(C)] for all Borel sets C ⊂ R
d.

- If µ, ν are Borel probability measures on the real line and µ is atom-free, then it

is known that there exists a unique (up to a set of µ–zero measure) optimal map

pushing forward µ to ν. It is called the monotone rearrangement and is obtained

as G−1 ◦ F , where F, G are the cumulative distribution functions of µ and ν. We

have G(y) = ν(−∞, y] and G−1
(x) = inf{y ∈ R : G(y) > x}. Note that G−1

is

the generalized inverse of G [12] . In this work, optimal map on the real line always

means left continuous optimal map.

- We denote by Mon the set of monotone nondecreasing, left-continuous functions

M : (−1/2, 1/2) → R which are in L2
(ν0).

- Suppose (M, dist) is a complete metric space and σ : (0, T ) → M. We write σt for

the value of σ at t: σt := σ(t). If there exists β ∈ L2
(0, T ) such that

dist(σt, σs) ≤

∫ t

s

β(τ)dτ (3)

for every s < t in (0, T ), we say that σ is 2–absolutely continuous. We denote by

AC2
(0, T ;M) the set of σ : (0, T ) → M that are 2–absolutely continuous.

- Suppose σ ∈ AC2
(0, T ;M). Since M is complete, limt→0

+ σt exists and will be

denoted by σ0. Similarly, σT is well-defined. For L1
–almost every t ∈ (0, T ),

|σ′|(t) := lim
h→0

dist(σt+h, σt)

|h|
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exists. If the above limit exists at t, we say that |σ′| exists at t. We have |σ′| ≤ β for

every β satisfying (3) and

dist(σt, σs) ≤

∫ t

s

|σ′|(τ)dτ for every s < t in (0, T ). (4)

The function |σ′| is refered to as the metric derivative of σ. For more details, we refer

the reader to section 1.1 of [3]. We denote the L2
–norm of |σ′| on (0, T ) by ‖σ′‖metric,T .

In case there is no confusion about the time interval on which we integrate, we simply

write ‖σ′‖metric.
- Suppose s, s̄ ∈ M. We denote by PT (s, s̄) the set of curves σ ∈ AC2

(0, T ;M) such

that σ0 = s and σT = s̄. Similarly, PT (·, s̄) denotes the set of curves σ ∈ AC2
(0, T ;M)

such that σT = s̄.
- If n is a integer, P·n is the set of n averages of n Dirac masses in R. When d = 1,

we divide X = (−1/2, 1/2) into n intervals of equal length. Recall that ν0 is the

restriction to X of the one-dimensional Lebesgue measure. Suppose N, N̄ ∈ L2
(ν0)

are constant on each of these subintervals. We denote by Pn
T (N, N̄) the set of M in

PT (N, N̄) such that for each t ∈ (0, T ), Mt is constant on each of these subintervals.

2. Preliminaries.

2.1. Absolutely continuous curves on metric spaces. As in [9], throughout

this subsection (M, dist) is a complete metric space. We assume the existence of a

Hausdorff topology τ on M, weaker than the metric topology. Also, suppose there

exists a distance distτ such that on bounded subsets of (M, dist), the topology τ
coincides with the distance topology dist τ . We assume that closed balls of (M, dist)
are compact for τ and that dist is τ–sequentially lower semicontinuous on B × B
whenever B is a closed ball in (M, dist). For instance, when (M, dist) = (L2

(ν0),
‖ · ‖ν0

), we choose τ to be the weak topology. When M = P2(R
d
), dist is the

Wasserstein distance, we choose τ to be the narrow convergence topology (see [3]

remark 5.1.1).

The following proposition appears in [9].

Proposition 2.1. Suppose that σ belongs to AC2
(0, T ;M) and s0 ∈ M. Then

π‖dist(σ(·), s0)‖L2
(0,T )

≤ 2T ‖σ′‖metric + π
√
Tdist(σT , s0). (5)

Remark 2.2. Let M := P2(R
d
) and let dist be the Wasserstein distance: dist :=

W2. By theorem 8.3.1 in [3], σ ∈ AC2
(0, T ;M) if and only if there exists a Borel map

(y, t) → vt(y) ∈ R
d such that t→ ‖vt‖σt

∈ L2
(0, T ) and the continuity equation

∂tσt + ∇y · (σtvt) = 0 in R
d × (0, T )

holds in the sense of distributions. We call v a velocity associated to the path σ. One
can choose a velocity associated to the path σ so that it is uniquely determined by the
following properties: if w is another velocity associated to the path, then ‖vt‖L2

(σt)
≤

‖wt‖L2
(σt)

and vt ∈ Tσt
P2(R

d
) for L1-almost every t ∈ (0, T ). We refer to vt as the

tangent velocity field at σt, or the velocity of minimal norm associated to σ. For the
velocity of minimal norm we have ‖vt‖L2

(σt)
= |σ′|(t) for L1–almost every t ∈ (0, T ).
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2.2. Value functions and the Lax–Oleinik semigroup. Throughout this

subsection we assume that M, dist and distτ are as in subsection 2.1. Suppose

V : M → R is a Borel map and there exist s0 ∈ M and e0, e1 ∈ R such that

V(s) ≤ e0dist
2

(s, s0) + e1 for all s ∈ M. (6)

If σ ∈ AC2
(0, T ;M), then σ ∈ C([0, T ];M) by (4) and so t → V(σt) is a Borel

function as a composition of two Borel functions. From (5) and (6) to conclude that

for every ǫ > 0, we have

AT (σ) ≥
1

2π2

[

π2 − 8(1 + ǫ)e0T
2
]

∫ T

0

|σ′|2(t)dt − T
[

e0(1 + 1/ǫ)dist2

(σT , s0) + e1
]

,

(7)

where AT (σ) is the action defined by

AT := AT
0

and At
s(σ) :=

∫ t

s

(

1

2
|σ′|2(τ) − V(στ )

)

dτ.

For U0 : M → R we define the value function

U(s, t) := inf
σ

{

At(σ) + U0(σ(0)) : σ(t) = s, σ ∈ AC2

(0, t;M)
}

. (8)

Remark 2.3. Suppose U0 is bounded below. Let σ̄(τ) = s for all τ ∈ [0, t], then
we have

U(s, t) ≤ At(σ̄) + U0(σ̄(0)) = −tV(s) + U0(s) <∞.

(i) If in addition 8e0T
2 < π2, then we may choose ǫ > 0 such that π2 − 8(1 +

ǫ)e0T
2 > 0. Thus, we conclude from (7) that U(s, t) > −∞ for t ∈ [0, T ] and s ∈ M.

Consequently, U : M× [0, T ] → R.
(ii) If V(s) ≤ ē0dist

p
(s, s0)+ ē1 for some p ∈ (0, 2), then for every e0 > 0 there exists

e1 > 0 such that (6) holds. Choosing e0 arbitrarily small, we have 8e0T
2 < π2 holds

for T > 0 large. Hence all conditions in (i) are satisfied, so in this case we also have
U : M× [0, T ] → R.

Lemma 2.4. Suppose U0 : M → R is bounded below, T > 0 and 8e0T
2 < π2.

Then the value function U defined in (8) satisfies

U(s, t) = inf
σ

{

At
s(σ) + U(σs, s) : σt = s, σ ∈ AC2

(s, t;M)
}

(9)

for 0 ≤ s < t ≤ T.

Proof. The method of proof of this lemma is standard. Fix s ∈ M and s, t such

that 0 ≤ s < t ≤ T. Denote by V (s, t) the expression at the right handside of (9) and

let ǫ > 0. There exists σǫ ∈ AC2
(0, t,M) such that σǫ

t = s and

U(s, t) ≥ −ǫ+ At
0
(σǫ) + U0(σ

ǫ
(0)).

Consequently, τ → 1

2
|(σε

)
′|2(τ) − V(σε

τ ) ∈ L1
(0, t) and hence we can write At

0
(σǫ

) =

As
0
(σǫ

) + At
s(σ

ǫ
). Thus, we obtain from the above inequality that

U(s, t) ≥ −ǫ+As
0
(σǫ

) +At
s(σ

ǫ
) +U0(σ

ǫ
(0)) ≥ −ǫ+U(σǫ

s, s) +At
s(σ

ǫ
) ≥ −ǫ+ V (s, t).
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Since ǫ > 0 is arbitrary, we conclude that U(s, t) ≥ V (s, t). To obtain the reverse

inequality, it suffices to show that for any ε > 0,

U(s, t) ≤ ǫ+ At
s(σ) + U(σs, s)

for all σ ∈ AC2
(s, t;M) satisfying σt = s and At

s(σ) < +∞. Let σ be such a path

and choose σǫ ∈ AC2
(0, s;M) be such that σǫ

s = σs and

U(σs, s) ≥ −ǫ+ As
0
(σǫ

) + U0(σ
ǫ
0
). (10)

We extend σε
to (s, t] by setting

σε
(τ) = σ(τ) for τ ∈ (s, t].

The fact that σǫ
is continuous at s, ensures it belongs to AC2

(0, t;M). Because σǫ
t = s

we have

U(s, t) ≤ At
0
(σǫ

) + U0(σ
ǫ
0
) = As

0
(σǫ

) + At
s(σ) + U0(σ

ǫ
0
),

where we have used the fact that As
0
(σε

) and At
s(σ) are finite to obtain the last

equality. This together with (10) yields

U(s, t) ≤ ǫ+ U(σs, s) + At
s(σ).

3. Hamilton-Jacobi equations on Wasserstein space P2(R
d
) . In this sub-

section, d ≥ 1 is an integer and we apply the results of the previous section to the

space M := P2(R
d
) endowed with the Wasserstein metric dist = W2. We assume that

V : M → R is Borel and is bounded below on bounded subsets of M. We introduce

the Lagrangian

L(µ, ξ) =
1

2
‖ξ‖2

µ − V(µ), (µ, ξ) ∈ T M.

The Hamiltonian associated to L is then

H(µ, ζ) :=sup
{

〈ζ, ξ〉µ − L(µ, ξ) : ξ ∈ TµM
}

=
1

2
‖ζ‖2

µ + V(µ), (µ, ζ) ∈ T M.

If σ ∈ AC2
(0, T ;M) we denote by v the velocity of minimal norm associated to σ.

