
Geometric restrictions for the existence of viscosity

solutions

P. Cardaliaguet B. Dacorogna W. Gangbo∗

N. Georgy

To appear : in Annales de l’IHP, analyse non linaire (1999)

August 2, 2000

Abstract

We study the Hamilton-Jacobi equation{
F (Du) = 0 a.e. in Ω
u = ϕ on ∂Ω

(0.1)

where F : IRN −→ IR is not necessarily convex. When Ω is a convex set,
under technical assumptions our first main result gives a necessary and
sufficient condition on the geometry of Ω and on Dϕ for (0.1) to admit
a Lipschitz viscosity solution. When we drop the convexity assumption
on Ω, and relax technical assumptions our second main result uses the
viability theory to give a necessary condition on the geometry of Ω and
on Dϕ for (0.1) to admit a Lipschitz viscosity solution.

Résumé

Nous étudions l’équation de Hamilton-Jacobi suivante{
F (Du) = 0 p.p. dans Ω
u = ϕ sur ∂Ω

(0.2)

où F : IRN −→ IR n’est pas nécessairement convexe. Lorsque Ω
est un ensemble convexe, notre premier résultat donne une condition
nécessaire et suffisante sur la géométrie du domaine Ω et sur Dϕ afin
que (0.2) admette une solution de viscosité lipschitzienne. Si on enlève
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la condition de convexité du domaine Ω, notre second résultat permet,
a l’aide du théorème de viabilité, de donner une condition nécessaire
sur la géométrie du domaine Ω et sur Dϕ afin que (0.2) admette une
solution de viscosité lipschitzienne.

1 Introduction

In this article we give a necessary and sufficient geometric condition for the
following Hamilton-Jacobi equation{

F (Du) = 0 a.e. in Ω
u = ϕ on ∂Ω

(1.1)

to admit a W 1,∞(Ω) viscosity solution. Here, Ω ⊂ IRN is a bounded, open
set, F : IRN −→ IR is continuous and ϕ ∈ C1(Ω). We prove that existence of
viscosity solutions 1 depends strongly on geometric compatibilities of the set
of zeroes of F , of ϕ and of Ω, however it does not depend on the smoothness
of the data.

The Hamilton-Jacobi equations are classically derived from the calculus
of variations, and the interest of finding viscosity solutions (notion intro-
duced by M.G. Crandall-P.L. Lions [8]) of problem (1.1) is well-known in
optimal control and differential games theory (c.f. M. Bardi - I.Capuzzo
Dolcetta [3], G. Barles [4]), W.H. Fleming - H.M. Soner [13] and P.L. Lions
[17]).

It has recently been shown by B. Dacorogna- P. Marcellini in [9], [10] and
[11] (cf. also A. Bressan and F. Flores [6]) that (1.1) has infinitely (even Gδ
dense) many solutions u ∈W 1,∞(Ω) provided the compatibility condition

Dϕ(x) ∈ int(conv(ZF )) ∪ ZF , for every x ∈ Ω (1.2)

holds, where
ZF = {ξ ∈ IRN : F (ξ) = 0}, (1.3)

and conv(ZF ) denotes the convex hull of ZF and int(conv(ZF )) its interior.
In fact (1.2) is, in some sense, almost a necessary condition for the existence
of W 1,∞(Ω) solution of (1.1). The classical existence results on W 1,∞(Ω)
viscosity solution of (1.1) require stronger assumptions than (1.2) (see M.

1Equation (1.1) may admit only continuous or even discontinuous viscosity solutions
(see [4]). We are here interested only in W 1,∞.solutions
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Bardi - I. Capuzzo Dolcetta, [3], G. Barles [4], W.H. Fleming - H.M. Soner
[13] and P.L. Lions [17]).

Here we wish to investigate the question of existence of W 1,∞(Ω) viscosity
solution under the sole assumption (1.2). As mentioned above, the answer
will be, in general, that such solutions do not exist unless strong geometric
restrictions on the set ZF , on Ω and on ϕ are assumed.

To understand better our results one should keep in mind the following
example.

