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Abstract We study a model Boltzmann equation closely related to the BGK equation using a steepest
descent method in the Wasserstein metric, and prove global existence of energy and momentum conserving
solutions. We also show that the solutions converge to the manifold of local Maxwellians in the large time
limit, and obtain other information on the behavior of the solutions. We show how the Wasserstein metric is
natural for this problem because it is adapted to the study of both the free streaming and the “collisions”.
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Introduction

This paper concerns the solution of a spatially inhomogeneous model Boltzmann equation known as
the kinetic Fokker–Planck equation, by means of “steepest descent” in the Wasserstein metric. This
equation governs the evolution of a probability density f on the phase space, T d × IRd, of an d

dimensional torus. The case of greatest interest is d = 3, but in most parts of the analysis, the
dimension is not particularly important. We will use x to denote position variables; i.e, points in T d,
and shall use v to denote momentum variables. (We consider only one species of particles, so we choose
units in which the mass is unity, and will not distinguish between momentum and velocity.)

Given a probability density f(x, v) on T d × IRd, we define its spatial density ρ(x) through

ρ(x) =
∫
IRd

f(x, v)dv , (1.1)

and we define its conditional velocity distribution at x, F (v;x), through

F (v;x) =
f(x, v)
ρ(x)

(1.2)

for all x with ρ(x) > 0. The bulk velocity u(x) is the mean of F (·;x):

u(x) =
∫
IRd

vF (v;x)dv , (1.3)

and the temperature θ(x) is 1/d times the variance of F (·;x):

θ(x) =
1
d

∫
IRd

|v − u(x)|2F (v;x)dv . (1.4)

The total energy E(f) of the density is

E(f) =
1
2

∫
Td×IRd

|v|2f(x, v)dvdx =
1
2

∫
Td

[
dθ(x) + |u(x)|2] ρ(x)dvdx , (1.5)

and we shall be concerned exclusively with phase space densities whose energy is finite.
The following probability densities are central to kinetic theory:

Definition. The Maxwellian density with bulk velocity u and temperature θ, Mu,θ, is given by

Mu,θ(v) = (2πθ)−d/2 e−|v−u|2/2θ .

The Maxwellian with the same temperature θ(x) and bulk velocity u(x) as F (·;x) is denoted MF (·;x).
Finally, the local Maxwellian corresponding to f is the density Mf on the phase space T d × IRd where

Mf (x, v) = ρ(x)MF (·;x)(v) . (1.6)

These notational conventions will be used throughout the paper.
The equation studied here is

∂

∂t
f(x, v, t) + ∇x · (vf(x, v, t)) = Lff(x, v, t) (1.7)
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where the operator L is given by

Lfφ = θp∇v ·
(
Mf∇v

(
φ

Mf

))
= θp∇v ·

(
φ∇v ln

(
φ

Mf

))
(1.8)

with p being a positive number. (The role of p will be discussed shortly). One easily sees that

Lfφ = θp(x)
(

∆vφ+ ∇ ·
(
v − u(x)
θ(x)

φ

))
. (1.9)

The equation is, of course, non linear since the coefficients of Lf depend on f through certain of its
local moments, namely the bulk velocity and the temperature.

The equation (1.7) is closely related to the Boltzmann equation

∂

∂t
f(x, v, t) + ∇x · (vf(x, v, t)) = Q(f(x, v, t)) . (1.10)

The right hand side Q(f) is the so–called collision kernel, and we will further discuss it below. In (1.7),
Q(f) has been replaced by Lff . Among the most characteristic properties of any evolution equation
are quantities that are monotone or conserved under the corresponding evolution. In replacing Q(f)
by Lff , we have not changed the formal conservation and monotonicity properties of the Boltzmann
equation. These are conservation of energy, momentum and mass, and increase of entropy:

Indeed, considering any sufficiently smooth solution f of (1.7). Then formally integrating by parts,
one easily obtains

d
dt
E(f) = 0 (1.11)

so that the energy is conserved by the evolution. Similarly, if U(f) denotes the total momentum; i.e.,

U(f) =
∫
Td×IRd

vf(x, v)dxdv =
∫
Td

u(x)ρ(x)dx (1.12)

one finds that this is conserved as well:
d
dt
U(f) = 0 . (1.13)

The conservation of mass, or in other words,
∫
Td×IRd fdxdv, is clear.

Finally, define the Boltzmann entropy H(f) of f through

H(f) = −
∫
Td×IRd

f(x, v) ln f(x, v)dxdv . (1.14)

This time, formal integration by parts leads to

d
dt
H(f) =

∫
Td

[∫
IRd

θ(x)
∣∣∇v lnF (·;x) −∇v lnMF (·;x)

∣∣2 F (v;x)dv
]
ρ(x)dx . (1.15)

Thus, H(f) is strictly increasing in unless f = Mf , and hence the analog of Boltzmann’s H–theorem
holds for this equation, together with conservation of energy and momentum.

These conservation laws, together with the H–theorem, are the features of the Boltzmann equation
that are responsible, at least on a formal level, for its connection with the Euler Equations in a
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hydrodynamic scaling limit [11]. For this reason, it is important to maintain them in any model kinetic
equation. Other such model kinetic equations, particularly the BGK equation, have been discussed
extensively in the literature. While in the kinetic Fokker–Planck equation, the collision kernel Q(f)
of (1.10) is replaced by Lff , in the BGK model it is replaced by a constant mutiple of Mf − f . See
Cercignani’s book [11] for further discussion of the BGK equation. It suffices to remark here that as far
as existence, uniqueness and regularity, the present state of knowledge concerning the BGK equation
is no better than for the Boltzmann equation itself. A theory leading to global existence of solutions of
the Boltzmann equation has been developed by DiPerna and Lions [13], [14]. This is a very significant
advance over what had been the state of the art; however, there is no uniqueness result, nor are the
solutions shown to conserve energy.

To better understand the relationship between (1.7) and (1.10), we briefly recall a few facts about
(1.10) and its origins. Consider the evolution of a gas consisting of a very large number of molecules
moving in a large box with periodic boundaries, corresponding to T d. The full microscopic state of the
system is given by specifying all of the positions and velocities.

Such a specification is far too detailed for many purposes, and is at any rate computationally
inaccessible, and so Boltzmann [4] sought only to describe something simpler: the single particle
density, f(x, v, t). Imagine all of the molecules to be individually labeled, and at time t, we randomly
select the label of one of the molecules, which of course has a position x and a velocity v. Thus, in
randomly selecting a label, one has randomly generated a point (x, v) of the phase space T d× IRd, and
f(x, v, t) denotes the probability density of this random point on the phase space. One can then ask
how this density will evolve in time.

There are two mechanisms at work in the evolution. First, there is streaming: In a short time step
h a molecule at (x, v) moves to (x + hv, v) provided there is no intervening collision. If there were no
collisions, the equation would be

∂

∂t
f(x, v, t) + v · ∇xf(x, v, t) = 0 (1.16)

and everything would be very simple and uninteresting. The second mechanism is provided by the
collisions, which are assumed to be local and binary. That is, only molecules at the same location x

can collide, and each colliding pair completes its collision before either of its members enter into a new
one.

In the abscence of streaming, at each x, the local conditional velocity distribution F (v;x, t) is
updated by solving

∂

∂t
F (v, t) = Q(F, F )(v, t) (1.17)

independently at each x. The equation (1.17) is known as the spatially homogeneous Boltzmann
equation, and there is a well developed theory of it [12].

While separately, each of the evolution mechanisms described by (1.16) and (1.17) is well understood,
much less is known when they are both present, as in (1.10). Though considerable progress has been
made by DiPerna and Lions, there is no uniqueness result for the solutions that these authors construct,
and the sense in which they solve the equation does not permit one to conclude that they even conserve
energy.

That said, we return to a brief description of the collision mechanism. The collision mechanism
conserves the momentum and energy of a pair of colliding particles. For the case d = 3, given a pair of
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pre-collisional velocities v and w, the possible post–collisional velocities v∗ and w∗ are

v∗ =
v + w

2
+

|v − w|
2

σ

w∗ =
v + w

2
− |v − w|

2
σ

where σ is a unit vector, i.e., σ ∈ S2. If the two particles interact through a force which is inversely
proportional to some power s of their separation, the rate of at which such such collisions occur at x
is proportional to

F (·;x)(w)F (v;x)b(|v − w|, cos(ϑ))

where cos(ϑ) = σ · (v−w)/|v−w|. The function b has a complicated dependence on cos(ϑ) for general
s, but it is simply proportional to |v−w|(s−5)/s. The case s = 5 is referred to as the case of Maxwellian
molecules since Maxwell observed [24] that in this case many quantities are readily computed due to
the lack of dependence on |v − w|. (He actually tried to argue that an inverse fifth power force law
did in fact mediate molecular collisions, which is not unreasonable since Nature often seems to opt for
simplicity, though in this case, further investigations have not borne Maxwell out.) Another case of
special interest is the case of hard sphere collisions, which formally correspond to s = ∞. In this case,
b is a constant multiple of |v − w| cos(ϑ).

Since the underlying dynamics is time-reversible, the reverse collision occurs at an equal rate, and
this leads to

Q(F, F )(v) =
∫
IR3

∫
S2

(F (v∗)F (w∗) − F (v)F (w)) b(|v − w|, cos(ϑ))dσdw . (1.18)

The term Q(f(x, v)) in (1.10) is then given by

Q(f(x, v)) = ρ2(t, x)Q(F (·;x, t), F (·;x, t))(v) .

Because b is proportional to |v − w|(s−5)/s, Q satisfies a scaling law. That is, if

Fλ(v) = λdF (λv) ,

then
Q(Fλ, Fλ) = λ−(s−5)/s [Q(F, F )]λ .

It is easily seen that
LFλ

Fλ(v) = λ2−2p (LFF )λ .

Thus for
p = 1 +

s− 5
2s

, (1.19)

LFλ
Fλ(v) = λ−(s−5)/s (LFF )λ .

Thus, by choosing the value of p in (1.19), we can match the scaling properties of the Boltzmann
equation, as well as the conservation laws and the H–theorem. We note that hard sphere scaling
corresponds to p = 2, and the case of Maxwellian molecules corresponds to p = 1. Interestingly
enough, this case is especially nice for (1.7) as well as for (1.10).

The model equation (1.7) studied here is obtained by replacing the true Boltzmann collision mecha-
nism for updating F (·;x) at each x by what amounts to a mechanism of steepest ascent in the entropy,
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under the constraint that the momentum and energy are conserved locally at each x, as required by
the conservation laws. The replacement of the true collision mechanism by such a “constained gradient
flow” for the entropy is natural if one seeks a simple replacement for the Boltzmann evolution that
respects both the conservation laws and the H–theorem.

To explain our starting point, we recall a recent result [20] of Jordan, Kinderlehrer and Otto, who
have shown how to regard the linear Fokker–Planck equation as gradient flow for the relative entropy
functional.

Let P denote the set of probability densities on IRd with finite second moments; i.e., the set of
all non–negative measurable functions F on IRd such that

∫
IRd F (v)dv = 1 and

∫
IRd |v|2F (v)dv < ∞.

Equip P with the metric W2(F0, F1) where

W 2
2 (F0, F1) = inf

γ∈C(F0,F1)

∫
IRd×IRd

1
2
|v − w|2γ(dv, dw) (1.20)

where C(F0, F1) consists of all couplings of F0 and F1; i.e., the set of all probability measures γ on
IRd × IRd such that for all test functions η on IRd

∫
IRd×IRd

η(v)γ(dv, dw) =
∫
IRd

η(v)F0(v)dv

and ∫
IRd×IRd

η(w)γ(dv, dw) =
∫
IRd

η(w)F1(w)dv .