We introduce the action

AT (σ) :=

∫ T

0

L(σt,vt)dt

defined on AC2
(0, T ;M). Recall that if µ, ν ∈ M, then PT (µ, ν) denotes the set of

paths σ in AC2
(0, T ;M) such that σ0 = µ and σT = ν.

3.1. Definition of viscosity solution on Wasserstein space. The notion of

viscosity sub and super solutions can be defined in terms of the subdifferentials and

superdifferentials of functions on M. The definitions of sub (super) differential we

are going to give here coincide with that of [3] for λ–convex function. Otherwise, in

general, they differ.
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Definition 3.1. Fix µ ∈ M and ξ ∈ TµM. Let W : M → R∪{±∞} be a proper
functional.
(i) We say that ξ belongs to the subdifferential of W at µ and we write ξ ∈ ∂·W(µ) if

W(ν) −W(µ) ≥ sup

γ∈Γo(µ,ν)

∫

Rd×Rd

ξ(ȳ)(y − ȳ)dγ(ȳ, y) + o
(

W2(µ, ν)
)

∀ν ∈ M.

Here Γo(µ, ν) is the set of optimal plans between µ and ν.
(ii) We say that ξ belongs to the superdifferential of W at µ and we write ξ ∈ ∂·W(µ)

if −ξ ∈ ∂·(−W)(µ).

Remark 3.2. As expected, when the sets ∂·W(µ) and ∂·W(µ) are both nonempty,
then they coincide and consist of a single element. Indeed, suppose ξ1 ∈ ∂·W(µ) and
ξ2 ∈ ∂·W(µ). Let ϕ ∈ C2

c (R) which we assume to be distinct from the null function to
avoid trivialities. The map M ε

:= id + ε∇ϕ is the gradient of a convex function for
|ǫ| << 1. Thus, setting µε := M ε

#
µ, we get γε

:= (id ×M ε
)#µ ∈ Γo(µ, µε). We have

0 ≥ lim
ε→0

∫

Rd×Rd(ξ1(y) − ξ2(y))(ȳ − y)dγε
(y, ȳ)

W2(µ, µε)
=

1

‖∇ϕ‖µ

∫

Rd

〈ξ1 − ξ2,∇ϕ〉dµ.

Since ϕ is arbitrary and ξ1, ξ2 ∈ TµM we obtain that ξ1 ≡ ξ2 µ–almost everywhere.

Definition 3.3. In case the convex set ∂·W(µ) is nonempty, as it is standard in
convex analysis, its unique element of minimal ‖ · ‖µ–norm is denoted by ∇µW(µ). It
is called the gradient of W with respect to the Wasserstein distance at µ. In particular,
if ∂·W(µ0) ∩ ∂·W(µ) 6= ∅ then ∇µW(µ) is the unique element of the intersection.

Remark 3.4. Suppose that ∂·W(µ) is nonempty and denote its unique element
of minimal ‖ · ‖µ–norm by ∇+

µ W(µ). If ∂·W(µ) is also nonempty then ∇µW(µ) =

∇+

µW(µ). Thus, there is no confusion denoting both elements of minimal norm by
∇µW(µ).

In the sequel, if T > 0 we set

QT := M× (0, T ).

By analogy with the standard finite-dimensional theory, we have the following defin-

itions:

Definition 3.5. Let U : QT → R.
(i) We say that U is a viscosity subsolution for (2) if U is upper semicontinuous on
QT ,

U(·, 0) ≤ U0, and θ+H(µ, ζ) ≤ 0 for all (µ, t) ∈ QT and all (ζ, θ) ∈ ∂·U(µ, t). (11)

(ii) We say that U is a viscosity supersolution for (2) if U is lower semicontinuous
on QT ,

U(·, 0) ≥ U0, and θ +H(µ, ζ) ≥ 0 for all (µ, t) ∈ QT and all (ζ, θ) ∈ ∂·U(µ, t). (12)

Remark 3.6. If U is a viscosity solution, then, in view of remark 3.2, we deduce
that (2) is satisfied at all points (µ, t) ∈ QT where ∂·U(µ, t) ∩ ∂·U(µ, t) 6= ∅, which
are precisely the points where U is differentiable.
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3.2. Existence of viscosity subsolutions in P2(R
d
). We suppose there exist

e0, e1 ∈ R such that

V(µ) ≤ e0

∫

Rd

|y|2dµ(y) + e1 ∀µ ∈ M. (13)

Given a path σ ∈ AC2
(0, T ;M), we always denote by v its velocity of minimal norm.

With this convention, by remark 2.2, the value function U defined in (8) is

U(µ, t) := inf
σ

{
∫ t

0

L(στ ,vτ )dτ + U0(σ(0)) : σ(t) = µ, σ ∈ AC2

(0, t;M)

}

for (µ, t) ∈ QT . (14)

For µ, ν ∈ M we define

Ct(ν, µ) = inf
σ

{
∫ t

0

L(στ ,vτ )dτ : σ ∈ Pt(ν, µ)

}

.

Note that

U(µ, t) = inf
ν∈M

{

Ct(ν, µ) + U0(ν)
}

.

Lemma 3.7. Suppose that V : M → R is Borel and bounded below on bounded
subsets of M. Then U is upper semicontinuous on QT and (ν, µ, t) → Ct(ν, µ) is
upper semicontinuous on M×M× (0, T ).

Proof. Let (µn, tn) → (µ, t) and suppose ε > 0. Then there exists σ ∈ Pt(·, µ)

such that

∫ t

0

L(στ ,vτ )dτ + U0(σ(0)) ≤ U(µ, t) + ε. (15)

Let σ̄n ∈ P1(µ, µn) be a geodesic connecting µ and µn. Define σn
(τ) = σ(ntτ/(n −

1)tn) for τ ∈ [0, (n−1)tn/n] and σn
(τ) = σ̄n

((nτ/tn)+(1−n)) for τ ∈ [(n−1)tn/n, tn].

Then σn ∈ Ptn
(·, µn). By changing variables and using the properties of geodesics,

we have

∫ tn

0

L(σn
τ ,v

n
τ )dτ =

∫

(n−1)tn
n

0

L(σn
τ ,v

n
τ )dτ +

∫ tn

(n−1)tn
n

L(σn
τ ,v

n
τ )dτ

=
(n− 1)tn

nt

∫ t

0

L(στ ,vτ )dτ +
tn
n

∫

1

0

L(σ̄n
τ , v̄

n
τ )dτ

=
(n− 1)tn

nt

∫ t

0

L(στ ,vτ )dτ +
tn
2n
W 2

2
(µ, µn) −

tn
n

∫

1

0

V(σ̄n
τ )dτ.

Moreover, the set {σ̄n
(τ) : τ ∈ [0, 1]} is bounded uniformly in n as W2(σ̄

n
τ , µ) ≤

W2(µ, µn). Therefore, as V is bounded below on bounded subsets, we obtain

lim sup
n→∞

∫ tn

0

L(σn
τ ,v

n
τ )dτ ≤

∫ t

0

L(στ ,vτ )dτ.
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This together with the facts that σn ∈ Ptn
(·, µn) and σ̄n

(0) = σ(0) yields

lim sup
n→∞

U(µn, tn) ≤ lim sup
n→∞

∫ tn

0

L(σn
τ ,v

n
τ )dτ + U0(σ

n
(0)) ≤

∫ t

0

L(στ ,vτ )dτ+U0(σ(0)).

It then follows from (15) that lim supn→∞ U(µn, tn) ≤ U(µ, t) + ε yielding that U
is upper semicontinuous on QT . The proof of the upper semicontinuity of C on

M×M× (0, T ) is similar.

We soon give a sufficient condition which ensures existence of viscosity subsolu-

tions for the infinite-dimensional Hamilton-Jacobi equation

∂U

∂t
(µ, t) +

1

2

∫

R

|∇µU(µ, t)(x)|2dµ(x) + V(µ) = 0, U(µ, 0) = U0(µ) (16)

on QT . When appropriate conditions are imposed on V , then a minimizer σ exists in

(14). It satisfies the system of partial differential equations











∂tσt + div(σtvt) = 0 in R
d × (0, T )

∂t(σtvt) + div(σtvt ⊗ vt) = −σt∇µV(σt) in R
d × (0, T )

σT = µ, v0 = ∇µU0(σ0).

(17)

This result, which can be found in theorem 3.9, gives the clear link between infinite-

dimensional Hamilton-Jacobi equations on M and Fluids Mechanics. The system of

equations (17) (i) has to be understood in the following sense:

∫ T

0

dt

∫

Rd

(

∂tφt + 〈∇φt,vt〉
)

dσt +

∫

Rd

φ0dσ0 = 0, (18)

whereas (ii) amounts to

∫ T

0

dt

∫

Rd

〈∂tΦt + ∇xΦtvt,vt〉dσt +

∫

Rd

〈Φ0,∇µU0(σ0)〉dσ0

=

∫ T

0

dt

∫

Rd

〈Φt,∇µV(σt)〉dσt (19)

for all Φ = ∇φ where φ ∈ C1

c ([0, T ) × R
d
). Here C1

c ([0, T ) × R
d
) is the set of C1

functions on [0, T )×R
d

which are the restriction of compactly supported C1
functions

on (−1, T )× R
d
.

Definition 3.8. Suppose σ ∈ AC2
(0, T ;M) and v is its velocity of minimal

norm. We say that (σ,v) satisfies (17) if it satisfies (18) and (19).

In the second part of the next theorem, we assume that V satisfies the following

condition: ∂.V(µ) is nonempty for every µ ∈ M, and for any C > 0 and any compact

set K ⊂ M, there exists a constant C∗ > 0 such that

sup
µ,Ψ

{V((id + εΨ)#µ) − V(µ)

ε
− 〈∇µV(µ),Ψ〉µ : µ ∈ K,Ψ ∈ C∞

c (R
d
), ‖Ψ‖∞ ≤ C

}

≥ −C∗
(20)

for all ε > 0 sufficiently small.
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Theorem 3.9. Suppose that V satisfies (13), 8e0T
2 < π2 and V is lower semi-

continuous with respect to W2. Also, suppose that U0 : M → R is bounded below and
V is bounded below on bounded subsets of M. Then U from (14) satisfies:
(i) U is a viscosity subsolution of (16) over QT .
(ii) Assume in addition that µ → ∇µV(µ) is a Borel map and ∂·U0(ν) is nonempty
for all ν ∈ M and (20) holds. Then if σ is a minimizer of (14) for t = T , we have
(σ,v) satisfies the system of equations (17).