Example 1.1 Let

F (ξ1, ξ2) = −(ξ2
1 − 1)2 − (ξ2

2 − 1)2 (1.4)

(Note that F is a polynomial of degree 4). Clearly,

ZF = {ξ ∈ IR2 : ξ2
1 = ξ2

2 = 1}

conv(ZF ) = {ξ ∈ IR2 : |ξ1| ≤ 1 , |ξ2| ≤ 1}
= {ξ ∈ IR2 : |ξ|∞ = max{|ξ1| , |ξ2|} ≤ 1}

ZF ⊂ ∂(conv(ZF )) and ZF 6= ∂(conv(ZF )).

(1.5)

Our article will be divided into two parts, obtaining essentially the same
results. The first one (c.f. Section 2) will compare the Dirichlet problem
(1.1) with an appropriate problem involving a certain gauge. The second
one (c.f. Section 3) will use the viability approach.

We start by describing the first approach. We will assume there that Ω
is convex. To the set conv(ZF ) we associate its gauge, i.e.

ρ(ξ) = inf {λ > 0 : ξ ∈ λconv(ZF )} . (1.6)

(In the example ρ(ξ) = |ξ|∞).
The W 1,∞(Ω) viscosity solutions of (1.1) will then be compared to those

of {
ρ(Du) = 1 a.e. in Ω
u = ϕ on ∂Ω.

(1.7)

The compatibility condition on ϕ will then be

Dϕ(x) ∈ int(conv(ZF )) , ∀x ∈ Ω⇔ ρ(Dϕ) < 1 , ∀x ∈ Ω.

3



We will first show (c.f. Theorem 2.2) that if ZF ⊂ ∂(conv(ZF )) and ZF is
bounded, then any W 1,∞(Ω) viscosity solution of (1.1) is a viscosity solution
of (1.7). However by classical results (c.f. S.H. Benton [5], A. Douglis [12],
S.N. Kruzkov [16], P.L. Lions [17] and the bibliography there) we know that
the viscosity solution of (1.7) is given by

u(x) = inf
y∈∂Ω
{ϕ(y) + ρo(x− y)}, (1.8)

where ρo is the polar of ρ, i.e.

ρo(ξ∗) = sup
ρ(ξ)66=0

{
< ξ∗, ξ >

ρ(ξ)

}
. (1.9)

(In the example ρo(ξ∗) = |ξ∗|1 = |ξ∗1 |+ |ξ
∗
2 |.)

The main result of Section 2 (c.f. Theorem 2.6, c.f. also Theorem 3.2)
uses the above representation formula to give a necessary and sufficient con-
dition for existence of W 1,∞(Ω) viscosity solutions of (1.1). This geometrical
condition can be roughly stated as ∀y ∈ ∂Ω where the inward unit normal,
ν(y), is uniquely defined (recall that here Ω is convex and therefore this is
the case for almost every y ∈ ∂Ω) there exists λ(y) > 0 such that

Dϕ(y) + λ(y)ν(y) ∈ ZF (1.10)

In particular if ϕ ≡ 0, we find that λ(y) = 1
ρ(ν(y)) and therefore the necessary

and sufficient condition reads as

ν(y)

ρ(ν(y))
∈ ZF . (1.11)

In the above example ZF = {(−1,−1) , (−1, 1) , (1,−1) , (1, 1)}, therefore
the only convex Ω, which allows for W 1,∞(Ω) viscosity solution of{

F (Du) = 0 a.e. in Ω
u = 0 on ∂Ω

are rectangles whose normals are in ZF . In particular for any smooth domain
(such as the unit disk), (1.1) has no W 1,∞(Ω) viscosity solution, while by
the result of B. Dacorogna - P. Marcellini in [9], [10] and [11], (since 0 ∈
int(conv(ZF ))) the existence of general W 1,∞(Ω) solutions is guaranteed.
Note that in the above example with Ω the unit disk, F and ϕ are analytic
and therefore existence of W 1,∞(Ω) viscosity solutions do not depend on the
smoothness of the data.
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It is interesting to note that if F : IRN −→ IR is convex and coercive (such as
the eikonal equation), as in the classical literature, then ∂(conv(ZF )) ⊂ ZF .
Therefore the above necessary and sufficient condition does not impose any
restriction on the set Ω. However as soon as non convex F are considered,
such as in the example, (1.10) drastically restricts the geometry of the set
Ω, if existence of W 1,∞(Ω) viscosity solution is to be ensured.