The infimum in (1.20) is actually a minimum, and it is attained at a unique point γF0,F1 in C(F0, F1).
Recent results of Brenier, Caffarelli, Gangbo and McCann have shed considerable light on the nature of
this minimizer, and we shall recall some of their results later. But for the purposes of the introduction,
it suffices the metric, commonly called the Wasserstein metric, is defined.

Next, let the entropy H(F ) be defined by

H(F ) = −
∫
IRd

F (v) lnF (v)dv . (1.21)

This is well defined, with −∞ as a possible value under the assumption that
∫
IRd |v|2F (v)dv is finite.

Given any Maxwellian density M on IRd, the relative entropy of F with respect to M , H(F |M), is
defined by

H(F |M) =
∫
IRd

(
F (v)
M(v)

)
ln
(
F (v)
M(v)

)
M(v)dv . (1.22)

Kinderlehrer Jordan and Otto introduced the following scheme for solving the linear Fokker–Planck
equation: Fix an initial density F0 with

∫
IRd |v|2F0(v)dv finite. Further fix a time step h > 0. Then

inductively define Fk in terms of Fk−1 by choosing Fk to minimize the functional

F → [
W 2

2 (Fk−1, F ) + hH(F |M)
]

(1.23)

on P . They show that there is a unique maximizer Fk, so that each Fk is well defined. Then they
define a time dependent probability density F (h)(v, t) by putting

F (h)(v, kh) = Fk
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and linearly interpolating when t is not an integer multiple of h. Finally, they show that for each t

F (·, t) = lim
h→0

F (h)(·, t)

exists weakly in L1, and that the resulting time dependent probability density solves

∂

∂t
F (v, t) = ∇ ·

(
F (v, t)∇ ln

(
F (v, t)
M(v)

))
(1.24)

with
lim
t→0

F (·, t) = F0 .

The equation (1.24) has much in common with (1.17). Our object here is to combine this “collision
mechanism” with streaming and to study the resulting model kinetic equation. Our approch is to
implement a “splitting scheme” in which we alternately run the streaming and collisions in a succesion
of time intervals of length h > 0. We shall obtain estimates on this process that are independent of h,
and which lead to solutions of (1.7). A key feature in our approach is that the Wasserstein 2-metric
is naturally suited to both the streaming and the substitute collision mechanism, as we shall explain
further on.

As t tends to infinity on the other hand, F (·, t) tends to M , and the bulk velocity uF (·,t) and the
temperature θF (·,t) of F (·, t) tend to the bulk velocity and temperature of M . Indeed, one easily sees
that if the initial data F0 and M have the same bulk velocity and temperature, then these quantities
are conserved for solutions of (1.24). That is, the evolution given by

∂

∂t
F (v, t) = ∇ ·

(
F (v, t)∇ ln

(
F (v, t)
MF0(v)

))
(1.25)

conserves energy and momentum, while, as easily seen, decreasing the entropy. At the discrete level,
this evolution is obtained by choosing M = MF0 in (1.23).

This suggest the following scheme for the solution of (1.7): Fix an initial phase space density f0(x, v),
and a time step h > 0. Inductively define fk(x, v) in terms of fk−1(x, v) through the following algorithm:

Definition. (The flow and descend algortithm) This algorithm consists of the following
steps:

(1) First, run the streaming: Define f̃k(x, v) by

f̃k(x, v) = fk−1(x− hv, v) . (1.26)

(2) Define ρk(x) =
∫
IRd f̃(x, v)dv and the precollision conditional velocity distribution F̃k(v;x) by

F̃k(v;x) =
f̃k(x, v)
ρk(x)

. (1.27)

Then define ũk(x) and θ̃k(x) by

ũk(x) =
∫
IRd

vF̃k(v;x)dv and θ̃k(x) =
1
d

∫
IRd

|v − ũk(x)|2F̃k(v;x)dv . (1.28)
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(3) Now run the collisions though steepest descent of the relative entropy: For each x, let Fk(v;x)
minimize the functional

F →
[
W 2

2 (F, F̃k(·;x))
θ̃k(x)

+ hH(F |MF̃k(·;x))

]
(1.29)

over P . This functional, with the factor of θ̃ in the denominator is scale invariant. As we shall see, it
leads to (1.7) with p = 1 in (1.8). As explained around (1.19), this makes LFF scale invariant, as is
Q(F, F ) in the case of Maxwellain molecules.

Notice that the “target Maxwellian” MF̃k
changes from step to step due to the effects of the stream-

ing. This is what produces the non-linearity in our equation, and separates this evolution form the
linear evolution studied in [20].

(4) Finally, one reconstructs fk(x, v) through

fk(x, v) = ρk(x)Fk(v;x) , (1.30)

which completes the passage from fk−1 to fk. Then define a time dependent phase space probability
density fh(x, v, t) through

fh(x, v, kh) = fk(x, v)

and by an interpolation when t is not an integer multiple of h.

We shall show that for each t, the weak L1 limit

f(x, v, t) = lim
h→0

f (h)(x, v, t)

exists and satisfies the evolution equation (1.7).
The difficulty in studying equations such as (1.7) arises largely from the fact that there is no direct

mechanism producing regularity in x. The chief advantage of working in the Wasserstein metric here
is that the distance between f(x, v) and f(x−hv, v) is easily controlled in terms of the energy without
any recourse to estimates on spatial derivatives of f(x, v), as we shall see.

On the other hand, several difficulties arise in connection with the discrete method. For example,
the discrete Fokker–Planck evolution does not conserve the energy; at any finite h, there is energy
dissipation. However, it is possible to bound the energy dissipation, and to show that the size of the
effect vanished as h tends to zero.

Another natural approach to this evolution would be to replace the relative entropy H(F |MF̃k
) by

the entropy H(F ) itself. Then one would have to enforce energy conservation by an explicit constraint.
That is, one would restrict the class of densities F to be considered in the variational problem in step
3 for the functional in (1.29) to the ”submanifold” S(u,θ) of P consisting of densities. This constrained
minimization problem is much more delicate due to the fact that S(u,θ) is not weakly closed in P .
Though we have proven existence and uniqueness of minimizers for this constrained problem in [10],
there are open problems, discussed in in [10], about the nature of the minimizers that complicate the
approach via constrained descent. Hence we have chosen the present route using the relative entropy
and bounding energy dissipation in the present paper.

The paper is organized as follows. In section 2, we derive the Euler–Lagrange equation for Fk+1(x; v),
and establish the formal connection between the algorithm specified in (1.26) through (1.30). In sections
3 and 4, we establish, on the basis of the variational principle, several of the a–priori estimates needed
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to make the connection rigorous. In section 5, we prove crucial modulus of continuity in t estimates.
In section 6, we establish a form of the velocity averaging lemma, and then finally in section 7 take
the limit as h tends to zero and prove the main existence and regularity theorem. In section 8, we
conclude by establishing that in the limit as t tends to infinity, the solutions of (1.7) tend to set M of
local Maxwellian densities.

2 The Euler{Lagrange equation

The main purpose of this section is to derive the Euler Lagrange equation for the minimizer of the
discrete–time problem, and to introduce the appropriate continuous time interpolation. The variational
problem considered here is the following: For fixed h > 0, and a given density F̃k, we seek to minimize
the functional ∫

TRd

ρk(x)

[
W 2

2 (F̃ , Fk(·;x))
θ̃k(x)

+ hH(F |MF̃k(·;x))

]
dx . (2.1)

Existence an uniqueness of the optimizers for this problem is proved in [20], where the Euler–Lagrange
equation is derived as well. The differences here are that the “target Maxwellian” MF̃k

is fixed and
independent of k in [20], and of course, the fact that there is no x dependence to deal with. At each
fixed x and time step however, these differences are immaterial.

We begin by briefly sketching the derivation of the Euler–Lagrange equation in a notation suited to
our application. We refer [20] for details. We will then use this to make a first formal connection between
the discrete the scheme defined in (1.26) through (1.30) with the kinetic Fokker–Planck equation (1.7).

Lemma 2.1 (Explicite expression for optimal maps) Let Fk be the unique minimizer
to of the functional given in (2.1). Let ψ̃k be the convex function on IRd such that

∇ψ̃k#Fk = F̃k .

Then

∇ψ̃k(v) = v + hθ̃k(x)∇v

(
ln

Fk
MF̃k

)
. (2.2)

Proof: Consider a smooth function ξ : IRd → IRd and define the flow Tt(v) = v + tξ(v). Use this to
define the parameterized family of probability densities G(t) by

G(t) = (Tt)#Fk .

d
dt
H(G(t)|MF̃k

)
∣∣∣∣
t=0

=
∫
IRd

∇v

(
ln

Fk
MF̃k

)
· ξ(v)Fk(v;x)dv . (2.3)

For a detailed justification of this computation, as well as what follow in the next paragraph, see
[20] or, in similar notation, [10]. To compute the variation in the 2–Wasserstein distance, note that
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since Tt#Fk = G(t), ∇ψ̃k ◦ T−1
t #G(t) = F̃k. Thus

W 2
2 (G(t), F̃k) ≤ 1

2

∫
IRd

|∇ψ̃k ◦ T−1
t (v) − v|2G(t, v)dv

=
1
2

∫
IRd

|∇ψ̃k − Tt(v)|2Fk(v;x)dv

≤W 2
2 (Fk, F̃k) − t

∫
IRd

(
∇ψ̃k − v

)
· ξFk(v;x)dv

+
t2

2

∫
IRd

|ξ|2Fk(v;x)dv .

From this, (2.3) and the fact that Fk is a minimizer, it follows that

∫
IRd

((
v −∇ψ̃k(v)

)
+ hθ̃k(x)∇v

(
ln

Fk
MFk

))
· ξ(v)Fk(v;x)dv ≤ 0 . (2.4)

Replacing ξ by −ξ, we obtain the desired equality.

We now proceed from the Euler–Lagrange equation to the weak form of the evolution equation. Let
φ be any test function on IRd. Then

∫
IRd

φ(v)(Fk − F̃k)dv =
∫
IRd

(φ(v) − φ(∇ψ̃k(v))Fkdv . (2.5)

Now define

Kk[φ](v) =
∫ 1

0

∫ t

0

D2φ(v + s(∇ψ̃k(v) − v))〈∇ψ̃k(v) − v,∇ψ̃k(v) − v〉dsdt , (2.6)

so that we have
φ(∇ψ̃k(v)) = φ(v) + ∇φ(v) ·

(
∇ψ̃k(v) − v

)
+Kk[φ](v) . (2.7)

Combining (2.5) and (2.7), and then using (2.2), we obtain:

∫
IRd

φ(v)(Fk − F̃k)dv =
∫
IRd

∇φ(v) ·
(
∇ψ̃k(v) − v

)
Fk(v;x)dv

+
∫
IRd

Kk[φ](v)Fk(v;x)dv

= h

∫
IRd

∇φ(v) ·
(
θ̃k(x)∇

(
ln

Fk
MF̃k

))
Fk(v;x)dv

+
∫
IRd

Kk[φ](v)Fk(v;x)dv .

(2.8)

Let uk and θk be defined by

uk(x) =
∫
IRd

vFk(v;x)dv and θk(x) =
1
d

∫
IRd

|v − uk(x)|2Fk(v;x)dv , (2.9)
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which corresponds to the definition (1.28) of ũk and θ̃k. We shall see in the next section, in (3.5) and
(3.8), that for each x and k,

uk(x) = ũk(x) but θk(x) < θ̃k(x) .

Therefore

∫
IRd

∇φ(v) ·
(
θ̃k(x)∇

(
ln

Fk
MF̃k

))
Fk(v;x)dv =

∫
IRd

∇φ(v) ·
(
θk(x)∇

(
ln

Fk
MFk

))
Fk(v;x)dv

+ (θ̃k(x) − θk(x))
∫
IRd

∆vφ(v)Fk(v;x)dv .