Proof. Clearly, (14) implies U(µ, 0) = U0(µ) for all µ ∈ M, so the first inequali-

ties in (11) and (12) hold trivially. By lemma 3.7, U is upper semicontinuous.

Step 1: We prove (i). Let (µ, t) ∈ QT and assume that (ζ, θ) ∈ ∂·U(µ, t). Take

an arbitrary ϕ ∈ C∞
c (R) and ε > 0 small enough such that x → |x|2/2 + λϕ(x) is a

strictly convex function for all λ ∈ [0, ε]. Let φε
τ (x) := |x|2/2 + (t− τ)ϕ(x), which is

strictly convex for τ ∈ (t− ε, t). Set

M ε
:= id + ε∇ϕ, µε

:= M ε
#
µ, σε

τ := (∇φε
τ )#µ τ ∈ [t− ε, t].

Note that σε
is the geodesic connecting µε

at time t− ε to µ at time t. Also,

W2(µ, µ
ε
) = ε‖∇ϕ‖µ, γε

:= (id×M ε
)#µ ∈ Γo(µ, µ

ε
). (21)

We extend σε
to [0, t− ε) by choosing σε ∈ Pt−ε(·, µε

) so that

U(µε, t− ε) ≥ −ε2 + At−ε
0

(σε
) + U0(σ

ε
(0)).

We have σε ∈ Pt(·, µ) and so,

U(µ, t) ≤ At
0
(σε

) + U0(σ
ε
(0)) = At−ε

0
(σε

) + At
t−ε(σ

ε
) + U0(σ

ε
(0))

≤ U(µε, t− ε) + ε2 + At
t−ε(σ

ε
). (22)

The velocity of minimal norm associated to σε on (t− ε, t) is v
ε

defined by

v
ε
τ =

∇(φε
τ )

∗ − id

t− τ
.

For τ ∈ (t− ε, t), we have

v
ε
τ ◦ ∇φε

τ = −∇ϕ, W2(σ
ε
τ , µ) = ‖∇φε

τ − id‖µ = |t− τ | ‖∇ϕ‖µ.

Hence,

At
t−ε(σ

ε
) =

∫ t

t−ε

L(σε
τ ,v

ε
τ )dτ =

ε

2
‖∇ϕ‖2

µ −

∫ t

t−ε

V
(

(

id + (t− τ)∇ϕ
)

#
µ
)

dτ.

It follows from this, (22) and the assumption V is lower semicontinuous that

lim sup

ε↓0

U(µ, t) − U(µε, t− ε)

ε
≤

1

2

∫

Rd

|∇ϕ|2dµ− V(µ). (23)

We use the fact that (ζ, θ) ∈ ∂·U(µ, t) and (21) to obtain

U(µε, t− ε) − U(µ, t)

≤

∫∫

Rd×Rd

〈ζ(y), ȳ − y〉dγε
(y, ȳ) + (t− ε− t)θ + o(W2(µ, µ

ε
)) + o(ε)

= ε

∫

Rd

〈ζ,∇ϕ〉dµ − εθ + o(ε).
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Thus,

lim inf
ε↓0

U(µ, t) − U(µε, t− ε)

ε
≥ θ −

∫

Rd

〈ζ,∇ϕ〉dµ. (24)

Combine (23) and (24) to deduce θ+H(µ, ζ) ≤ 1/2
∫

Rd |ζ+∇ϕ|2dµ. Since ϕ ∈ C∞
c (R

d
)

is arbitrary and {∇φ : φ ∈ C∞
c (R

d
)} is dense in TµM which contains ζ, we conclude

that θ +H(µ, ζ) ≤ 0. This proves (11) and hence U is a viscosity subsolution.

Step 2: We prove (ii). In order to do that, let us introduce the augmented action

B(σ) := AT
0
(σ) + U0(σ0).

Fix σ ∈ AC2
(0, T ;M), let

ϕ ∈ C∞
c ([0, T ) × R

d
), Φ := ∇ϕ and σs

t = (id + sΦ(t, ·))#σt.

Let v
s

(resp. v) be the velocities of minimal norm associated to σs
(resp. σ). By

definition, the continuity equation (17) (i) holds. Lemma 8 in [9] ensures

∫ T

0

‖vs
t‖

2

σs
t
dt−

∫ T

0

‖vt‖
2

σt
dt ≤

∫ T

0

(

C2

t s
2

+ 2s〈vt, ∂tΦt + ∇xΦtvt〉σt

)

dt, (25)

where Ct = ‖∂tΦ + ∇Φtvt‖L2
(σt)

. Observe that

[

id× (id + sΦt)
]

#

σt ∈ Γo(σt, σ
s
t ), for 0 ≤ s << 1.

Hence if ζ0 ∈ ∂·U0(σ0), then

U0(σ
s
0
) − U0(σ0)) ≤ s〈ζ0,Φ0〉σ0

+ o(s).

This together with (25) yields

B(σs
) − B(σ) ≤

∫ T

0

(

C2

t

s2

2
+ s〈vt, ∂tΦt + ∇xΦtvt〉σt

)

dt

−

∫ T

0

[V(σs
t ) − V(σt)] dt+ s〈ζ0,Φ0〉σ0

+ o(s). (26)

In the sequel, we assume that σ is a minimizer of (14) for t = T . We then have

B(σ) = U(µ, T ) ≤ B(σs
). Using this, we obtain from (26) that

0 ≤

∫ T

0

〈vt, ∂tΦt + ∇xΦtvt〉σt
dt− lim sup

s↓0

∫ T

0

V(σs
t ) − V(σt)

s
dt+ 〈ζ0,Φ0〉σ0

. (27)

Recall that (4) ensures that σ is continuous and so, σ([0, T ]) is a compact subset of

M. Thus, σ([0, T ]), σs
([0, T ]) and σ̄s

([0, T ]) are bounded sets in M, where σ̄s
t :=

(id− sΦ(t, ·))#σt. Moreover, it follows from (20) that

V(σs
t ) − V(σt)

s
+ C∗ ≥ 〈∇µV(σt),Φt〉σt

≥ −
V(σ̄s

t ) − V(σt)

s
− C∗.

Therefore, we conclude in particular that t → 〈∇µV(σt),Φt〉σt
∈ L1

(0, T ) since the

function V is bounded on bounded subsets. Furthermore, by Fatou’s lemma and the

fact ∂.V(σt) is nonempty, we obtain

lim inf
s↓0

∫ T

0

V(σs
t ) − V(σt)

s
dt ≥

∫ T

0

lim inf
s↓0

V(σs
t ) − V(σt)

s
dt ≥

∫ T

0

〈∇µV(σt),Φt〉σt
dt.
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Combining this with (27) , we get

0 ≤

∫ T

0

(

〈vt, ∂tΦt + ∇xΦtvt〉σt
− 〈∇µV(σt),Φt〉σt

)

dt+ 〈ζ0,Φ0〉σ0
. (28)

We substitute Φ by −Φ in (28) to conclude that

0 =

∫ T

0

(

〈vt, ∂tΦt + ∇xΦtvt〉σt
− 〈∇µV(σt),Φt〉σt

)

dt+ 〈ζ0,Φ0〉σ0
.

Hence (17) (ii) holds.

Remark 3.10. We remark that condition (20) is satisfied if V(µ) = W 2

2
(µ, ν0).

3.3. Conservation of the Hamiltonian along minimizing paths. In the

next proposition, we prove conservation of the Hamiltonian along paths minimizing

AT over PT (µ, ν). We use a technique which is standard in the finite dimensional

setting. This technique has been applied to the Wasserstein setting by Ambrosio and

Figalli [1] when V ≡ 0.

Proposition 3.11. Assume that V : M → R is Borel and bounded on compact
subsets of M. Suppose σ minimizes AT over PT (µ, ν) and let v be the velocity of
minimal norm associated to σ. Then there exist N ⊂ [0, T ] a set of zero measure
and v

∗
: [0, T ] × R

d → R
d such that vt = v

∗
t for all t ∈ [0, T ] \ N and H(σt,v

∗
t ) is

independent of t.

Proof. We have AT (σ̄) < ∞, where σ̄ is the geodesic connecting µ to ν. Thus,

AT (σ) < ∞. Because V is bounded on compact subsets of M and σ([0, T ]) is a

compact set, we conclude that V ◦ σ ∈ L∞
(0, T ). Thus

t→ ‖vt‖
2

σt
∈ L1

(0, T ) and t→ H(σt,vt) ∈ L1

(0, T ). (29)

Let ϕ ∈ C∞
c (0, T ). We consider the functions Tε : [0, T ] → [0, T ] defined by

Tε(s) = s+ εϕ(s).

These are increasing diffeomorphisms for |ε| << 1. We denote by Sε the inverse of Tε.

It satisfies

Sε(t) = t− εϕ(t) + o(ε), Ṫε(Sε(t)) = 1 − εϕ̇(t) + o(ε). (30)

Here, ϕ̇(t) is the derivative of ϕ with respect to t. We define

σε
s := σTε(s) and v

ε
s := Ṫε(s)vTε(s) for s ∈ [0, T ],

where Ṫε(s) stands for the derivative of Tε(s) with respect to s. One readily checks

that v
ε

is the velocity of minimal norm associated to σε. Thus,

AT (σε
) =

∫ T

0

(

1

2
Ṫ 2

ε (s)‖vTε(s)‖
2

σTε(s)
− V(σTε(s))

)

ds

=

∫ T

0

(

1

2
Ṫε(Sε(t))‖vt‖

2

σt
−

1

Ṫε(Sε(t))
V(σt)

)

dt (31)

=

∫ T

0

(

L(σt,vt) − εϕ̇(t)H(σt,vt) + o(ε)
)

dt (32)

= AT (σ) − ε

∫ T

0

ϕ̇(t)H(σt,vt)dt+ o(ε). (33)
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The equality (31) is obtained by a change of variables whereas (32) is a consequence

of (30). To obtain (33) we have used the fact that, by (29),

t→ L(σt,vt) ∈ L1

(0, T ) and t→ ϕ̇(t)H(σt,vt) ∈ L1

(0, T ).

Since σε ∈ PT (µ, ν) and σ minimizes AT over PT (µ, ν), it follows from (33) that

∫ T

0

ϕ̇(t)H(σt,vt)dt = 0.

As ϕ ∈ C∞
c (0, T ) is arbitrary, this concludes the proof.

Remark 3.12. Let σ and v
∗ be as in proposition 3.11. The proposition implies

that t → ‖v∗
t ‖σt

∈ L∞
(0, T ). If, in addition V is continuous, then as V ◦ σ is also

continuous, we in fact have t→ ‖v∗
t ‖σt

∈ C[0, T ].

4. Hamilton-Jacobi equations on P2(R): Hamiltonians with smooth po-

tentials. In this section we study Hamilton-Jacobi equations in the metric space

M := P2(R). We recall that

X = (−1/2, 1/2) and ν0 = L1

| X .

Unlike the case d > 1, we can still prove existence of a minimizer of the action AT

over the set PT (ν, µ) while allowing the potential V(µ) to contain a term such as

Na(µ) = a
∫

R
y2dµ(y). For a > 0, the functional Na is not upper semicontinuous on

bounded subsets of M for the narrow convergence. This is a source of additional

difficulty which we overcome when d = 1.
For the sake of illustration, let us describe first some of the results we obtain in

a simple case. For parameters a ∈ R we define the Lagrangians:

La
(µ,w) =

1

2
(‖w‖2

µ − aM2(µ)) for µ ∈ M and w ∈ TµM,

where M2(µ) :=
∫

Rd |y|
2dµ(y) is the second moment of µ. The associated action is

AT (σ) :=

∫ T

0

La
(σt, vt)dt, σ ∈ AC2

(0, T ;M).

Here v is the velocity of minimal norm for σ. Suppose {σn}n∈N ⊂ PT (µ, ν) is such

that

sup

n∈N

∫ T

0

‖vn‖2

σn
t
dt <∞ and sup

n∈N

∫ T

0

M2(σ
n
t )dt <∞. (34)

Here, vn
is the velocity of minimal norm for σn

. Suppose in addition that for each t,
{σn

t }n∈N converges narrowly to σt as n tends to ∞. In general, we have

lim inf
n→∞

∫ T

0

‖vn
t ‖

2

σn
t
dt ≥

∫ T

0

‖vt‖
2

σt
dt, and lim inf

n→∞

∫ T

0

M2(σ
n
t )dt ≥

∫ T

0

M2(σt)dt.

(35)

Therefore, only if a ≤ 0 does (35) yield in general that

lim inf
n→∞

AT (σn
) ≥ AT (σ). (36)
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The fact that we do not know whether (36) holds for a > 0 is an obstruction to proving

existence of a minimizer of AT over PT (ν, µ) in that case when d ≥ 2. However, when

d = 1, it is shown in [9] that one can weaken the condition on a by only imposing

that T 2a < π2
and still conclude that (36) holds. We will use this to prove existence

of a path minimizing AT (σ) + U0(σ0) over PT (·, µ). Since M2 is continuous and σ is

continuous, the conservation of the Hamiltonian obtained in proposition 3.11 gives

that if we modify v on a set of zero measure then t → ‖vt‖σt
is continuous. Only in

one dimension are we able to obtain the stronger conclusion that for every t, ‖vt‖σt

equals the metric derivative |σ′|(t). That property shall be instrumental for proving

that U defined in (14) is a viscosity solution of (16).

In the sequel, we consider a class of Lagrangians which are more general than La
.

These are

L(µ,w) =
1

2

(

‖w‖2

µ − aM2(µ)
)

−W(µ) for (µ,w) ∈ T M,

where a ∈ R. The Hamiltonian associated to L is

H(µ,w) =
1

2

(

‖w‖2

µ + aM2(µ)
)

+ W(µ) for (µ,w) ∈ T M.

Similarly, we define

L̄(m,n) =
1

2

(

‖n‖2

ν0
− a‖m‖2

ν0

)

− W̄(m) for (m,n) ∈ L2

(ν0) × L2

(ν0),

where a ∈ R and the function W̄ : L2
(ν0) → R is defined by

W̄(m) := W(m#ν0) for m ∈ L2

(ν0). (37)

The Hamiltonian associated to L̄ is

H̄(m,n) =
1

2

(

‖n‖2

ν0
+ a‖m‖2

ν0

)

+ W̄(m) for (m,n) ∈ L2

(ν0) × L2

(ν0).

Remark 4.1. Let Mon be the set of m ∈ L2
(ν0) which are monotone nondecreas-

ing. Here ν0 := L1

|X and X = (−1/2, 1/2). It is well-known that I : Mon → P2(R)

defined by I(m) = m#ν0 is an isomorphism. It is shown in [9] that this induces a
map I : M ∈ H1

(0, T ;Mon) → AC2
(0, T ;P2(R)) defined by I(M)t = I(Mt) =: σt.

Furthermore, if v is the velocity of minimal norm associated to σ then vt ◦Mt = M ′
t

for almost every t ∈ (0, T ). Here, M ′ is the functional time derivative of M. Hence,
‖vt‖σt

= ‖M ′
t‖ν0

for almost every t ∈ (0, T ). Furthermore, if M̄ ∈ H1
(0, T ;L2

(ν0)) is
such that M̄t #ν0 = Mt #ν0, then ‖M ′

t‖ν0
≤ ‖M̄ ′

t‖ν0
for almost every t ∈ (0, T ).

Given U0 an initial real valued function defined on M, we introduce the aug-

mented actions

At(σ) :=

∫ t

0

L(στ , vτ )dτ + U0(σ0) for σ ∈ AC2

(0, t;M).

Here v is the velocity of minimal norm associated to σ. For these σ, let M ∈
H1

(0, t;L2
(ν0)) be uniquely determined by the fact that Mt pushes ν0 forward to σt
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and Mt is monotone nondecreasing. It follows from remark 4.1 that At(σ) = Bt(M),

where

Bt(M) :=

∫ t

0

L̄(Mτ ,M
′
τ )dτ + Ū0(M0). (38)

Here, M ′
stands for the functional derivative of M with respect to time, and the

function Ū0 : L2
(ν0) → R is defined by

Ū0(m) := U0(m#ν0) for m ∈ L2

(ν0). (39)

We impose that there exist 1 < p < 2, ē0 ≥ 0 and ē1 ∈ R such that

W(µ) ≤ ē0

∫

R

|y|pdµ(y) + ē1 for µ ∈ M. (40)

Note that this is equivalent to

W̄(m) ≤ ē0

∫

X

|m|pdx+ ē1 for m ∈ L2

(ν0). (41)

We also assume that Ū0 is λ–convex and the subdifferential ∂·Ū0(m) is nonempty for

every m ∈ L2
(ν0). We denote the element of minimal norm of that convex set by

∇L2Ū0(m).

4.1. Basic properties of augmented actions. The main results will be ob-

tained under the following assumptions: we suppose that Ū0 is Frechet differentiable,

λ–convex for some real number λ satisfying

(H1) Tλ− < 1 − 4a+T 2

π2 .

We suppose that W is upper semicontinuous for the narrow convergence on bounded

subsets of M:

(H2) lim supn→∞ W(µn
) ≤ W(µ) whenever {µn}n∈N is bounded in M and converges

narrowly to µ.

Occasionally, we will assume that the superdifferential ∂·W̄(m) is nonempty at every

m ∈ L2
(ν0) and so, its element of minimal norm ∇L2W̄(m) exists. In that case, we

assume that

(H3) m −→ ∇L2W̄(m) is Borel and bounded on compact subsets of L2
(ν0).

We introduce the bilinear and quadratic functionals onH1
(0, T ;L2

(ν0)) as follows

BT (M,N) :=

∫ T

0

∫

R

(M ′
τN

′
τ − aMτNτ )dν0dτ, 2QT (M) := BT (M,M).

We first point out that elementary computations yield, if R ∈ H1
(0, T ;L2

(ν0)),

‖Rt‖ν0
≤ ‖RT ‖ν0

+

√
T − t

(

∫ T

t

‖R′
τ‖

2

ν0
dτ

)

1/2

for t ∈ [0, T ]. (42)

If, in addition RT = 0, we recall a sharper inequality, the Poincaré-Wirtinger inequal-

ity given in proposition 2.1:

π2

∫ T

0

‖Rτ‖
2

ν0
dτ ≤ 4T 2

∫ T

0

‖R′
τ‖

2

ν0
dτ. (43)
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Hence,

2QT (R) ≥
(

1 − 4
a+T 2

π2

)

∫ T

0

‖R′
τ‖

2

ν0
dτ. (44)

Remark 4.2. Suppose Ū0 is λ–convex and its subdifferential ∂·Ū0(m) is nonempty
for every m ∈ L2

(ν0). Let M,N ∈ AC2
(0, T ;L2

(ν0)) be such that MT = NT . Then

QT (N) + Ū0(N0) ≥ QT (M) + Ū0(M0) + BT (M,N −M) + 〈∇L2Ū0(M0), N0 −M0〉ν0

+
1

2

(

1 − 4a+
T 2

π2
− Tλ−

)

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ. (45)

Proof. Setting R = M −N and t = 0 in (42) we have

‖M0 −N0‖
2

ν0
≤ T

∫ T

0

‖M ′
τ −N ′

τ‖
2

ν0
dτ. (46)

It is straightforward to obtain

QT (N) + Ū0(N0) ≥ QT (M) + Ū0(M0) + BT (M,N −M) + 〈∇L2Ū0(M0), N0 −M0〉ν0

+ QT (N −M) +
λ

2
‖M0 −N0‖

2

ν0
. (47)

We use (44), (46) and (47) to obtain (45).

Corollary 4.3. Suppose Ū0 is λ–convex, its subdifferential ∂·Ū0(m) is nonempty
for every m ∈ L2

(ν0) and π2 − 4a+T 2 ≥ π2Tλ−. Let {Mn}n∈N be a sequence in
AC2

(0, T ;L2
(ν0)) such that for each t ∈ [0, T ], {Mn

t }n converges weakly to Mt in
L2

(ν0). Then

lim inf
n→∞

{QT (Mn
) + Ū0(M

n
0
)} ≥ QT (M) + Ū0(M0).

Proof. By lemma 3 in [9], {Mn}n converges weakly to M in L2
(X × (0, T )) and

{(Mn
)
′}n converges weakly to M ′

in L2
(X × (0, T )). Thus,

lim
n→∞

BT (M,Mn −M) = 0.

This, together with remark 4.2 and the fact that

lim
n→∞

〈∇L2 Ū0(M0),M
n
0
−M0〉ν0

= 0,

yields the proof. To apply remark 4.2, we have used that π2 − 4a+T 2 ≥ π2Tλ−.