Now let φ denote a test function on the whole phase space, T d× IRd. Integrating both sides of (2.8)
against ρk(x), one obtains

∫
Td×IRd

(fk − f̃k)φdvdx =h
∫
Td×IRd

(Lfk
φ) fkdvdx

+h
∫
Td×IRd

(θ̃k(x) − θk(x))∆vφ(v)fk(v;x)dxdv

+
∫
Td×IRd

Kk[φ]fkdvdx .

(2.10)

Provided the terms in the last two lines of (2.10) are negligible, as we shall see, (2.10) bears a close
resemblance to a weak form of the kinetic Fokker–Planck equation.

To make the passage from discrete to continuous time, we require a properly chosen interpolation
of our sequence of densities fk to obtain the discontinuous time dependent density fh where for t in
[tk, tk+1),

fh(x, v, t) = fk(x− (t− tk)v, v) for t ∈ [tk, tk+1) , (2.11)

and by convention, tk = kh. Note that by this definition and (1.26),

lim
t↑tk+1

fh(x, v, t) = f̃k+1(x, v) and fh(x, v, tk) = fk(x, v) .

Also, if φ is any test function on T d × IRd × IR+, we have for t in [tk, tk+1),

∫
Td×IRd

fh(x, v, t)φ(x, v, t)dxdv =
∫
Td×IRd

fk(x, v)φ(x + (t− tk)v, v, t)dxdv .

It follows that ∫ tk+1

tk

[∫
Td×IRd

fh
(
∂φ

∂t
+ v · ∇xφ

)
dxdv

]
dt =

∫
Td×IRd

(
f̃k+1(x, v)φ(x, v, tk+1) − fk(x, v)φ(x, v, tk)

)
dxdv .

(2.12)

Now let T = Nh for some positive integer N , and suppose that φ(·, ·, t) = 0 for t = 0 and t = T . Define

A(φ) =
∫ T

0

∫
Td×IRd

fh
(
∂φ

∂t
+ v · ∇vφ

)
dxdvdt .
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Now sum (2.12) to obtain

A(φ) =
N−1∑
k=0

∫
Td×IRd

(
f̃k+1(x, v)φ(x, v, tk+1) − fk(x, v)φ(x, v, tk)

)
dxdv

= −
N−1∑
k=1

∫
Td×IRd

(
fk(x, v) − f̃k(x, v)

)
φ(x, v, tk)dxdv .

(2.13)

Using (2.10) in (2.13), one obtains the following:

Theorem 2.2: (Approximate transport equation: part I) Let fk be a sequence of
probability densities given by the maximize and flow algorithm for a fixed time step h > 0. Let fh(x, v, t)
be defined by (2.11). For any integer N , let T = Nh. Then for any test function φ on T d × IRd × IR+

such that φ(·, ·, t) = 0 for t = 0 and t = T ,

∫ T

0

∫
Td×IRd

fh
(
∂φ

∂t
+ v · ∇vφ

)
dxdvdt = −h

N−1∑
k=0

∫
Td×IRd

(Lfk
φ(x, ·, tk)) fkdvdx

−h
N−1∑
k=0

∫
Td×IRd

(θ̃k(x) − θk(x))∆vφ(x, ·, tk)fkdxdv

−
N−1∑
k=0

∫
Td×IRd

Kk[φ(x, ·, tk)]fkdvdx .

(2.14)

where Kk is given in (2.6).

We shall have to show that the last two sums in (2.14) are negligible as h tends to zero. It is clear
that for any T > 0, and any N with Nh < T ,

∣∣∣∣∣
N−1∑
k=0

∫
Td×IRd

(θ̃k(x) − θk(x))∆vφ(x, ·, tk)fkdxdv
∣∣∣∣∣ ≤ ‖D2

vφ‖L∞(Td×IRd×IR+)

∫
Td

N−1∑
k=1

∣∣∣θ̃k(x) − θk(x)
∣∣∣ ρk(x)dx .

(2.15)
We shall show in Section 4 that the sum on the right vanishes as h tends to zero. In fact, as we shall see
θk(x)− θk(x) > 0 for all x and k, so that the absolute value sign in the sum on the right is superfluous.

We close this section with a simple preparatory estimate on the summand in the final term in (2.14).

Lemma 2.3: For each k,

∫
Td×IRd

|Kk[φ(x, ·, tk)]| fkdvdx ≤
∫
Td

‖D2
vφ(x, ·, ·)‖L∞(IRd×IR+)ρk(x)W

2
2 (Fk, F̃k)dx .

Proof: From (2.6), one has for each x

∫
IRd

|Kk[φ(x, ·, tk)]|Fkdv ≤ ‖D2
vφ(x, ·, ·)‖L∞(IRd×IR+)W

2
2 (Fk, F̃k).

We multiply both sides of the above inequality by ρk and integrate both sides of the subsequent
inequality over T d to conclude the proof of Lemma 2.3.

6/november/2001; 10:43 12



3 Displacement convexity and a-priori bounds

The main purpose of this section is to derive a–priori moment, Lp, and energy estimates for our discrete
time evolution. All of these are deduced as consequences of McCann’s displacement convexity. If Φ is
a functional on the space P of probability densities G on IRd with finite second moments, then Φ is
displacement convex in case for all t with 0 < t < 1, and all G0 and G1 in P ,

Φ(Gt) ≤ tΦ(G0) + (1 − t)Φ(G1) (3.1)

where t 7→ Gt is the geodesic for the 2-Wasserstein metric joining G0 and G1. This is given by

Gt = ∇ψt#G0

where ψ is the convex potential for the map ∇ψ that pushes G0 forward onto G1, and

ψt(v) = (1 − t)
|v|2
2

+ tψ(v) . (3.2)

Then it follows that

Φ(G1) − Φ(G0) ≥ lim
h→0+

1
h

(Φ(Gh) − Φ(G0)) . (3.3)

We will apply this for various choices of Φ with G0 = Fk and G1 = F̃k, which we can do since since
(2.2) gives us the form of the potential ψ for which ∇ψ#Fk = F̃k. Note that since F̃k precedes Fk in
the evolution, (3.3) gives us a bound on the growth over one ”collision” step of the quantity measured
by Φ.

On the other hand, if we have an a–priori bound on how large the quantity measured by Φ can get,
then (3.3) gives us a bound on the derivative on the right hand side. We will use (3.3) in both of these
ways.

First, we consider moments. The functional

G 7→
∫
IRd

W (v)G(v)dv (3.4)

is displacement convex whenever W is convex on IRd, strictly so when W is strictly convex on IRd.
Therefore, taking W (v) = |v|2m for m an integer, we can get a bound on the growth of moments from
(3.3). In this case, we could also proceed by direct computation, and this is convenient for small m.
Indeed, we can compute the change in the first and second moments as follows:

For given F̃k, let Fk be the optimizer in (2.1), and let ψ̃k be such that ∇ψ̃#Fk = F̃k. First, by (2.2)

ũk =
∫
IRd

vF̃kdv =
∫
IRd

∇ψ̃Fkdv

=
∫
IRd

vFkdv + hθ̃k

∫
IRd

∇(lnFk − lnMF̃k
)Fkdv

= uk + h(uk − ũk) .

(3.5)

Thus, uk = ũk, and the passage from F̃k to Fk conserves momentum. Energy however, is dissipated,
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as the next calculation shows.

∫
IRd

|v|2F̃kdv =
∫
IRd

|∇ψ̃k|2Fkdv

=
∫
IRd

∣∣∣v + hθ̃k∇
(
lnFk − lnMF̃k

)∣∣∣2 Fkdv
=
∫
IRd

|v|2 Fkdv + h2θ̃k
∫
IRd

v · ∇ (lnFk − lnMF̃k

)
Fkdv

+ h2θ̃2k

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv
=
∫
IRd

|v|2 Fkdv − h2d
(
θ̃k − θk

)
+ h2θ̃2k

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv .

(3.6)

Therefore,

∫
IRd

|v|2F̃k(v;x)dv =
∫
IRd

|v|2Fk(v;x)dv +
h2

1 + 2h
θ̃2k(x)

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv , (3.7)

and hence
θk(x) < θ̃k(x) . (3.8)

Integrating against ρk(x), we see that the energy is monotonicly decreasing for the discrete scheme.
Formally, the decrease is of order h2, and one might therefore expect the energy to be conserved in
the limit as h tends to zero. We shall establish this in the next sections, but first we need the a–priori
inequalities that we now derive.

For higher moments, it is more convenient to use (3.3) . For any positive integer m, define

I2m(k) =
∫
Td×IRd

|v − uk(x)|2mfk(x, v)dxdv . (3.9)

By the conservation of momentum that we have just displayed, we may as well assume, making a
common translation of both F̃k and Fk, that

ũk = uk = 0 . (3.10)

Then since v 7→ |v|2m is a convex function of v, we are considering a functional of the form in (3.4), for
which ∫

IRd

|v|2mF̃k(v)dv −
∫
IRd

|v|2mFk(v)dv ≥ lim
h→0+

1
h

∫
IRd

|v|2m(Fhk (v) − F 0
k (v)

)
dv (3.11)

where F tk = ∇φt#Fk and

φt =
|v|2
2

+ t

(
ψ̃k − |v|2

2

)
(3.12)

for 0 ≤ t ≤ 1. From well–known formulas that can be found in [10] in a similar notation, it follows that
any convex function W on IRd,

lim
h→0+

1
h

∫
IRd

W (v)
(
Fhk (v) − F 0

k (v)
)
dv =

∫
IRd

∇W (v) · (∇ψ̃k(v) − v)F 0
k (v)dv .
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Then using W (v) = |v|2m and the explicit form (2.2) for ψ̃k, we have that the right hand side of (3.11)
is equal to

2m
∫
IRd

|v|2m−2v ·
(
hθ̃k(x)∇v

(
ln

Fk
MF̃k

))
Fk(v)dv ,

and hence one easily computes that

∫
IRd

|v|2mF̃k(v)dv −
∫
IRd

|v|2mFk(v)dv ≥h2m
∫
IRd

|v|2mFk(v)dv

− hθ̃k(x)2m(2m− 2 + d)
∫
IRd

|v|2m−2Fk(v)dv .
(3.13)

Observe that in particular, when m = 1, this reduces an inequality for θk(x) and θ̃k(x), namely
θ̃k(x) ≥ θk(x) for all x and k, as deduced above.

Next, restore ũk(x) and uk(x), and integrate both sides of (3.13) against ρk(x) to obtain

I2m(k − 1) − I2m(k) ≥

2mh
[
I2m(k) − (2m− 2 + d)

∫
Td

(
θ̃k(x)

∫
IRd

|v − uk(x)|2m−2Fk(v)dv
)
ρk(x)dx

]
.

By applying Hölder to remaining explicit integral, we obtain

∫
Td

(
θ̃k(x)

∫
IRd

|v − uk(x)|2m−2Fk(v)dv
)
ρk(x)dx ≤

(∫
Td

θ̃mk (x)ρk(x)dx
)1/m

I2m(k)(m−1)/m

≤ 1
d
I2m(k − 1)1/mI2m(k)(m−1)/m

≤ 1
dm

I2m(k − 1) +
m− 1
dm

I2m(k) ,

since, by Jensen’s inequality,

∫
IRd

|v − ũ(x)|2mF̃k(v;x)dv ≥
(∫

IRd

|v − ũ(x)|2F̃k(v;x)dv
)m

= dmθ̃k(x)m .

Therefore,

I2m(k)
[
1 +

2h
d

(d− 2(m− 1)2)
]
≤ I2m(k − 1)

[
1 +

2h
d

(d+ 2(m− 1))
]
.

We have now proved the following result:

Theorem 3.1: For all k,

∫
Td×IRd

vfk(x, v)dvdx =
∫
Td×IRd

vf0(x, v)dvdx (3.14)

and ∫
Td×IRd

|v|2fk(x, v)dvdx ≤
∫
Td×IRd

|v|2f0(x, v)dvdx . (3.15)
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Moreover, for all k and all m > 1, there is a constant C depending only on m and d so that

I2m(k) ≤ (1 + Ch)k I2m(0) . (3.16)

We shall also need the energy inequality that results from applying the displacement convexity
argument to the entropy, which is displacement convex by McCann’s criterion. The entropy function
is not of the form (3.4), but rather of type

G 7→
∫
IRd

g(G(v))dv . (3.17)

McCann has proved [26] a general criterion for the convexity of such functionals, and shown how to
compute their derivatives along geodesics in the Wasserstein metric. The relevant formulas can be
found in [10] in a notation similar to that used here.

Theorem 3.2: (Energy inequality) For all k, we have that

H(fk) −H(fk−1) = H(fk) −H(f̃k)

≥ h

∫
Td×IRd

θ̃k(x)

∣∣∣∣∣∇v

(
ln

fk
Mf̃k

)∣∣∣∣∣
2

fk(x, v)dxdv

≥ h

∫
Td×IRd

θ̃k(x)
∣∣∣∣∇v

(
ln

fk
Mfk

)∣∣∣∣
2

fk(x, v)dxdv .

(3.18)

Note. Notice the different subscripts on the two Maxwellians in (3.18). Both estimates will be used
later, this is why they are all recorded here.

Proof: The first equality in (3.18) is easy to obtain. Next, because the entropy is a convex function
of F , we have that

∫
IRd

(
ln(F̃k(v))F̃k(v) − ln (Fk(v))Fk(v)

)
dv ≥ lim

h→0

1
h

∫
IRd

ln
(
Fhk (v)

)
F hk (v) − ln

(
F 0
k (v)

)
F 0
k (v)dv (3.19)

where, as in the previous theorem, F tk = ∇φ#Fk. Then, using McCann’s differentiation formula, we
obtain that the expression at the right handside of (3.19) is

∫
IRd

∇vFk(v;x) ·
(
hθ̃k(x)∇v

(
ln

Fk
MF̃k

))
dv = hθ̃k(x)

∫
IRd

[
|∇v lnFk|2 Fk + ∇vFk · v

θ̃k(x)

]
dv

= hθ̃k(x)
[∫

IRd

|∇v lnFk|2 Fkdv − d

θ̃k(x)

]

= hθ̃k(x)
∫
IRd

∣∣∇v ln(Fk/MF̃k
)
∣∣2 Fkdv

(3.20)

We use (3.20) in (3.19), multiply both sides of the subsequent inequality by ρk(x), and integrate over
T d to obtain the first estimate in (3.18).
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Moreover, since θk(x) < θ̃k(x), we can continue the estimate for the penultimate terms as follows.

hθ̃k(x)
[∫

IRd

|∇v lnFk|2 Fkdv − d

θ̃k(x)

]
≥ hθ̃k(x)

[∫
IRd

|∇v lnFk|2 Fkdv − d

θk(x)

]

= hθ̃k(x)
∫
IRd

|∇v ln(Fk/MFk
)|2 Fkdv

which leads directly to the second estimate.

Finally, we need the analog of Theorem 3.1 for Lp norms. Note that G 7→ ‖G‖pp is a functional of
the type (3.17), and it is dispalcement convex for p ≥ 1.

Theorem 3.3: (Lp bounds on fk) For all k, and all 1 ≤ p ≤ ∞,

∫
Td×IRd

|fk(x, v)|pdvdx ≤ (1 − d(p− 1)h)−k
∫
Td×IRd

|f0(x, v)|pdvdx (3.21)

Note that this will give us an exponentially growing bound on the Lp norm of our solutions, uniform
in h, provided the initial data is in Lp.

Proof: Again we exploit displacement convexity exactly as in the previous proof:

∫
IRd

|F̃k|pdv −
∫
IRd

|Fk|pdv ≥ hθ̃k(x)p(p − 1)
∫
IRd

(Fk)p−1∇vFk · ∇v

(
ln

Fk
MFk

)
dv

= hθ̃k(x)p(p − 1)
∫
IRd

(Fk)p−2|∇vFk|2dv + h(p− 1)p
∫
IRd

∇vF
p
k · vdv

≥ −hd(p− 1)p
∫
IRd

|Fk|pdv .

Now multiplying both sides by ρk(x)p and integrating in x, we obtain that

∫
Td×IRd

|f̃k(x, v)|pdvdx −
∫
Td×IRd

|fk(x, v)|pdvdx ≥ −hd(p− 1)p
∫
Td×IRd

|fk(x, v)|pdvdx .

Finally, since streaming is measure preserving,

∫
Td×IRd

|f̃k(x, v)|pdvdx =
∫
Td×IRd

|fk−1(x, v)|pdvdx

so that finally,

∫
Td×IRd

|fk(x, v)|pdvdx ≤ (1 − hd(p− 1))−1

∫
Td×IRd

|fk−1(x, v)|pdvdx

from which the result easily follows.

4 Conservation of energy in the small h limit
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For given F̃k, let Fk be the optimizer in (2.1), and let ψ̃k be a convex function such that ∇ψ̃#Fk = F̃k.
As in the previous section, we may assume without loss of generality that ũk = uk = 0, making a
common translation F̃k and Fk if necessary.

We know from (3.8) of the previous section that

∫
IRd

|v|2Fkdv ≤
∫
IRd

|v|2F̃kdv

and our goal in this section is to obtain the estimates needed to show that our evolution conserves
energy in the limit as h tends to zero. Specifically, we prove:

Theorem 4.1: (Controlling energy dissipation) Let f0 be any initial density with

∫
Td×Rd

|v|6f0(x, v)dvdx = A <∞ , (4.1)

and let T be any positive number. Then there is finite constant C depending only on A and T so that

0 ≤
∫
Td×Rd

|v|2f0(x, v)dvdx −
∫
Td×Rd

|v|2fk(x, v)dvdx ≤ C (H(fk) −H(f0))
3/5 h1/5

for all k with kh ≤ T .

Proof: The first inequality of the theorem follows from Theorem 3.1. When proving the second
inequality, because uk = ũk, by making a translation for each k, we may assume without loss of
generality that uk = ũk = 0. This will simplify a number of the expressions below.

We know from (3.7) that

∫
IRd

|v|2F̃k(v;x)dv ≤
∫
IRd

|v|2Fk(v;x)dv + h2θ̃2k(x)
∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv . (4.2)

Clearly, we shall need an upper bound on

θ̃2k(x)
∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv .
Henceforth in this section, C shall denote a constant depending only on T and A, but which changes

from instance to instance.
By (4.1), Hölder’s inequality and Theorem 3.1,

∫
Td

(∫
IRd

|v|4F̃k(v;x)dv
)
ρk(x)dx ≤ C . (4.3)

for all k with kh ≤ T .
To apply (4.3), again do the computation that led to (4.2), except with fourth powers this time. In

the interest of a readable notation, we write the map ∇ψ̃k of (2.2) as ∇ψ̃k = v +R, where,

R = hθ̃k∇
(
lnFk − lnMF̃k

)
.
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We use that ∇ψ̃k#Fk = F̃k to conclude that

∫
IRd

|v|4F̃kdv =
∫
IRd

∣∣∣v + hθ̃k∇
(
lnFk − lnMF̃k

)∣∣∣4 Fkdv
≥ h4θ̃4k

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣4 Fkdv + 4
∫
IRd

(|v|2 + |R|2) (v ·R)Fkdv ,

where we have neglected all manifestly positive terms on the right. Then using the arithmetic–geometric
mean inequality to estimate, for example,

∫
IRd

(v ·R)|R|2Fkdv ≤ 1
4

∫
IRd

|v|4Fkdv +
3
4

∫
IRd

|R|4Fkdv ,

we easily conclude the existence of a universal constant K so that

h4θ̃4k

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣4 ≤ K

(∫
IRd

|v|4F̃kdv +
∫
IRd

|v|4Fkdv
)
,

and hence that

θ̃2k

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣4 ≤ K

h4

1
θ̃2k(x)

(∫
IRd

|v|4F̃kdv +
∫
IRd

|v|4F̃kdv
)
. (4.4)

Now multiply both sides of (4.2) by ρk(x), and integrate over T d. We obtain

∫
Td×Rd

|v|2 (fk−1(x, v) − fk(x, v)) dvdx

≤ h2

∫
Td

(
θ̃2k(x)

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv
)
ρk(x)dx .

(4.5)

To estimate the integral on the right of (4.5) , we must use different arguments on the regions where
the temperature θk(x) is large and where is small. Toward this end, define

Aλ = { x ∈ T d | θ̃k(x) > λ } .

Then applying Hölder’s inequality with dual indices p and p′,

∫
Aλ

(
θ̃2k(x)

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv
)
ρk(x)dx ≤

(∫
Td

θ̃k(x)p
′
ρk(x)dx

)1/p′

‖G‖Lp(ρk)

(4.6)

where ‖G‖Lp(ρk) is given by

‖G‖Lp(ρk) =
(∫

Aλ

(
θ̃k(x)

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv
)p

ρk(x)dx
)1/p

.

It follows from Theorem 3.2 that

‖G‖L1(ρk) ≤ 1
h

(H(fk−1) −H(fk)) . (4.7)
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It follows from (4.4) that

‖G‖L2(ρk) ≤ C

h2λ
. (4.8)

Then for 0 < s < 1, let p = 1 + s, so that by Hölder’s inequlaity

‖G‖Lp(ρk) ≤ ‖G‖2s/(1+s)
L2(ρk) ‖G‖(1−s)/(1+s)

L1(ρk) . (4.9)

Combining (4.6), (4.7), (4.8) and (4.9),

‖G‖Lp(ρk) ≤ C

(
1
h2λ

)2s/(1+s) (
H(fk−1) −H(fk)

h

)(1−s)/(1+s)
.

Then since p = 1 + s so that p′ = (1 + s)/s, as long as s ≥ 1/2,by Theorem 3.3 and (4.1)

(∫
Td

θ̃k(x)p
′
ρk(x)dx

)1/p′

≤ C

for all k with kh ≤ T . Altogether then, for 1/2 ≤< s < 1,

∫
Aλ

(
θ2k(x)

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv
)
ρk(x)dx ≤

C

(
1
h2λ

)2s/(1+s)(
H(fk−1) −H(fk)

h

)(1−s)/(1+s) (4.10)

for all k with kh ≤ T . Here we have also used (4.6).
On the other hand, we have directly from Theorem 3.2 that

∫
Ac

λ

(
θ2k(x)

∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv
)
ρk(x)dx ≤ λ

(
H(fk−1) −H(fk)

h

)
. (4.11)

Now combining (4.5), (4.10) and (4.11), and optimizing over λ, one obtains

∫
Td×Rd

|v|2 (fk−1(x, v) − fk(x, v)) dvdx ≤ h2Ch−4s/(1+3s)

(
H(fk−1) −H(fk)

h

)(1+s)/(1+3s)

≤ Ch(1+s)/(1+3s) (H(fk−1) −H(fk))
(1+s)/(1+3s)

.

With N denoting the first integer greater than T/h, one more applications of Hölder’s inequality yields

∫
Td×Rd

|v|2 (f0(x, v) − fk(x, v)) dvdx ≤ Ch(1+s)/(1+3s)
N∑
j=1

(H(fk−1) −H(fk))
(1+s)/(1+3s)

≤ Ch(1+s)/(1+3s) (H(fN−1) −H(f0))
(1+s)/(1+3s)

N2s/(1+3s) .

Choosing s = 1/2, we obtain the result.