We now show a coercivity property of the action BT defined in (38).

Lemma 4.4 (Coercivity). Suppose Ū0 is λ–convex and its subdifferential ∂·Ū0(m)

is nonempty for every m ∈ L2
(ν0). Suppose W̄ satisfies (41). Let M,N ∈

AC2
(0, T ;L2

(ν0)) be such that MT = NT . Then, for each δ > 0, we have

BT (N) ≥ QT (M) + Ū0(M0) +
1

2

(

1 − 4a+
T 2

π2
− 2bδ − Tλ− − δ

)

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ

− cδ −
1

2δ





√
T‖∇L2Ū0(M0)‖ν0

+

√

∫ T

0

‖M ′
τ‖

2

ν0
dτ +

2|a|T

π

√

∫ T

0

‖Mτ‖2

ν0
dτ





2

,



HAMILTON-JACOBI EQUATIONS IN THE WASSERSTEIN SPACE 171

where the constants bδ and cδ are defined by

π2bδ := 4ē0p T
2δ

2

p and 2cδ := 2ē1T + 2ē0pδ
2

p

∫ T

0

‖Mτ‖
2

ν0
dτ + ē0(2 − p)Tδ

2

p−2 .

Proof. Young’s inequality yields that for every δ > 0,

|M |p ≤
pδ

2

p

2
|M |2 +

2 − p

2
δ

2

p−2 .

We use this, together with (41) and (43) in which we set R = M −N to obtain

∫ T

0

W̄(Nτ )dτ ≤ cδ + bδ

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ. (48)

We combine (45) and (48) to obtain

BT (N) ≥ QT (M) + Ū0(M0) + BT (M,N −M) + 〈∇L2Ū0(M0), N0 −M0〉ν0

+
1

2

(

1 − 4a+
T 2

π2
− Tλ− − 2bδ

)

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ − cδ. (49)

Note that Hölder’s inequality and (42) with R = N −M yield

|〈∇L2 Ū0(M0), N0 −M0〉ν0
| ≤

√
T ‖∇L2Ū0(M0)‖ν0

(

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ

)
1

2

(50)

and

|BT (M,N −M))| ≤

√

∫ T

0

‖M ′
τ‖

2

ν0
dτ

√

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ

+ |a|

√

∫ T

0

‖Mτ‖2

ν0
dτ

√

∫ T

0

‖Nτ −Mτ‖2

ν0
dτ

≤

√

∫ T

0

‖M ′
τ‖

2

ν0
dτ

√

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ

+ |a|

√

∫ T

0

‖Mτ‖2

ν0
dτ

√

4T 2

π2

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ . (51)

We combine (49)–(51) to get

BT (N) ≥ QT (M) + Ū0(M0)

−

sZ T

0

‖N ′
τ − M ′

τ‖
2
ν0

dτ
�√

T‖∇L2 Ū0(M0)‖ν0
+

sZ T

0

‖M ′
τ‖

2
ν0

dτ +
2|a|T

π

sZ T

0

‖Mτ‖2
ν0

dτ
�

+
1

2

�
1 − 4a+ T 2

π2
− 2bδ − Tλ−

�Z T

0

‖N ′
τ − M ′

τ‖
2
ν0

dτ − cδ.

Using Young’s inequality to estimate the expression in the second line above, we

conclude the proof.

Remark 4.5. Let {mn}n∈N ⊂ L2
(ν0) be a sequence of monotone nondecreasing

maps converging weakly to m in L2
(ν0). Since {mn}n∈N is bounded in L2

(ν0), by re-
mark 6 of [9], it is bounded in BVloc(X). The Sobolev Embedding theorem ensures that
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{mn}n∈N converges to m in L1

loc(X). In fact, because X is a bounded set, {mn}n∈N

converges to m in Lp
(ν0) for all 1 ≤ p < 2.

Corollary 4.6. Suppose W satisfies (H2) and the growth condition (40). Let
{Mn}n∈N be a sequence in L2

(0, T ;L2
(ν0)) such that Mn

t is monotone nondecreasing
for every t in [0, T ]. Suppose that for each t ∈ [0, T ], {Mn

t }n converges weakly to Mt

in L2
(ν0). Then

lim sup
n→∞

∫ T

0

W̄(Mn
t )dt ≤

∫ T

0

W̄(Mt)dt.

Proof. For t ∈ [0, T ] we define

σn
t := (Mn

t )#ν0 and σt := Mt #ν0.

By remark 4.5, {Mn
t }n∈N converges to Mt in Lp

(ν0) for any 1 ≤ p < 2. Hence,

lim
n→∞

ē0

∫

X

|Mn
t |

pdx+ ē1 = ē0

∫

X

|Mt|
pdx+ ē1 (52)

and {σn
t }n∈N converges narrowly to σt. Thus,

lim inf
n→∞

−W̄(Mn
t ) = lim inf

n→∞
−W(σn

t ) ≥ −W(σt) = −W̄(Mt).

This, together with (52), (41) and Fatou’s lemma, yields

∫ T

0

dt

∫

X

ē0|Mt|
pdx + lim inf

n→∞

∫ T

0

−W̄(Mn
t )dt = lim inf

n→∞

∫ T

0

(

∫

X

ē0|M
n
t |

p − W̄(Mn
t )

)

dt

≥

∫ T

0

lim inf
n→∞

(

∫

X

ē0|M
n
t |

p − W̄(Mn
t )

)

dt

≥

∫ T

0

(

∫

X

ē0|Mt|
p − W̄(Mt)

)

dt.

This proves the corollary.

Remark 4.7 (Strict convexity). Suppose Ū0 is λ–convex, −W̄ is l–convex and
the subdifferentials ∂·Ū0(m), ∂·(−W̄)(m) are nonempty for every m ∈ L2

(ν0). Assume
also that W̄ satisfies (H3) and the growth condition (40). If M,N ∈ AC2

(0, T ;L2
(ν0))

are such that MT = NT then

BT (N) ≥ BT (M) + BT (M,N −M) + 〈∇L2Ū0(M0), N0 −M0〉ν0
(53)

−

∫ T

0

〈∇L2W̄(Mτ ), Nτ −Mτ 〉ν0
dτ + c(T, l, λ, a)

∫ T

0

‖N ′
τ −M ′

τ‖
2

ν0
dτ.

Here, 2c(T, l, λ, a) = 1 − 4(a+
+ l−)

T 2

π2 − Tλ−. Hence, if c(T, l, λ, a) > 0, then BT is
strictly convex on PT (·,m) for every m ∈ L2

(ν0).

Corollary 4.8. Suppose Ū0 is λ–convex, −W̄ is l–convex and their subdiffer-
entials ∂·Ū0(m), ∂·(−W̄)(m) are nonempty for every m ∈ L2

(ν0). Assume also (H3)

and (40) are satisfied and 1 − 4(a+
+ l−)T 2/π2 ≥ Tλ−. Let {Mn}n∈N be a sequence

in AC2
(0, T ;L2

(ν0)) such that for each t ∈ [0, T ], {Mn
t }n converges weakly to Mt in

L2
(ν0). Then

lim inf
n→∞

BT (Mn
) ≥ BT (M).

Proof. Use remark 4.7 in place of remark 4.2 in the proof of corollary 4.3.
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4.2. Existence of viscosity solutions for the Cauchy problem. We will

show that the value function U defined in (14) is a minimum which satisfies the

Hamilton-Jacobi equation (16). Our study includes “linear” functionals of the form

U0(µ) =

∫

R

u0dµ,

where u0 ∈ C1
(R) is λ–convex as a function defined on R and −C ≤ u0(t) ≤ C(|t|2+1)

for some C > 0. In that case Ū0(M) =
∫

X
u0 ◦Mdν0.

Theorem 4.9. (i) Suppose (H1), (H2) and (40) hold. Assume also Ū0 is bounded
below and the subdifferential ∂.Ū0(m) is nonempty for every m ∈ L2

(ν0). Then for
any monotone nondecreasing function m ∈ L2

(ν0), we have BT admits a minimizer
Mo over PT (·,m).
(ii) Suppose in addition (H3) holds, −W̄ is l–convex, ∂.(−W̄)(m) is nonempty for
every m and Tλ− + 4(a+

+ l−)T 2/π2 < 1. Then the minimizer of BT over PT (·,m)

is unique.
(iii) In addition to the assumptions in (i), suppose that W̄, Ū0 are differentiable and
∇L2W̄ is continuous. Then Mo ∈ H2

(0, T ;L2
(ν0)) and satisfies the Euler-Lagrange

equation

(Mo
t )

′′

+ aMo
t = −∇L2W̄(Mo

t ), Mo
T = m, (Mo

)
′
0

= ∇L2 Ū0(M
o
0
). (54)

(iv) If the assumptions in (ii) holds then any element of PT (·,m) which is a solution
for (54) minimizes BT over PT (·,m).

Proof. Suppose the assumptions in (i) hold. Let M̄t ≡ m for all t ∈ [0, T ].

Since BT (M̄) is finite, we conclude that BT is not identically +∞ on PT (·,m).
This, together with the facts Ū0 is bounded below and W satisfies (40), implies that

inf {BT (M) : M ∈ PT (·,m)} is finite. Because of (H1) we may choose δ > 0 small

enough so that 0 < 1 − 4a+ T 2

π2 − 2bδ − Tλ− − δ, where bδ is the constant given in

lemma 4.4. Lemma 4.4 and the Poincaré-Wirtinger inequality (43) yield that the

sublevel sets of BT over PT (·,m) are bounded subsets of H1
(0, T ;L2

(ν0)). Hence,

every minimizing sequence {Mn}n∈N of BT over PT (·,m) is a bounded subset of

H1
(0, T ;L2

(ν0)). By remark 5 of [9] and the fact that m is monotone nondecreasing,

we may assume without loss of generality that for each t ∈ [0, T ], Mn
t is monotone

nondecreasing. We apply proposition 4 of [9] to obtain a subsequence of {Mn}n∈N

and Mo ∈ H1
(0, T ;L2

(ν0)) such that for each t ∈ [0, T ], {Mn
t }n∈N converges weakly

in L2
(ν0) to Mo

t . It then follows from remark 4.5 that for each t ∈ [0, T ], {Mn
t }n∈N

converges strongly to Mo
t in Lp

(ν0) for all 1 ≤ p < 2. Hence Mo
t is monotone non-

decreasing and Mo ∈ PT (·,m). We apply corollary 4.3 and corollary 4.6 to conclude

that

lim inf
n→∞

BT (Mn
) ≥ BT (Mo

).

This proves that Mo
mininizes BT over PT (·,m). Under the assumptions in (ii),

remark 4.7 gives that BT is strictly convex on the convex set PT (·,m). This ensures

uniqueness of the minimizer.

Suppose that the assumptions in (iii) hold. Let M ∈ H1
(0, T ;L2

(ν0)) be such
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that MT ≡ 0. Because Mo
+ εM ∈ PT (·,m) for every ε ∈ R we have

0 =
d

dε
BT (Mo

+ εM)|ε=0

= BT (Mo,M) + 〈∇L2 Ū0(M
o
0
),M0〉ν0

−

∫ T

0

〈∇L2W̄(Mo
τ ),Mτ 〉ν0

dτ (55)

=

∫ T

0

(

〈(Mo
τ )

′,M ′
τ 〉ν0

− 〈aMo
τ + ∇L2W̄(Mo

τ ),Mτ 〉ν0

)

dτ + 〈∇L2Ū0(M
o
0
),M0〉ν0

.

This proves that Mo ∈ H2
(0, T ;L2

(ν0)) and (54) holds. To obtain (55), we have used

that the function f : [0, T ]× [0, 1] → L2
(ν0) defined by f(t, s) = ∇L2W̄(Mo

t + sMt) is

continuous and so, it is bounded on the compact set [0, T ] × [0, 1]. Hence,

lim
ε→0

∫ T

0

W̄(Mo
t + εMt) − W̄(Mo

t )

ε
dt = lim

ε→0

∫ T

0

dt

∫

1

0

〈∇L2W̄(Mo
t + εsMt),Mt〉ν0

ds

=

∫ T

0

〈∇L2W̄(Mo
t ),Mt〉ν0

dt.

Suppose now that the assumptions in (iv) hold. Let M̄ ∈ PT (·,m) be a solution

for (54). Then for any M ∈ H1
(0, T ;L2

(ν0)) satisfying MT ≡ 0, we have

BT (M̄,M) + 〈∇L2 Ū0(M̄0),M0〉ν0
−

∫ T

0

〈∇L2W̄(M̄τ ),Mτ 〉ν0
dτ = 0. (56)

Now for any N ∈ PT (·,m), by setting M := N − M̄ in (56) and using remark 4.7 we

conclude that BT (N) > BT (M̄) unless N = M̄. In particular, we have proved that

BT (N) ≥ BT (M̄) for all N ∈ PT (·,m) which means M̄ is a minimizer of BT over

PT (·,m).

Corollary 4.10. Suppose as in theorem 4.9 that (H1), (H2), (40) hold, Ū0 is
bounded below and ∂.Ū0(m) is nonempty for every m. Then for any µ ∈ M, we have
AT admits a minimizer σo over PT (·, µ). If in addition (H3) holds, −W̄ is l–convex,
∂.(−W̄)(m) is nonempty for every m and Tλ− + 4(a+

+ l−)T 2/π2 < 1, then σo is
unique.

Proof. This is a direct consequence of remark 4.1 and theorem 4.9. Indeed,

suppose µ ∈ M and let m ∈ L2
(ν0) be the monotone nondecreasing map satisfying

m#ν0 = µ. It then follows from remark 4.1 that Mo
minimizes BT over PT (·,m)

if and only if I(Mo
) minimizes AT over PT (·, µ). Here, I is the map defined in

remark 4.1. We now use theorem 4.9 to conclude the proof of the corollary.

Remark 4.11. Suppose as in theorem 4.9 that (H1), (H2), (H3), (40) hold and
Ū0 is bounded below. Assume also −W̄ is l–convex, ∂.(−W̄)(m) and ∂.Ū0(m) are
nonempty for every m, and Tλ− + 4(a+

+ l−)T 2/π2 < 1. For each m ∈ L2
(ν0) we

define by m∗ the monotone rearrangement of m characterized by the facts that m∗ is
monotone nondecreasing and m∗

#
ν0 = m#ν0. Suppose E ⊂ L2

(ν0) is a convex set such
that for any m ∈ E we have m∗ ∈ E. Then one can readily check that the arguments
used in the proof of theorem 4.9 can be applied to prove that if m ∈ E then BT admits
a unique minimizer over the set of ET of all M ∈ PT (·,m) such that Mt ∈ E for all
t ∈ [0, T ].

The following corollary ensures the continuity of the value function U .
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Corollary 4.12. Suppose (H1), (H2) and (40) hold, and W is bounded below
on bounded subsets of M. Assume also Ū0 is bounded below and the subdifferential
∂.Ū0(m) is nonempty for every m ∈ L2

(ν0). Then the value function U is continuous
on QT .

Proof. We know that U : QT −→ R. Since U is upper semicontinuous by

lemma 3.7, it suffices to prove that U is lower semicontinuous. Suppose (µn, tn) →
(µ, t) in QT and let ε > 0. Let mn and m be the monotone nondecreasing maps

satisfying mn#ν0 = µn and m#ν0 = µ. For each n, we can find a path σn ∈ Ptn
(·, µn)

such that

U(µn, tn) + ε ≥

∫ tn

0

L(σn
τ ,v

n
τ )dτ + U0(σ

n
(0)).

Let σ̄n
(τ) := σn

(
tnτ

t ), for τ ∈ [0, t]. Also, for each n and τ , let Mn
τ be the monotone

nondecreasing map that pushes ν0 forward to σ̄n
τ . Then we have Mn ∈ Pt(·,mn) and

the above inequality can be rewritten as

U(µn, tn)+ ε ≥
tn
t

∫ t

0

L(σ̄n
τ , v̄

n
τ )dτ +U0(σ̄

n
(0)) =

tn
t

∫ t

0

L̄(Mn
τ , (M

n
)
′
τ )dτ + Ū0(M

n
0
).

(57)

Since lim supn→∞ U(µn, tn) ≤ U(µ, t) < +∞, by arguing similarly as in the proof of

theorem 4.9 (i) we see that there exist a subsequence of {Mn}n and M ∈ Pt(·,m)

such that for each τ ∈ [0, t], {Mn
τ }n converges weakly in L2

(ν0) to Mτ . Furthermore,

lim inf
n→∞

{

tn
t

∫ t

0

L̄(Mn
τ , (M

n
)
′
τ )dτ + Ū0(M

n
0
)

}

≥

∫ t

0

L̄(Mτ ,M
′
τ )dτ + Ū0(M0). (58)

We note that to obtain the analogous results of lemma 4.4, corollary 4.3 and corol-

lary 4.6, we need to use the following Poincaré-Wirtinger inequality (see proposi-

tion 2.1): for any N ∈ Pt(·,m),

(
∫ t

0

‖Mn
τ −Nτ‖

2

ν0
dτ

)1/2

≤
2t

π

(
∫ t

0

‖(Mn
)
′
τ −N ′

τ‖
2

ν0
dτ

)1/2

+

√
t‖mn −m‖ν0

.

Now let στ := Mτ#ν0 for τ ∈ [0, t]. Then σ ∈ Pt(·, µ) and hence by using (57), (58)

and the fact Mτ is monotone nondecreasing for every τ ∈ [0, t], we obtain

lim inf
n→∞

U(µn, tn) + ε ≥

∫ t

0

L̄(Mτ ,M
′
τ )dτ + Ū0(M0)

=

∫ t

0

L(στ ,vτ )dτ + U0(σ(0)) ≥ U(µ, t).

This concludes the proof.

Theorem 4.13. Suppose (H1), (H2), (40) hold and W̄ is bounded below on
bounded subsets of L2

(ν0). Assume W̄ is differentiable and ∇L2W̄ is continuous.
Suppose also that Ū0 is differentiable and bounded below. Then the value function U
defined in (14) is a viscosity solution for (16).

Proof. We have from corollary 4.12 that U is continuous on QT . Also by the-

orem 3.9 (i), U is a viscosity subsolution for (16). It remains to show that it is a
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viscosity supersolution. For that fix (µ, t) ∈ QT and let (ζ, θ) ∈ ∂·U(µ, t). Corollary

4.10 ensures existence of a minimizer σ in (14). For 0 ≤ s ≤ t we denote by Ms

the unique monotone nondecreasing map pushing ν0 forward to σs. It follows that M
minimize Bt over Pt(·,Mt) and hence theorem 4.9 (iii) yields M ∈ H2

(0, t;L2
(ν0)).

Fix 0 < ε < t. By the semigroup property of lemma 2.4 and remark 4.1,

U(µ, t) − U(σt−ε, t− ε) =

∫ t

t−ε

L(στ , vτ )dτ =

∫ t

t−ε

L̄(Mτ ,M
′
τ)dτ. (59)

Let γε := (Mt ×Mt−ε)#ν0 ∈ Γo(σt, σt−ε). We use (59) to obtain

1

ε

∫ t

t−ε

L̄(Mτ ,M
′
τ )dτ =

U(µ, t) − U(σt−ε, t− ε)

ε

≤

∫

R×R

〈ζ(x),
x− y

ε
〉dγε(x, y) + θ +

1

ε
o(W2(σt−ε, σt)) +

o(ε)

ε

=

∫

X

〈ζ(Mtx),
Mtx−Mt−εx

ε
〉dx + θ +

o(W2(σt−ε, σt))

W2(σt−ε, σt)

‖Mt −Mt−ε‖ν0

ε
+
o(ε)

ε
.

(60)

Letting ε tend to 0
+

in (60) and using the fact M ∈ H2
(0, t;L2

(ν0)), we conclude

that

−θ ≤

∫

X

〈ζ(Mtx),M
′
tx〉dx − L̄(Mt,M

′
t) ≤ H̄(Mt, ζ ◦Mt) = H(µ, ζ).

Therefore, the second inequality in (12) holds and we conclude the proof of the theo-

rem.

We end this section by showing that the value function U enjoys a semiconcavity

property. We first give the definition of semiconcave funtions on P2(R).

Definition 4.14. We say that a function v : P2(R) → R is semiconcave if there
exists a constant C such that for every µ1, µ2 ∈ P2(R), we have

(1−α)v(µ1)+αv(µ2)−v (((1 − α)T1 + αT2)#ν0) ≤ α(1−α)CW 2

2
(µ1, µ2) ∀α ∈ [0, 1],

where T1 and T2 are the monotone nondecreasing maps satisfying T1#ν0 = µ1 and
T2#ν0 = µ2.