5 H�older continuity of approximate solutions
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The main purpose of this section is to obtain bounds on

N−1∑
k=0

∫
Td

ρk(x)W 2
2 (F̃k, Fk)dx and

N−1∑
k=0

∫
Td

ρk(x)
W 2

2 (Fk, F̃k)
θk(x)

dx (5.1)

that vanish as h, the time step, tends to 0, as well as several related sums.
This will be used for showing that we obtain a solution of (1.7) in the limit as h tends to 0, and

for obtaining an a–priori estimate on the Hölder continuity of this solution. The first quantity on the
right in (5.1) is estimated as in [20], with some complications due to fact we are working on the phase
space and the energy is not conserved.

Lemma 5.1: For all N ,

N−1∑
k=0

∫
Td

ρk(x)

[
W 2

2 (F̃k, Fk)
θk(x)

]
dx ≤ h2 (H(fN) −H(f0)) . (5.2)

Proof: For each x, use F̃k(·;x) as a trial function in our variational problem. We then clearly obtain

h

∫
Td

ρk(x)H(F̃k|MF̃k
) ≥

∫
Td

ρk(x)

[
W 2

2 (F̃k, Fk)
θk(x)

+ hH(Fk|MF̃k
)

]
dx . (5.3)

This gives us

∫
Td

ρk(x)

[
W 2

2 (F̃k, Fk)
θk(x)

]
dx ≤ h

[∫
Td

ρk(x)
(
H(F̃k|MF̃k

) −H(Fk|MF̃k
)
)]

dx

= h

∫
Td

ρk(x)
[(
H(Fk) −H(F̃k)

)
+
∫
IRd

|v|2
2θ̃k

(F̃k − Fk)dv
]

dx

Note that by (3.7),

∫
IRd

|v|2
2θ̃k

(F̃k − Fk)dv ≤ h2θ̃k(x)
∫
IRd

∣∣∇ (lnFk − lnMF̃k

)∣∣2 Fkdv .
Conveniently, here the right hand side is linear in θ̃k, making the estimation much more direct than in
section 4. By Theorem 3.2, this becomes

∫
Td

ρk(x)
[∫

IRd

|v|2
2θ̃k

(F̃k − Fk)
]

dv ≤ h (H(fk) −H(fk−1)) .

Altogether, this gives us

∫
Td

ρk(x)

[
W 2

2 (F̃k, Fk)
θk(x)

]
dx ≤ h (H(fk) −H(fk−1)) + h

∫
Td

ρk(x)
(
H(Fk) −H(F̃k)

)
dx .

Also, since

H(fk) = −
∫
Td

ρk ln ρkdx+
∫
Td

ρk(x)H(Fk)dx
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and
H(f̃k) = H(fk−1) , (5.4)

one obtains ∫
Td

ρk(x)

[
W 2

2 (F̃k, Fk)
θk(x)

]
dx ≤ 2h (H(fk) −H(fk−1)) ,

and Lemma 5.1 follows upon telescoping the sum on the right.

We now turn to the left member in (5.1):

N−1∑
k=0

∫
Td

ρk(x)W 2
2 (F̃k, Fk)dx . (5.5)

Clearly, large values of θk(x) pose a problem if we try to estimate (5.5) in terms of the left had side of
(5.2). To deal with this problem, we require moment estimates on θk(x).

Lemma 5.2: Suppose that for some r > 1 and all k ≤ N ,

∫
Td

θrk(x)ρk(x)dx ≤ C . (5.6)

Then there is a constant K depending only on C so that

∫
Td

ρk(x)W 2
2 (F̃k, Fk)dx ≤ K

(∫
Td

ρk(x)

[
W 2

2 (F̃k, Fk)
θk(x)

]
dx

)(r−1)/r

(5.7)

for all k ≤ N. Moreover, with the same constant K,

N−1∑
k=0

∫
Td

ρk(x)W 2
2 (F̃k, Fk)dx ≤ KN1/r (2h[H(fN−1) −H(f0)]))

(r−1)/r
. (5.8)

Proof: For any a > 0,

∫
Td

ρk(x)W 2
2 (F̃k, Fk)dx ≤

∫
θk<a

ρk(x)W 2
2 (F̃k, Fk)dx

+
∫
θk≥a

ρk(x)W 2
2 (F̃k, Fk)dx

≤
∫
θk<a

a

θk(x)
ρk(x)W 2

2 (F̃k, Fk)dx+
∫
θ≥a

(
θk(x)
a

)r−1

ρk(x)W 2
2 (F̃k, Fk)dx

≤
∫
Td

a

θk(x)
ρk(x)W 2

2 (F̃k, Fk)dx+
∫
Td

2dθrk(x)
ar−1

ρk(x)dx ,

using in the last line the fact that W 2
2 (F̃k, Fk) ≤ 2dθk(x). One then optimizes this by chosing

ar = 2dC(r − 1)

[∫
Td

ρk(x)

[
W 2

2 (F̃k, Fk)
θk(x)

]
dx

]−1

,
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and obtains (5.7).
Next, by this and Hölder’s inequality,

N−1∑
k=0

∫
Td

ρk(x)W 2
2 (Fk, F̃k)dx ≤

N−1∑
k=0

K

(∫
Td

ρk(x)

[
W 2

2 (Fk, F̃k)
θk(x)

]
dx

)r−1/r

≤ KN1/r

(
N−1∑
k=0

∫
Td

ρk(x)

[
W 2

2 (Fk, F̃k)
θk(x)

]
dx

)(r−1)/r

≤ KN1/r (h2[H(fN−1) −H(f0)])
(r−1)/r

,

(5.9)

where in the last line we have used (5.2).

These lemmas may be applied to prove an estimate on the convergence of our approximate solutions:

Theorem 5.3: (Approximate transport equation: part II) Let fk be a sequence of
probability densities given by the maximize and flow algorithm, with p = 1, for a given time step h > 0.
Let fh(t, x, v) be defined by (2.11). For any integer N , let T = Nh. Suppose moreover that (5.6) holds
for r > 2. Then for any test function φ on IR+ × T d × IRd such that φ(t, ·, ·) = 0 for t = 0 and t = T ,
there is a constant CT depending on T , φ and r, but not on h, so that

∣∣∣∣∣
∫
Td×IRd

[∫ T

0

fh
(
∂φ

∂t
+ v · ∇vφ

)
dt+ h

N−1∑
k=0

(Lfk
φ))fk

]
dvdx

∣∣∣∣∣ ≤
CT

(
h1− 1

r + h
1
5

)
.

(5.10)

Proof: The starting point is Theorem 2.2. In light of (3.8), the middle term on the right side of
(2.14) is bounded by

‖D2
vφ‖∞ (H(fN−1) −H(f0)) .

We use a classical inequality that compare the entropy and the kinetic energy of any density function
f :

H(f) ≤ 2πE(f). (5.11)

We apply (5.11) to fN−1 and use Theorem 4.1 to prove that the middle term on the right side of (2.14)
is bounded by CTh

1
5 . By Lemma 2.3, the final term on the right side of (2.14) is bounded by

‖D2
vφ‖∞

N−1∑
k=0

∫
Td

ρk(x)W 2
2 (Fk, F̃k)dx . (5.12)

We use (5.11) in the last inequality of Lemma 5.2, use that T = Nh, to control the final term on the
right side of (2.14), by CTh1− 1

r .

The same sort of reasoning leads to an a–priori Hölder continuity result for fh in terms of the
Wasserstein 2–metric, W2.

Theorem 5.4 (Hölder Continuity in time): For all s and t with 0 < s < t < T = Nh,

W2(fh(t, ·, ·), fh(s, ·, ·)) ≤
√
t− s+ h

√
E(f0)(H(M∞) −H(f0)) + (t− s+ 3h)

√
E(f0) , (5.13)
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Where M∞ is the Maxwellian density with spatially homogenous ρ, u and θ, and with the same total
energy and momentum as f0.

Proof: For any times t > s > 0. Let M = [s], the integer part of s, and let N = [t], so that

W2(fh(t, ·, ·), fh(s, ·, ·)) ≤
W2(fh(t, ·, ·), fN (·, ·)) +W2(fN (·, ·), fM (·, ·)) +W2(fM (·, ·), fh(s, ·, ·)) .

(5.14)

Let L : T d × IRd → T d × IRd be given by L(x, v) = (x + (t − tN )v, v). Then L#fN = fh(t, ·, ·), and
hence

W 2
2 (fh(t, ·, ·), fN (·, ·)) ≤ 1

2

∫
τd×IRd

|L(x, v) − (x, v)|2fN (x, v)dxdv ≤

h2 1
2

∫
τd×IRd

|v|2fN(x, v)dxdv = h2E(f0) ,
(5.15)

and hence
W2(fh(t, ·, ·), fN (·, ·)) ≤W2(fh(s, ·, ·), fM (·, ·)) ≤ h

√
E(f0) . (5.16)

By the same argument,
W2(fh(s, ·, ·), fM (·, ·)) ≤ h

√
E(f0) . (5.17)

Next, for each k = M + 1, . . . , N ,

W2(fk−1, fk) ≤W2(fk−1, f̃k) +W2(f̃k, fk)

and by the same reasoning as above once again,

W2(fk−1, f̃k) ≤ h
√
E(f0) . (5.18)

Then since fk and f̃k have the same spatial density ρk,

W2(fk, f̃k) ≤
∫
Td

W2(Fk, F̃k)ρk(x)dx

≤
∫
Td

θ
1/2
k (x)

[
W 2

2 (fk, f̃k)
θk(x)

]1/2

ρk(x)dx

≤
(∫

Td

θk(x)ρk(x)dx
)1/2

(∫
Td

[
W 2

2 (fk, f̃k)
θk(x)

]
ρk(x)dx

)1/2

.

(5.19)

Hence, combining (5.18) and (5.19), summing, using Lemma 5.1, and the fact that d
2

∫
Td ρkθkdx is

bounded by the initial energy E(f0) we conclude that

N−1∑
k=M

W2(fk, f̃k) ≤
√

(N −M)E(f0)
√
h(H(fN) −H(fM )) + (N −M)h

√
E(f0)

≤ √
t− s+ h

√
E(f0)(H(fN ) −H(fM )) + (t− s+ h)

√
E(f0) .

(5.20)

Since for any M < N , H(fN )−H(fM ) ≤ H(M∞)−H(f0), the result follows readily from (5.16), (5.17)
and (5.20).
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6 Velocity averaging lemma

In this section we prove a discrete time version of the velocity averaging lemma. Our starting point is
(2.13), which, leaving out the intermediate steps is

∫ T

0

∫
Td×IRd

fh
(
∂φ

∂t
+ v · ∇vφ

)
dxdvdt

= −
N−2∑
k=1

∫
Td×IRd

(
fk(x, v) − f̃k(x, v)

)
φ(tk, x, v)dxdv

+
∫
Td×IRd

f̃N (x, v)φ(T, x, v)dxdv −
∫
Td×IRd

f̃0(x, v)φ(0, x, v)dxdv .

(6.1)

The regularity properties that we investigate here are local, and it suffices to consider test functions
that vanish for t outside (0, T ), so that we may neglect the boundary terms.

To begin, define the distribution κ on T d × IRd × (0, T ) by

κ(x, v, t) =
N−2∑
k=1

(
fk(x, v) − f̃k(x, v)

)
δ(t− tk) .