In the following result, U0 is only required to be bounded below.

Proposition 4.15. Suppose W satisfies (40) and W̄ is κ-convex on L2
(ν0).

Suppose also U0 is bounded below. Then the value function U(·, t) is semiconcave for
any t > 0 satisfying 4at2 < π2. More precisely, for every µ1, µ2 ∈ M and α ∈ [0, 1],
we have

(1 − α)U(µ1, t) + αU(µ2, t) − U (((1 − α)T1 + αT2)#ν0, t)

≤
α(1 − α)

2

(

1

t
−

(a+ κ)t

3

)

W 2

2
(µ1, µ2).

Here T1 and T2 are the monotone nondecreasing maps satisfying T1#ν0 = µ1 and
T2#ν0 = µ2.
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Proof. Notice that due to (40), 4at2 < π2
and U0 is bounded below, we ob-

tain from the Poincaré-Wirtinger inequality that U(µ, t) > −∞ for all µ ∈ P2(R).

Therefore, if we let ε > 0 then there exists σ ∈ Pt(·, ((1 − α)T1 + αT2)#ν0) such that

U(((1 − α)T1 + αT2)#ν0, t) ≥

∫ t

0

L(σs, σ̇s) ds+ U0(σ(0)) − ε. (61)

For each s ∈ [0, t], let Ms be the monotone nondecreasing map pushing ν0 to σs. As

σt = ((1 − α)T1 + αT2)#ν0, we have Mt = (1 − α)T1 + αT2. For s ∈ [0, t], define

σ1

s :=

(

Ms +
s

t
α(T1 − T2)

)

#

ν0 and σ2

s :=

(

Ms −
s

t
(1 − α)(T1 − T2)

)

#

ν0.

Then we have σ1

t = T1#ν0 and σ2

t = T2#ν0. This together with (61) yields

(1 − α)U(T1#ν0, t) + αU(T2#ν0, t) − U(((1 − α)T1 + αT2)#ν0, t)

≤ (1 − α)

Z t

0

L(σ1
s , σ̇

1
s) ds + α

Z t

0

L(σ2
s , σ̇

2
s) ds −

Z t

0

L(σs, σ̇s) ds + ε

=
1

2

Z t

0

�
(1 − α)

Z
R

|σ̇1
s(x)|2 dσ

1
s(x) + α

Z
R

|σ̇2
s(x)|2 dσ

2
s(x) −

Z
R

|σ̇s(x)|2 dσs(x)

�
ds

−
a

2

Z t

0

�
(1 − α)M2(σ

1
s) + αM2(σ

2
s) − M2(σs)

�
ds

−

Z t

0

�
(1 − α)W(σ1

s) + αW(σ2
s) −W(σs)

�
ds + ε

≤
1

2

Z t

0

Z
R

�
(1 − α)|Ṁs +

α

t
(T1 − T2)|

2 + α|Ṁs −
(1 − α)

t
(T1 − T2)|

2 − |Ṁs|
2

�
dν0(x) ds

−
a

2

Z t

0

Z
R

h
(1 − α)|Ms +

s

t
α(T1 − T2)|

2 + α|Ms −
s

t
(1 − α)(T1 − T2)|

2 − |Ms|
2
i

dν0(x) ds

−

Z t

0

h
(1 − α)W̄(Ms +

s

t
α(T1 − T2)) + αW̄(Ms −

s

t
(1 − α)(T1 − T2)) − W̄(Ms)

i
ds + ε.

It follows from this and the assumption W̄ is κ-convex on L2
(ν0) that

(1 − α)U(T1#ν0, t) + αU(T2#ν0, t) − U(((1 − α)T1 + αT2)#ν0, t)

≤
α(1 − α)

2

[

1

t
−
at

3
−
κt

3

]

‖T1 − T2‖
2

ν0
+ ε.

Since ‖T1 − T2‖ν0
= W2(µ1, µ2) and ε > 0 is arbitrary, we conclude the proof.

5. An example of non smooth potential: the 1-d Euler Poisson system.

In this section, we assume that we are given a function Ū0 which is differentiable

such that

(H4) {∇L2Ū0(mn)}∞n=1
converges to ∇L2Ū0(m) whenever {mn}

∞
n=1

converges to m
in L2

(ν0).

In the previous section we dealt with smooth potentials. From the point of view of

Fluid Mechanics, it is interesting to extend the study to include cases of non smooth

potentials. We consider the potential

W(µ) = −1/4

∫

R×R

|x− x̄|dµ(x)dµ(x̄). (62)
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Up to a multiplicative constant, this is the Green function for the Poisson equation.

That potential was considered in [9] and [10] in the study of some versions of the

Euler-Poisson system.

Remark 5.1. Writing

W 2

2
(µ, ν0) =

∫

R

y2dµ(y) + 2W(µ) +
1

12

and knowing that W 2

2
(·, ν0) is differentiable on M, (cf. e.g. [3]), we obtain that W

is differentiable everywhere on M. However, W̄(m) := W(m#ν0) is not differentiable
everywhere on L2

(ν0).

In the sequel, we work with the Lagrangian

L(µ,w) =
1

2
‖w‖2

µ −
1

2

∫

R

y2dµ(y) +
1

4

∫

R×R

|y − ȳ|dµ(y)dµ(ȳ).

5.1. Existence of viscosity solutions.

Theorem 5.2. Suppose both (H1) (with a = 1) and (H4) hold. Assume also
Ū0 is differentiable and bounded below. Let m ∈ L2

(ν0) be monotone nondecreasing.
Then, there is a unique minimizer of BT over PT (·,m). Also, M is a minimizer of
BT over PT (·,m) if and only if it satisfies the Euler-Lagrange equation

M
′′

t x+Mtx =
1

2

∫

X

ωt(x, x̄)dx, MT = m, M ′
0

= ∇L2 Ū0(M0). (63)

for some ω : X × X × (0, T ) → R such that ωt(x, x̄) = −ωt(x̄, x) and ωt(x, x̄) ∈
∂·| · |(Mtx−Mtx̄).

Proof. Let us define

C̄T (m0,m1) := inf

{
∫ T

0

L̄(Mt,M
′
t)dt : M ∈ PT (m0,m1)

}

. (64)

By theorem 4.9, BT admits a unique minimizer Mo
over PT (·,m). If we set m0 = Mo

0

and m1 = Mo
T then Mo

is the unique minimizer in (64). By proposition 7 [9], the

differential equation in (63) holds.

For ε > 0 let W ε ∈ C2
(R) be an even, convex function such that

0 = W ε
(0) = minW ε, ‖W ε −W‖∞ ≤ ε, ‖(W ε

)
′‖∞ ≤ 1 + ε, ‖(W ε

)
′′‖∞ <∞.

Here, W (ω) := |ω|. We introduce the Lagrangian

L̄ε
(m,n) =

1

2

(

||n||2ν0
−||m||2ν0

)

−W̄ε
(m), W̄ε

(m) := −
1

4

∫

X×X

W ε
(m(x)−m(x̄))dxdx̄.

The associated Hamiltonian is

H̄ε
(m,n) =

1

2

(

||n||2ν0
+ ||m||2ν0

)

+ W̄ε
(m).

We introduce the augmented action as

B̄
ε
T (M) =

∫ T

0

L̄ε
(Mτ ,M

′
τ )dτ + Uo(M0).
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Note that

|B̄ε
T − B̄T | ≤

ε

4
. (65)

By theorem 4.9, B
ε
T admits a unique minimizer over PT (·,m), namely M ε ∈

H2
(0, T ;L2

(ν0)) satisfying

(M ε
)
′′
t +M ε

t = −∇L2Wε
(M ε

t ) and (M ε
)
′
0

= ∇L2Ū0(M
ε
0
). (66)

By remark 4.1 and the fact that m is monotone nondecreasing and M ε
is the unique

minimizer, we have that M ε
t is monotone nondecreasing for each t ∈ [0, T ]. By (65)

B̄T (M ε
) ≤

ε

4
+ B̄

ε
T (M ε

) ≤
ε

4
+ B̄

ε
T (Mo

) ≤
ε

2
+ B̄T (Mo

). (67)

This, together with lemma 4.4 and again (65) gives that

sup

ε∈(0,1)

∫ T

0

||(M ε
)
′
t||

2

ν0
dt <∞. (68)

Since ||(W ε
)
′||∞ ≤ 1 + ε, we have that

||∇L2W̄ε||ν0
≤ (1 + ε)/2 ≤ 1. (69)

We use (68) and the fact that

||M ε
t ||

2

ν0
≤ 2||m||2ν0

+ 2T

∫ T

0

‖(M εk)
′
τ‖

2

ν0
dτ

to conclude that

sup
ε,t

{‖M ε
t ‖

2

ν0
: t ∈ [0, T ], ε ∈ (0, 1)} <∞. (70)

We combine (66) and (68) to conclude that

sup
ε,t

{‖(M ε
)
′′
t ‖

2

ν0
: t ∈ [0, T ], ε ∈ (0, 1)} <∞. (71)

We use (68), (70) and (71) to obtain a sequence εk ⊂ (0, 1) converging to 0 as k tends

to ∞ and M∗ ∈ H2
(0, T ;L2

(ν0)) such that respectively {(M εk)”}k∈N, {(M εk)
′}k∈N

and {(M εk)}k∈N converge respectively weakly in L2
(X × (0, T )) to (M∗

)”, (M∗
)
′

and M∗. Furthermore, as in the proof of theorem 4.9 that there exists a subsequence

of εk ⊂ (0, 1) we don’t relabel such that for each t ∈ [0, T ], {(M εk)
′
t}k∈N converges

weakly to M∗
t in L2

(ν0) and {M εk

t }k∈N converges strongly to M∗
t in Lp

(ν0) for 1 ≤
p < 2. Naturally, M∗ ∈ PT (·,m).

We use (67) and then apply corollary 4.3 and corollary 4.6 to conclude that

BT (Mo
) ≥ lim sup

k→∞

BT (M εk) ≥ lim inf
k→∞

BT (M εk) ≥ BT (M∗
). (72)

Since M∗
t ∈ PT (·,m) and Mo

is the unique minimizer of BT over PT (·,m), (67) yields

M∗
= Mo

and so,

BT (Mo
) = lim

k→∞
BT (M εk) = BT (M∗

). (73)
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By remark 4.7, there exists a constant c > 0 such that

B
ε
T (M ε

) ≥ B
ε
T (Mo

) + BT (Mo,M ε −Mo
) + 〈∇L2 Ū0(M0),M

ε
0
−Mo

0
〉ν0

(74)

−

∫ T

0

〈∇L2W̄ε
(Mo

τ ),M ε
τ −Mo

τ 〉ν0
dτ + c

∫ T

0

‖(M ε
)
′
τ − (Mo

)
′
τ‖

2

ν0
dτ.

By (65), (69) and (75)

ε

2
+ BT (M ε

) ≥ −
ε

2
+ BT (Mo

) + BT (Mo,M ε −Mo
) + 〈∇L2 Ū0(M0),M

ε
0
−Mo

0
〉ν0

−

∫ T

0

||M ε
τ −Mo

τ ||L1
(ν0)

dτ + c

∫ T

0

‖(M ε
)
′
τ − (Mo

)
′
τ‖

2

ν0
dτ. (75)

We use (73), (75), the fact that {M εk}k∈N and {(M εk)
′}k∈N converge respectively

weakly to M and M ′
in L2

(X × (0, T )) to conclude that

BT (Mo
) ≥ BT (Mo

) + c lim
k→∞

∫ T

0

‖(M εk)
′
τ − (Mo

)
′
τ‖

2

ν0
dτ.

Thus,

lim
k→∞

∫ T

0

‖(M εk)
′
τ − (Mo

)
′
τ‖

2

ν0
dτ = 0

and so,

lim sup

k→∞

||M εk

0
−Mo

0
||2ν0

≤ lim
k→∞

T

∫ T

0

‖(M εk)
′
τ − (Mo

)
′
τ‖

2

ν0
dτ = 0. (76)

To obtain the previous inequality we have used the fact that M εk

T − Mo
T = 0 and

a simple computation. We now use (76), the second identity in (66), the fact that

{(M εk)
′
0
}k∈N converges weakly to (M∗

)
′
0

in L2
(ν0) and the assumption (H4) to con-

clude that (Mo
)
′
0

= ∇L2Ū0(M
o
0
).

It remains to prove that every solution of the Euler-Lagrange equations (63) is a

minimizer of BT over PT (·,m). We skip the proof as it is similar to that of theorem

4.9. We also refer the reader to proposition 7 [9].

Corollary 5.3. Suppose both (H1) (with a = 1) and (H4) hold. Assume also
Ū0 is differentiable and bounded below. Then the value function U defined in (1) is a
viscosity solution for the Hamilton-Jacobi equation (2).

Proof. By corollary 4.12 and theorem 3.9 (i), we only need to show that U is a

viscosity supersolution. To prove this, we argue as in the proof of theorem 4.13 and

use theorem 5.2 instead of theorem 4.9 (iii).

5.2. Connection with the finite dimensional case. The following result

connects our infinite-dimensional objects with the corresponding finite-dimensional,

classical restrictions.

Proposition 5.4. Suppose that U0 : P2(R) → R satisfies (H1) (with a = 1) and
(H4). Assume also Ū0 is differentiable and bounded below. Then the viscosity solution
U given by (1) for our infinite-dimensional Hamilton-Jacobi with initial data U0 has
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the following property: if µn
x

= (1/n)
∑n

i=1
δxi

for some real x1, x2, · · · , xn ∈ R, then
the optimal trajectory for U(µ, t) consists of averages of n point masses as well.

Before we prove this, let us introduce the finite-dimensional version of (2), namely

{

∂tU
n

+Hn
(

x,∇Un
)

= 0 in Qn
T := R

n × (0, T ),
Un

(·, 0) = Un
0

on R
n,

(77)

where

Hn
(x,p) := H(µn

x
,p) =

|p|2

2n
+

1

2
W 2

2
(µn

x
, ν0)

=
|p|2

2n
+

|x|2

2n
−

1

4n2

n
∑

i,j=1

|xi − xj | +
1

24
for x ∈ R

n,p ∈ R
n,

and

Un
0
(x) = U0(µ

n
x
).

Here we endow R
n

with the inner product 〈·, ·〉/n (inherited from L2
(µn

x
)) and we use

the identification R
n ≃ Tµn

x

P2(R). The associated Lagrangian becomes

Ln
(x,v) := L(µn

x
,v) =

|v|2

2n
−

1

2
W 2

2
(µn

x
, ν0)

=
|v|2

2n
−

|x|2

2n
+

1

4n2

n
∑

i,j=1

|xi − xj | −
1

24
for x,v ∈ R

n.

Note that, since Ln
is invariant to coordinate permutations, we have that

∫ t

0

Ln
(σκ

(τ), σ̇κ(τ))dτ + Un
0
(σκ

(0))

is independent of the permutation κ ∈ Σn, where x
κ

= (xκ(1)
, xκ(2)

, ..., xκ(n)
). Due

to Un
0

sharing this property, it follows that

Un
(x, t) = Un

(x
κ, t) for all x ∈ R

n, κ ∈ Σn, t ∈ [0, T ). (78)

Here Un
is the viscosity solution for (77) given by

Un
(x, t) := min

σ∈AC2
(0,t;Rn

)

{
∫ t

0

Ln
(σ(τ), σ̇(τ))dτ + Un

0
(σ0) : σt = x

}

. (79)

The optimal trajectory for Un
(x

κ, t) is obviously σκ
0
, where σ0 is optimal for Un

(x, t).
Note that, according to the proof of Proposition 5.4 (see below), the solution for (2)

at (µn
x
, t) is

U(µn
x
, t) = min

κ∈
P

n

Un
(x

κ, t). (80)

Along with (78), (80) implies the result stated next.

Theorem 5.5. For any integer n ≥ 1 one has

U
(

µn
x
, t

)

= Un
(x, t) for all x ∈ R

n and all t ∈ [0, T ],
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where U and Un are the variational solutions for (2) and (77) respectively.

We shall next give a proof of Proposition 5.4.

Proof of Proposition 5.4. Let us denote, as before

At(σ) := At(σ) + U0(σ0), σ ∈ AC2

(0, t;L2

(ν0))

and consider the associated Bt(M). W.l.o.g., we may assume x1 ≤ x2 ≤ ... ≤ xn. As

in theorem 5.2, one sees that Bt has a unique minimizer M̃ over AC2
(0, t;L˙n) among

the paths of prescribed terminal point M̃t. Here, M̃t is the monotone nondecreasing

map such that M̃t #ν0 = µn
x
. The symbol L˙n denotes the set of all such maps

which are piecewise constant on the uniform n-division of X . Since, in particular, M̃
minimizes Bt over the set of paths in AC2

(0, t;L˙n) which have the same initial and

terminal point as M̃ , if we let ri(τ) := M̃τ (z) for z ∈ (ci−1, ci), i = 1, ..., n, we deduce

r(t) = x and r1(τ) ≤ r2(τ) ≤ ... ≤ rn(τ) for all τ ∈ [0, t]. Here, ci := −1/2 + i/n.

Also, r ∈ H2
(0, t; Rn

). For L1
–almost every τ point of twice differentiability of r,

M̃ ′′
τ x = r̈i(τ) for all x ∈ (ci−1, ci). (81)

Consider M ∈ Pt(·, M̃t) a path such that Mτ are monotone nondecreasing maps and

let Mτ#ν0 =: µτ for 0 ≤ τ < t. The corresponding path of measures is denoted by σ,

whereas the path given by M̃ is denoted by σ̃. The convexity of e → G(e) = |e|/2
implies

2At(σ) +
1

12
=

∫

Xt

(|M ′|2 − |M |2)dν +
1

2

∫

X2
t

|Mτx−Mτ x̄|dxdx̄dτ + 2Ū0(M0)

≥ 2At(σ̃) +
1

12
+

∫

Xt

(|M ′ − M̃ ′|2 − |M − M̃ |2)dν + 2[Ū0(M0) − Ū0(M̃0)]

+ 2

n
∑

i=1

∫ ci

ci−1

dν0

∫ t

0

(

(

M ′
τ − ṙi(τ)

)

ṙi(τ) −
(

Mτ − ri(τ)
)

ri(τ)
)

dτ (82)

+
1

2

n
∑

j 6=i

∫

Xij

dxdx̄

∫ t

0

wij(τ)
(

(Mτx− ri(τ)) − (Mτ x̄− rj(τ))
)

dτ. (83)

where we have set Xij = (ci−1, ci) × (cj−1, cj) and wij are from [9], Theorem 5,

equation (51). To be precise, wij(t) ∈ ∂.| · |
(

ri(t) − rj(t)
)

such that wji = −wij and

r̈i(t) + ri(t) =
1

2n

∑

j 6=i

wij(t), i = 1, ...n.

Due to the minimizing property of M̃ over AC2
(0, t;L˙n) with terminal endpoint fixed

M̃t, one can easily infer (as in the proof of Theorem 5.2) that M̃ ′
0

= ∇L2Ū0(M̃0). Thus,

we can write

〈∇L2 Ū0(M̃0),M0 − M̃0〉L2
(ν0)

=

n
∑

i=1

∫ ci

ci−1

ṙi(0)(M0 − ri(0))dν0. (84)

Since M̃t = Mt, we use

∫

Xt

(|M ′ − M̃ ′|2 − |M − M̃ |2)dν ≥
1

t

(

1 −
4t2

π2

)

‖M̃0 −M0‖
2

L2
(ν0)
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again, along with (H1), to deduce in light of (84)

∫

Xt

(|M ′−M̃ ′|2−|M−M̃ |2)dν+2(Ū0(M0)−Ū0(M̃0)) ≥ 2

n
∑

i=1

∫ ci

ci−1

ṙi(0)(M0−ri(0))dν0.

(85)

We can integrate by parts the expression in (82) and obtain explicit boundary terms

that vanish when we combine the result with (83), (85). Finally, we exploit the fact

that wji = −wij to obtain

2At(σ) +
1

12
≥ 2At(σ̃) +

1

12

− 2

n
∑

i=1

∫ ci

ci−1

dν0

∫ t

0

(

r̈i(τ) + ri(τ) −
1

2n

n
∑

j 6=i

wij(τ)
)

(

Mτ − ri(τ)
)

dτ

= 2At(σ̃) +
1

12
.
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