Consider (x, t) as a variable inRd+1, and introduce the d+1 dimensional vector a(v) = (v1, v2, . . . , vd, 1)
in terms of which we may rewrite (6.1) as

div(x,t)

(
a(v)fh(x, v, t)

)
= κ(x, v, t) . (6.2)

Next fix any numbers β and m with 0 < β < 1, and m an even positive integer. Define the function g
by

g(x, v, t) = (1 − ∆(x,t))−β/2(1 − ∆v)−m/2κ(x, v, t) . (6.3)

Then we can rewrite (6.2) as

div(x,t)

(
a(v)fh(x, v, t)

)
= (1 − ∆z)β/2(1 − ∆v)m/2g(x, v, t) . (6.4)

Now let ψ be a smooth and compactly supported function on Rd, and define

ρhψ(x, t) =
∫
IRd

fh(x, v, t)ψ(v)dv . (6.5)

A theorem due to DiPerna, Lions, Meyer [15] and Bézard [2], presented in this form in [3], Theorem
1.6, asserts that for f and g satisfying (6.4), and both belonging to Lp, some 1 < p ≤ 2, there is a
constant C so that

‖(1 − ∆(x,t))s/2ρhψ‖Lp(Td×[0,T ]) ≤ C
(‖fh‖Lp(Td×IRd×[0,T ]) + ‖g‖Lp(Td×IRd×[0,T ])

)
, (6.6)

where
s =

1 − β

(m+ 1)p′

and C is independent of f and g. (As stated in [3], the theorem requires that ∂αa is bounded for all
|α| ≤ m. However, inspection of the proof reveals that a uniform bound on ∂αa is required only on the
support on ψ, and this holds in our case.)
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To apply this in the present setting, we first prove the following lemma:

Lemma 6.1: For any p with 1 < p < ∞, let β be a number with (p − 1)/p < β < 1, and let h(x)
belong to Lp(IRd). Define g(x, t) by

g(x, t) = (1 − ∆x,t)−β/2 (h(x)δ(t))

where δ(t) denotes the Dirac mass at t = 0. Then there is a constant C depending only on d, p′ and β
so that ‖g‖p ≤ C‖h‖p.
Proof: Whether or not

∥∥(1 − ∆x,t)−β/2 (h(x)δ(t))
∥∥
Lp(IRd+1)

is finite, there is a function φ on IRd+1

with ‖φ‖Lp′(IRd+1) = 1 so that

∥∥∥(1 − ∆x,t)−β/2 (h(x)δ(t))
∥∥∥
Lp(IRd+1)

=
∫
IRd+1

φ(x, t)(1 − ∆x,t)−β/2 (h(x)δ(t)) dxdt

=
∫
IRd

((
(1 − ∆x,t)−β/2φ

)
(x, 0)

)
h(x)dx

≤
∥∥∥τ ((1 − ∆x,t)−β/2φ

)∥∥∥
Lp′(IRd+1)

‖h‖Lp(IRd+1) ,

(6.7)

where τ denotes the trace map on the hyperplane t = 0. A standard trace theroem for Bessel potentials
(see [31], section VI.4.2, or [32]), there is a constant C depending only on d, p′ and β so that for any
β > 1/p′, ∥∥∥τ ((1 − ∆x,t)−β/2φ

)∥∥∥
p′

≤ C‖φ‖p′ .

This yields the result.

Lemma 6.2: (Controlling moments of fp) For any probability density f on T d × IRd, let
ρ(x) =

∫
IRd f(x, v)dv. Suppose that for some 1 < q <∞,

∫
Td×IRd

(1 + |v|2)f(x, v)dxdv = A <∞ and
∫
Td×IRd

f q(x, v)dxdv = B <∞ .

Then for any 0 < α < 1, and p = q
1−α+αq , there is a constant C depending only on α, q, A and B so

that ∫
Td×IRd

|(1 + |v|2)αf(x, v)|pdxdv ≤ C .

Under the additional condition that 2αp′ > d, there is a constant C of the same type so that

‖ρ‖Lp(Td) ≤ C . (6.8)

Furthermore, for any non-negative function y on T d, and any r with 1 < r < ∞, and any s with
0 < s < 1/r

‖yρ‖r ≤
(∫

Td

y1/sρdx
)s (‖ρ‖(r−sr)/(1−sr)

)1−s
.
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Proof: Using Hölder’s inequality with dual indices r = 1/αq and r′ = 1/(1 − αq),

∫
Td×IRd

|(1 + |v|2)αf(x, v)|qdxdv =
∫
Td×IRd

|(1 + |v|2)f(x, v)|αqf(x, v)q−αqdxdv

≤ AαqB1−αq .

Now for any function g on T d,

∫
Td

g(x)ρ(x)dx =
∫
Td×IRd

g(x)f(x, v)dxdv

=
∫
Td×IRd

g(x)(1 + |v|2)−α(1 + |v|2)αf(x, v)dxdv

≤
(∫

Td×IRd

|g(x)(1 + |v|2)−α|p′dxdv
)1/p′ (∫

Td×IRd

|(1 + |v|2)αf(x, v)|pdxdv
)1/p

As long as 2αp′ > d, the first integral on the right is bounded by a constant multiple of ‖g‖Lp′(Td), and
this proves (6.8)

Finally, for any non-negative function y on T d,

∫
Td

yrρrdx =
∫
Td

yrρsrρr−srdx ≤
(∫

Td

y1/sρdx
)sr (∫

Td

ρ(r−sr)/(1−sr)dx
)1−sr

where we have used Hölder’s inequality with exponents 1/sr and 1/(1− sr). This yields the result.

Lemma 6.3: (Controlling the transport term div(x,t)

[
afh

]
) For any p with 1 < p < 4+d

2+d ,
any T > 0, and any m > 2 + 2d/p′ even integer, there exists a constant C depending only on d, T ,∫
Td×IRd |v|6f0dxdv, and ‖f0‖2 so that uniformly in N and h with Nh < T ,

N−1∑
k=1

‖(1 − ∆v)−m/2(f̃k − fk)‖Lp(Td×IRd) ≤ C .

Proof: As in the proof of Lemma 6.1,there is a function φ on T d × IRd with ‖φ‖Lp′(Td×IRd) = 1 so
that

‖(1 − ∆v)−m/2(f̃k − fk)‖p =
∫
IR2d

(1 − ∆v)−m/2φ(x, v)(f̃k(x, v) − fk(x, v))dxdv . (6.9)

Let ψ(x, v) be given by

ψ(x, v) = (1 − ∆v)−m/2φ(x, v) = (1 − ∆v)−1(1 − ∆v)−(m−2)/2φ(x, v) .

Choose m large enough that m − 2 > d/p′. Then for each x, (1 − ∆v)−(m−2)/2φ(x, ·) is uniformly
bounded and Hölder continuous with the bound depending only on ‖φ(x, ·)‖Lp′(IRd). This follows from
properties of Bessel potentials; see the appendix for details. This in turn implies [23 Theorem 10.3] that
the second derivative of (1 − ∆v)−1(1 − ∆v)−(m−2)/2φ are uniformly bounded and Hölder continuous.
Thus,

‖ψ(x, ·)‖∞ + ‖∇vψ(x, ·)‖∞ + ‖D2
vψ(x, ·)‖∞ < C‖φ(x, ·)‖p′ (6.10)
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with C finite and depending only on the dimension, p and the choice of m.
Then, by (2.10), and Lemma 2.3,

∣∣∣∣
∫
IR2d

(
(1 − ∆v)−m/2φ

)
(f̃k − fk)dxdv

∣∣∣∣ =
∣∣∣∣
∫
Td×IRd

(fk − f̃k)ψdvdx
∣∣∣∣

≤ h

∣∣∣∣
∫
Td×IRd

(
Lf̃k

ψ
)
fkdvdx

∣∣∣∣
+
∫
Td

‖D2
vψ(x, ·)‖∞ρk(x)W 2

2 (Fk, F̃k)dx

≤ h

∣∣∣∣
∫
Td×IRd

(
Lf̃k

ψ
)
fkdvdx

∣∣∣∣
+ C

∫
Td

‖φ(x, ·)‖p′ρk(x)W 2
2 (Fk, F̃k)dx

≤ h

∣∣∣∣
∫
Td×IRd

(
Lf̃k

ψ
)
fkdvdx

∣∣∣∣
+ C‖φ‖Lp′(Td×IRd)

(∫
Td

(
ρk(x)W 2

2 (Fk, F̃k)
)p

dx
)1/p

.

(6.11)

Here, because uk = ũk, Lf̃k
is Lfk

with θfk
∆v replaced by θ̃fk

∆v.
Next we estimate the last term in (6.11). Fix k, and let e(x) denote

∫
IRd |v|2F̃k(v;x)dv, which is essen-

tially the local energy density at the kth time step. Then since
∫
IRd |v|2Fk(v;x)dv ≤ ∫

IRd |v|2F̃k(v;x)dv,

W 2
2 (Fk, F̃k) ≤ e(x)

for each x. Now choose any s̄ with 0 < s̄ < 1/p. Then

∫
Td

(
ρk(x)W 2

2 (Fk, F̃k)
)p

dx ≤
∫
Td

(
ρk(x)W 2

2 (Fk, F̃k)
)s̄p

(ρk(x)e(x))
(1−s̄)p dx

≤
(∫

Td

ρk(x)W 2
2 (Fk, F̃k)dx

)s̄p(∫
Td

(ρk(x)e(x))
r dx

)1−s̄p (6.12)

where r = p(1− s̄)/(1− s̄p). Recall that by Theorem 3.1, the sixth moment at time t < T is controlled
by the initial sixth moment, and so,

∫
Td e(x)3ρk(x)dx is controlled by the initial sixth moment of the

velocity uniformly in k for hk < T . Therefore, for such values of k, there is a constant C depending
only on T and the initial sixth moment so that if we apply Lemma 6.2 with s = 1/3 and r ∈ (0, 3), we
obtain (∫

Td

(ρk(x)e(x))
r dx

)1/r

≤ C
(
‖ρk‖ 2r

3−r

)2/3

. (6.13)

Now take s = 1/2 in (6.12) so that r = p/(2− p). Then 2r/(3 − r) = p/(3 − 2p). By Theorem 3.3 and
Lemma 6.2, ‖ρk‖ 2r

3−r
is bounded uniformly in k for all kh < T by a constant C depending only on T

and ‖f0‖2. Combining (6.12) and (6.13) we obtain

(∫
Td

(
ρk(x)W 2

2 (Fk, F̃k)
)p

dx
)1/p

≤ C

∫
Td

(
ρk(x)W 2

2 (Fk, F̃k)
)1/2

(6.14)

6/november/2001; 10:43 28



uniformly in k with kh < T for a constant C depending only on T , the initial sixth moment and ‖f0‖2,
which completes our estimation of the last term in (6.11).

We now estimate the penultimate term. Note that

∣∣∣∫
IRd

Lf̃k
(ψ(x, ·))dv

∣∣∣ ≤ θ̃k(x)‖D2
vψ(x, ·)‖∞ + ‖ψ(x, ·)‖∞ + (1 + dθk)‖∇vψ(x, ·)‖∞.

This, combined with (6.10) yields that there exists a constant C depending only on d and p such that,

∣∣∣∣
∫
Td×IRd

(
Lf̃k

ψ
)
fkdvdx

∣∣∣∣ ≤ C

∫
Td

‖φ(x, ·)‖p′(1 + e(x))ρk(x)dx

≤ ‖φ‖p′‖(1 + e(·))ρk(·)‖p .

Applying Lemma 6.2 with s = 1/3, we obtain that

∣∣∣∣
∫
Td×IRd

(
Lf̃k

ψ
)
fkdvdx

∣∣∣∣ ≤ C (6.15)

uniformly in k with kh < T for a constant C depending only on T , the initial sixth moment and ‖f0‖2,
which completes our estimation of the penultimate term in (6.11). Combining (6.9), (6.11), (6.14) and
(6.15), we have

‖(−∆v)−m/2(f̃k − fk)‖p ≤ C

[
h+

∫
Td

(
ρk(x)W 2

2 (Fk, F̃k)
)1/2

]
. (6.16)

By Lemma 5.2 with r = 2, there is a constant K so that

N−2∑
k=1

∫
Td

ρk(x)W 2
2 (Fk, F̃k)dx ≤ K (Nh2(H(fN) −H(f0)))

1/2
.

Because of the standard inequality (5.11), this quantity is plainly controlled by the energy of f0. Hence
we may sum the right hand side of (6.16) over k with kh < T , and we obtain a bound that is independent
of h.

Theorem 6.4: (Strong compactness of averaging functions) Let ψ be any compactly
supported function on IRd, and define

ρhψ(x, t) =
∫
IRd

fh(x, v, t)ψ(v)dv .

Then for any p with 1 < p < 3+d/2
2+d/2 , and any T > 0, there is a constant C depending only on d, T ,∫

Td×IRd |v|6f0dxdv, ‖f0‖2 and ψ so that uniformly in N and h with Nh < T , then there is an s > 0
with

‖(1 − ∆x,t)s/2ρhψ‖p ≤ C .

(In fact, s ∈ (0, 1) is a constant depending only on d, T ,
∫
Td×IRd |v|6f0dxdv, ‖f0‖2, p, and ψ.)

Proof: We simply need to apply the lemmas to verify (6.6) in the cited theorem of DiPerna-Lions-
Meyer-Bézard. First, we know that ‖f(·, ·, t)‖p is bounded uniformly on [0, T ] in terms of ‖f0‖p, and
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hence we have a bound on ‖f‖Lp(Td×IRd×[0,T ]). As for g, Lemma 6.1 says that there is a constant C so
that

‖f‖Lp(Td×IRd×[0,T ]) ≤
N−1∑
k=1

‖(1 − ∆v)−m/2(f̃k − fk)‖p .

Note that the dependence on v is suppressed in Lemma 6.1, but

‖g‖Lp(Td×IRd×[0,T ]) =
(∫

IRd

(‖g(·, v, t)‖Lp(Td×[0,T ])

)p)1/p

.

Now Lemma 6.3 give us the desired bound on ‖g‖Lp(Td×IRd×[0,T ]).

As we shall show in the next section, this gives us the compactness we need to show that the when
we let h tend to zero, the limit of the temperatures is the temperature of the limit. With that in hand,
the rest follows directly.

7 Existence of solutions

In this section we prove that a sequence of our discrete time approximations fh converges to a solution
f of the kinetic Fokker–Planck equation.

Theorem 7.1(Main result: existence of a solution) Let f0 be a probability density on T d × IRd

such that ∫
Td×IRd

|v|6f0(x, v)dxdv <∞ ,

∫
Td×IRd

|f0|2(x, v)dxdv <∞ .

Then for any T > 0. Then there is a sequence of time steps hk with limk→∞ hk = 0 so that
limk→∞ fhk = f weakly in L1(T d × IRd × [0, T ]) and where f is a weak solution of the kinetic Fokker–
Planck equation (1.7), and

lim
t→0

f(·, ·, t) = f0(·, ·) ,

weakly in L1(T d × IRd). Moreover,

∫
T r×IRd

|v|2f(x, v, t)dxdv =
∫
T r×IRd

|v|2f0(x, v)dxdv

for all t and there is a constant C depending only on the energy and entropy of the initial data f0 so
that

W2(f(·, ·, t), f(·, ·, s)) ≤ C(
√

|t− s| + |t− s|) .
Finally, for all t > 0,

H(f(·, ·, t) −H(f(·, ·, 0) ≥
∫ t

0

∫
Td

θ(x, t)
[∫

IRd

∣∣∇v ln f(·, ·, t) −∇v lnMf(·,·,t)
∣∣2 f(x, v, t)dv

]
dxdt .
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Proof: Most of the work required to prove this result has been done in the previous sections of this
manuscript. In fact, because the velocity averaging lemma provides the strong compactness needed to
deal with the nonlinear term Lfk

φ, Theorem 5.3, almost gives us the convergence result.
The starting point is the fact that the family of functions {fh | h > 0} is weakly compact in

Lp(T d × IRd × [0, T ]) for any 1 < q < 2. This is a direct consequence of our uniform L2 bound on the
fh that is provided by Theorem 3.3, and the uniform bound on the set of entropies {H(fh)}h>0. We
may therefore select a sequence of times steps hk tending to zero so that

lim
k→∞

fhk = f

weakly in Lq(T d × IRd × [0, T ]), and hence locally in L1(T d × IRd × [0, T ]).
Now let ρk(x, t) =

∫
IRd fhk(x, v, t)dv and ρk(x, t) =

∫
IRd f(x, v, t)dv. Also let

ρk(x, t)uk(x, t) =
∫
IRd

vfhk(x, v, t)dv and ρk(x, t)θk(x, t) =
1
d

∫
IRd

|v − uk(x, t)|2fhk(x, v, y)dv ,

and let

ρ(x, t)u(x, t) =
∫
IRd

vf(x, v, y)dv and ρ(x, t)θ(x, t) =
1
d

∫
IRd

|v − u(x, t)|2f(x, v, t)dv .

Note the change in notation: Here k indexes an approximate solution fnk , and not a particular time
step.

We cannot directly apply Theorem 6.4 to, say,
∫
IRd vfhk(x, v, t)dv, since this would correspond

to choosing ψ(v) = v in that Theorem, and ψ is required to have compact support. Consider instead
ψ(v) = χ(v)v where χ is a smooth radial decreasing function with values in [0, 1] that equals 1 identically
on the ball of radius R, and vanishes outside the ball of radius 2R. For any ε > 0, using the energy
bound we can choose a value of R so that

∫
(1−χ(v))|v|fh(x, v, t) < ε uniformly in h and t. This gives

us strong compactness of the ρkuk. In a like manner, we obtain strong compactness of the ρk. Passing
to subsequences, we may arrange that both sequences {ρk} and {ρkuk} converge almost everywhere.
Hence we have that {uk} converges almost everywhere on {ρ > 0} to u. Hence, we may select a further
subsequence that converges strongly in Lq(T d × [0, T ]).

We now claim that for any test function φ on T d × IRd × [0, T ]∫
Td×IRd×[0,T ]

∇xφ(x, v, t)u(x, t)f(x, v, t)dvdxdt = lim
k→∞

∫
Td×IRd×[0,T ]

∇xφ(x, v, t)uk(x, t)fhk(x, v, y)dxdvd

(7.1)
where here and in what follows, k progesses along our most recently selected subsequence.

By Egoroff’s theorem, for any ε > 0, there is a further subsequence so that uk converges to u

uniformly on a substet Gε of T d× [0, T ] whose complement Bε has a ρ–measure of no more than ε. We
have that∫

Td×IRd×[0,T ]

∇xφ(x, v, t)uk(x, t)fhk(x, v, t)dxdvdt

=
∫
Bε×IRd

∇xφ(x, v, t)uk(x, t)fhk(x, v, t)dxdvdt

+
∫
Gε×IRd

∇xφ(x, v, t)(uk(x, t) − u(x, t))fhk(x, v, t)dxdvdt

+
∫
Gε×IRd

∇xφ(x, v, t)(u(x, t))fhk (x, v, t)dxdvdt

= I1 + I2 + I3 .
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Since we have a uniform Lr bound on uk(x, t)
∫
IRd fhk(x, v, t)dv for some r > 1, by Theorem 3.1 and

Lemma 6.2, it follows from Hölder’s inequality that for some constant C depending on φ,

|I1| ≤ Cε(r−1)/r .

By the uniform convergence on Gε of {uk}k≥1, and the weak compactness of {fhk}k≥1,

lim
k→∞

∫
Gε×IRd

∇xφ(x, v)(uk(x, t) − u(x, t))fhk(x, v, y)dxdvdt = 0 ,

and so I2 tends to zero as k increases. Finally, by the weak convergence

lim
k→∞

∫
Gε×IRd

∇xφ(x, v)(u(x, t))fhk (x, v, y)dxdv =
∫
Gε×IRd

∇xφ(x, v)(u(x, t))f(x, v, y)dxdv .

But in the same way we bounded I1, we conclude that

∣∣∣∣
∫
Bε×IRd

∇xφ(x, v)(u(x, t))f(x, v, y)dxdv
∣∣∣∣ ≤ Cε(r−1)/r .

Since ε is arbitrary, (7.1) is established.
The same sort of argument now shows that

∫
Td×IRd

∆xφ(x, v)θ(x, t)f(x, v, t)dvdx = lim
k→∞

∫
Td×IRd

∆xφ(x, v)θk(x, t)fhk(x, v, y)dxdv (7.2)

The only difference is that we must use the propagation of higher moments proved in Theroem 3.1
instead of just the energy bound. The structure of the argument is the same, though.

Next, it follows immediately from Theorem 5.3 that f satisfies

lim
k→∞

∣∣∣∣∣
∫
Td×IRd

[∫ T

0

fhk

(
∂φ

∂t
+ v · ∇vφ

)
dt+

∫ T

0

fhk (θk∆vφ+ (v − uk) · ∇vφ) dt

]
dvdx

∣∣∣∣∣ = 0

and

lim
k→∞

∫
Td×IRd

[∫ T

0

fhk

(
∂φ

∂t
+ v · ∇vφ

)
dt+

∫ T

0

fhk (θk∆vφ+ (v − uk) · ∇vφ) dt

]
dvdx

=
∫
Td×IRd

[∫ T

0

f

(
∂φ

∂t
+ v · ∇vφ

)
dt+

∫ T

0

f (θ∆vφ+ (v − u) · ∇vφ) dt

]
dvdx .

The conclusion is that

∫
Td×IRd

[∫ T

0

f

(
∂φ

∂t
+ v · ∇vφ

)
dt+

∫ T

0

f (θ∆vφ+ (v − u) · ∇vφ) dt

]
dvdx = 0 ,

and hence f is a weak solution of (1.7).
The conservation of the energy follows from Theorem 4.1 and (5.11) which ensure that the discrete

solutions do a better and better job of conserving energy as h tends to zero. We have also used the
strong compactness of {ρk|uk|2}k≥0 and {ρkθk}k≥0.
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We now deal with the entropy inequality. Since the entropy is a concave function, and hence weakly
upper semicontinuous, for t > 0,

lim inf
h→0

H(fh(·, ·, t) ≤ H(f(·, ·, t) .

The entropy production for fhk at time t is

∫
Td

θk(x, t)
[∫

IRd

∣∣∣∇v ln fhk(·, ·, t) −∇v lnMfhk (·,·,t)
∣∣∣2 fhk(x, v, t)dv

]
dx

which can be written ∫
Td

θk(x, t)ρk(x, t)
(
I(F k(·, x, t)) − I(MFk(·, x, t))) dx

where I(F ) is the Fisher information

I(F ) =
∫
Td

|∇ lnF |2Fdv .

It is well known that

I(F ) = supV∈C(IRd)

{∫
IRd

V Fdv − λ(V )
}

where λ(V ) is the fundamental eigenvalue of the operator −∆+V . It follows that for any continuous and
compactly supported function V on T d × IRd that if we let λ(V, x) denote the fundamental eigenvalue
of −∆v + V (x, ·), then

∫
Td

θk(x, t)ρk(x, t)I(F k(·, x, t))dx ≥
∫
Td

∫
IRd

(∫
IRd

fhkV dv − λ(V, x)ρk

)
dx .

Using the strong convergence of {θk} and {ρk}, and weak convergence of {fhk} in appropriate Lp

spaces, we have

lim inf
k→∞

∫
Td

θk(x, t)ρk(x, t)I(F k(·, x, t))dx ≥ lim inf
k→∞

∫
Td×IRd

θk(
∫
IRd

fV dv − λ(V, x)ρk)dx

=
∫
Td×IRd

θ(fV − λ(V, x))dxdv

Now taking the sup over all such V , we get

lim inf
k→∞

∫
Td

θk(x, t)ρk(x, t)I(F k(·, x, t))dx ≥
∫
Td

θ(x, t)ρ(x, t)I(F (·, x, t))dx .

Finally, since θkI(MFk) = d, identically in k, there is nothing to estimate there. Hence,

lim inf
k→∞

∫
Td

θk(x, t)ρk(x, t)(I(F k(·, x, t)) − I(MFk))dx ≥
∫
Td

θ(x, t)ρ(x, t)(I(F (·, x, t)) − I(MF ))dx .

This shows that while the entropy itself can only increase “jump upwards” in the limit, the entropy
production can only “jump downwards”, and so the entropy production inequality holds. (Note that
H(fhk(·, ·, 0)) = H(f0(·, ·)) independent of k).
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It remains observe that limt→0 f(·, ·, t) = f0(·, ·) weakly; this follows directly from the uniform
modulus of continuity in t of the approximate solutions fh.

8 Convergence to equilibrium

In this section, we study the sense in which the solutions that we have constructed, tend toward the set
M of local Maxwellian densities as t tends to infinity. Our main tools in this effort will be the Hölder
continuity of the solutions in the Wasserstein metric, and Talagrand’s inequality, which tells us that
[34], [36]

W 2
2 (F,MF ) ≤ θFH(F,MF )

for any probability density F on IRd. Here, θ is 1/d times the variance of F, as defined in (1.4).
We have from Theorem 7.1, and the logarithmic Sobolev inequality, and then Talgrand’s inequality,

for any T > 0,

H(f(·, ·, T )−H(f(·, ·, 0) ≥
∫ T

0

∫
Td

θ(x, t)
[∫

IRd

∣∣∇v ln f(·, ·, t) −∇v lnMf(·,·,t)
∣∣2 f(x, v, t)dv

]
dxdt

≥
∫ T

0

∫
Td

H
(
F (·;x, t)|MF (·;x,t)

)
ρ(x, t)dxdt

≥
∫ T

0

∫
Td

W 2
2 (F (·;x, t),MF (·;x,t))

θ(x, t)
ρ(x, t)dxdt .

(8.1)

We need to control the effect of large values of θ(x, t), and since we need to do this uniformly in
time, we can only use the energy bound, and not our bounds on higher velocity moments since they
are not uniform in time.

For any a > 0,

∫
Td

W 2
2 (F (·;x, t),MF (·;x,t))

θ(x, t)
ρ(x, t)dx ≥

∫
θ≤a2

W 2
2 (F (·;x, t),MF (·;x,t))

θ(x, t)
ρ(x, t)dx

≥ 1
a2

(∫
θ≤a2

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx
)2

(8.2)

where we have used Jensen’s inequality in the last line. To proceed, we shall make use of the inequality

W 2
2 (F,MF ) ≤ 2dθF

which follows directly from the definition of the left hand side. Hence,∫
θ≤a2

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx

≥
∫
Td

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx −
∫
θ>a2

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx

≥
∫
Td

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx −
∫
θ>a2

√
2dθ(x, t)ρ(x, t)dx

≥
∫
Td

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx −
√

2d
a

(∫
Td

θ(x, t)ρ(x, t)dx
)

. (8.3)
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Since the last integral in (8.3) is bounded uniformly in time by the energy, we have that for some
constant C depending only on the initial energy,

∫
θ≤a2

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx

≥
∫
Td

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx − C/a.

(8.4)

Now choose
a =

2C∫
Td W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx

. (8.5)

Combining (8.2) and (8.4), and using this value of a, we get

∫
Td

W 2
2 (F (·;x, t),MF (·;x,t))

θ(x, t)
ρ(x, t)dx ≥ C

(∫
Td

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx
)4

≥ C

(∫
Td

W2(F (·;x, t),MF (·;x,t))ρ(x, t)dx
)4

≥ CW 4
1 (f(·, ·, t),Mf(·,·,t))

(8.6)

for a constant C depending only on the dimension d and the energy of the initial data. Note in the last
line, the subscript in the expression W1(f(·, ·, t),Mf(·,·,t)), where W1 denotes the 1–Wasserstein metric
defined on the set of densities on T d× IRd. To obtain (8.6) we have used Schwarz’s inequality yielding
that W1 ≤W2, and we have used the simple fact that since f and Mf have the same spatial marginal
density ρ(x, t), then

W1(f(·, ·, t),Mf(·,·,t)) ≤
∫
Td

W1(F (·, ·, t),MF (··,t))ρ(x, t)dx .

It seems likely that
t 7→W1(f(·, ·, t),Mf(·,·,t))

is Hölder continuous in t. Indeed, given the bounds in Section 5, it would suffice to show that

W1(Mf(·,·,s),Mf(·,·,t)) ≤ C|t− s|1/2

for some constant C independent of s and t. However, we do not know how to do this. For each T > 0
large time, we then introduce MT , a subset of the set M of local Maxwellian densities, that depends
on the initial density f0 :

MT := {Mf(t,·,·) : t ≥ T }.
For f ∈ M, we define

distT (f,M) = inf{W1(f,M) | M ∈ MT } ,
through the W1 Wasserstein metric.

Theorem 8.1: (Gbobal asymptotic behavior for large times) Let f be a solution of
(1.7) constructed as in Theorem 7.1, and let T > 0. Then

lim
t→+∞distT (f(·, ·, t),MT ) = 0.
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Proof: Define
B(t) = distT (f(·, ·, t),M).

Schwarz’s inequality that gives that W1 ≤ W2. This, together with Theorem 7.1, yields that there
exists C > 0 depending only on the entropy and the energy of the initial data f0 such that

|B(t) −B(s)| ≤ C
(
|t− s| +

√
|t− s|

)
,

for all s, t ∈ (0,+∞). Since (5.11), (8.1), and (8.6) imply that B4 ∈ L1(0,∞), we conclude the proof of
Theorem 8.1.

Note: The fact on which the proof of Theorem 8.1 turns is that an integrable uniformly Hölder
continuous function on IR tends to zero at infinity.

We also observe that as a consequence of (5.11) and (8.1) we have that

∫ ∞

0

H
(
f(·, ·, t)|Mf(·,·,t)

)
dt <∞ .

Hence, as a consequence of the Csiszar–Kullback inequality,

∫ ∞

0

‖f(·, ·, t) −Mf(·,·,t)‖2
L1(Td×IRd)dt <∞ .

These estimates complement the information on asymptotic behavior that is provided by Theorem 8.1.

Appendix: Regularity of Bessel potentials

In this appendix, we prove regularity estimates on Bessel potentials that are used in the velocity
averaging analysis. These results are probably in the literature, but we have not found a reference.
Results comparable to those we need here appear in a lecture notes by Tartar [?]. For some reason
most versions of the Sobolev inequality giving L∞ bounds are stated for bounded domains IRd. The
version of Morrey’s inequality stated in Brezis’s book [6] is an exception, though it doesn’t directly
give exactly what we need. The following simple result does.

First, let us recall that for any g ∈ Lp(IRd) and α > 0,

(1 − ∆)−α/2g(v) =
∫
IRd

Gα(v − w)g(w)dw (9.1)

where Gα is a Bessel potential given by

Gα(v) = Cα

∫ ∞

0

e−|v|2/4te−tt(−d+α)/2 dt
t

(9.2)

and Cα is a constant depending only on α and d. The constant are such that
∫
IRd Gα(v)dv = 1, and

so the convolution operation in (9.1) is a contraction on each Lp(IRd), 1 ≤ p ≤ ∞. For these facts, as
well as the value of Cα, see [31]. There, one also finds the following: First since |v|2/4t+ t ≥ |v|,

e−|v|2/4te−t ≤ e−|v|/2e−|v|2/8te−t/2 .

6/november/2001; 10:43 36



Therefore, for |v| > 1,

Gα(v) ≤ e−|v|/2Cα
∫ ∞

0

e−1/8te−t/2t(−d+α)/2 dt
t
.

Hence there is a constant C depending only on α and d so that

Gα(v) ≤ Ce−|v|/2 for all |v| ≥ 1 .

Also, deleting the factor of e−t from the integral (9.2),

Gα(v) ≤ Cα

∫ ∞

0

e−|v|2/4tt(−d+α)/2 dt
t

= C|v|(−d+α)

where again, C is a finite constant depending only on α and d. To avoid frequent repetition of this
phrase, we fix for the rest of this appendix the convention that C denotes such a constant. It follows
that for p(α− d) > −d,

Gα ∈ Lp(IRd) . (9.3)

The result proven here is the following:

Theorem: (Hölder Continuity of Bessel Potentials) For 0 ≤ α < d, 1 ≤ p < ∞, and
and p(α− d) > −d, the map

a 7→ Gα(· − a)

is Hölder continuous into Lp(IRd) with

‖Gα(·) −Gα(· − a)‖p ≤ C|a|β/(1+β) (9.4)

where β = (d+ p(α− d))/(2p).

An immediate consequence of (9.3) is that for 0 ≤ α < d and g in Lp
′
(IRd), p′ > d/α,

‖Gα ∗ g‖∞ ≤ C‖g‖p′ .

Moreover, (9.4) gives that

‖Gα ∗ g(v) −Gα ∗ g(w)| ≤ C‖g‖p′ |v − w|β/(1+β) .

Proof: For any T > 0, define

Hα,T (v) = Cα

∫ T

0

e−|v|2/4te−tt(−d+α)/2 dt
t

and
Kα,T = Gα −Hα,T .

Then
‖Gα(·) −Gα(· − a)‖p ≤ 2‖Hα,T‖p + ‖Kα,T (·) −Kα,T (· − a)‖p . (9.5)

We now show that
‖Hα,T ‖p ≤ CT (d−p(d−α))/2p . (9.6)
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Indeed,

∫ T

0

e−|v|2/4te−tt(−d+α)/2 dt
t

=

(∫ T/|v|2

0

e−1/4ss(−d+α)/2e−s|v|
2 ds
s

)
|v|α−d

≤
(∫ ∞

0

(
max

0≤s≤T/|v|2
e−1/8s

)
e−1/8ss(−d+α)/2 ds

s

)
|v|α−d

=
(∫ ∞

0

e−1/8ss(−n+α)/2 ds
s

)
e−|v|2/8T |v|α−n

The integral is finite, and hence
Hα,T (v) ≤ Ce−|v|2/8T |v|α−d

from which (9.6) follows immediately.
We now show that

‖Kα,T (·) −Kα,T (· − a)‖p ≤ C

( |a|
T

)
. (9.7)

Let w = v − a. Then
||v|2 − |w|2| ≤ |a|(2|v| + |a|) ,

and hence ∣∣∣e−|v|2 − e−|w|2
∣∣∣ ≤ e−|v|2

(
e|a|(2|v|+|a|) − 1

)
≤ |a|(2|v| + |a|)e|a|(2|v|+|a|)e−|v|2

≤ |a|(2|v| + |a|)e|a|(2|v|+|a|)−|v|2/2e−|v|2/2

≤ |a|(2|v| + |a|)e5|a|2e−|v|2/2 .

Therefore,

|Kα,T (v) −Kα,T (v − a)| ≤ Cα

∫ ∞

T

|a|(2|v| + |a|)
4t

e5a
2/4te−|v|2/8te−tt(−d+α)/2 dt

t

≤ Cα
|a|(2|v| + |a|)

4T
e5a

2/4T

∫ ∞

T

e−|v|2/8te−tt(−d+α)/2 dt
t

≤ |a|(2|v| + |a|)
4T

e5a
2/4TCGα(v/

√
2) .

Now both Gα(v) and |v|Gα(v) belong to Lp(IRd), and so it follows from this that

‖Kα,T (·) −Kα,T (· − a)‖p ≤ C

( |a| + |a|2
T

)
e5|a|

2/T . (9.8)

This is not quite (9.7), but since no matter how large |a| is, ‖Kα,T (·) −Kα,T (· − a)‖p ≤ 2‖Gα‖p, we
can increase C so that (9.7) holds.

Combining (9.4), (9.6) and (9.7), we have

‖Gα(·) −Gα(· − a)‖p ≤ C(T β + |a|/T ) .

The optimal choice of T is T = |a|1/(1+β), which yields (9.4)
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