In Section 3 the basic ingredient for proving such a result is the viability
Theorem (Theorem 3.3.2 of [2]). This Theorem gives an equivalence between
the geometry of a closed set and the existence of solutions of some differen-
tial inclusion remaining in this set. The idea of putting together viscosity
solutions and the viability Theorem is due to H. Frankowska in [15].

The main result of this section (c.f. Theorem 3.1, c.f. also Corollary 2.8)
will show that if

∂(conv(ZF ))\ZF 6= ∅ (1.12)

then we can always find an affine function ϕ with Dϕ ∈ int(conv(ZF )) so
that (1.1) has no W 1,∞(Ω) viscosity solution.

The advantage of the second approach is that it will require weaker
assumptions on F and on Ω than the first one. However the first approach
will give more precise information since we will use the explicit formula for
the viscosity solution of (1.7).

Some technical results are gathered in two appendixes.
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2 Comparison with the solution associated to the
gauge

Throughout this section we assume that F : IRN −→ IR is continuous and
that

• (H1) ZF ⊂ ∂(conv(ZF )).
We recall that ZF = {ξ ∈ IRN : F (ξ) = 0}.

• (H2) ZF is bounded.

• (H3) Dϕ(x) ∈ int(conv(ZF )), ∀x ∈ Ω.

In addition we assume that the interior of convex hull of ZF is nonempty,
i.e.

int(conv(ZF )) 6= ∅ (2.1)

Remarks 2.1
(i) In light of (2.1) we may assume without loss of generality that
0 ∈ int(conv(ZF )), since up to a translation this always holds.
(ii) Observe that int(conv(ZF )) 6= ∅ is necessary for (H3) to make sense.
(iii) Recall that (H3) (without the interior) is, in some sense, necessary for
existence of W 1,∞(Ω) solutions (c.f. P.L. Lions [17]).
(iv) It is well-known (c.f. [18]) that the following properties hold :

• ρ is convex, homogeneous of degree one and ρoo = ρ.

• conv(ZF ) = {z ∈ IRN : ρ(z) ≤ 1}.

• ∂(conv(ZF )) = {z ∈ IRN : ρ(z) = 1}.

• ρ(z) > 0 for every z 6= 0.

(v) Since ZF ⊂ ∂(conv(ZF )), the function F has a definite sign in int(conv(ZF )).
We will assume, without loss of generality, that

F (ξ) < 0, (2.2)

for every ξ ∈ int(conv(ZF )). Otherwise in the following analysis we should
replace F by −F .

Our first result compares viscosity solutions of (1.1) and those of (1.7).
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Theorem 2.2 Let Ω ⊂ IRN be a bounded open set, let F and ϕ satisfy
(H1), (H2), (H3) and (2.2). Then any W 1,∞(Ω) viscosity solution of (1.1)
is also a W 1,∞(Ω) viscosity solution of (1.7). Conversely if, in addition
F > 0 outside conv(ZF ) then a W 1,∞(Ω) viscosity solution of (1.7) is also
a W 1,∞(Ω) viscosity solution of (1.1).

Remark 2.3 In the converse part of the above theorem the facts that F is
continuous, F < 0 in int(conv(ZF )), and F > 0 outside conv(ZF ) implies
that

∂(conv(ZF )) = ZF .

We recall the definition of subdifferential and superdifferential of func-
tions (c.f. M. Bardi - I. Capuzzo Dolcetta [3], G. Barles [4] or W.H. Fleming
- H.M. Soner [13]).

Definition 2.4 Let u ∈ C(Ω), we define for x ∈ Ω the following sets,

D+u(x) =

{
p ∈ IRN : lim sup

y→x, y∈Ω

u(y)−u(x)−<p,y−x>
|x−y| ≤ 0

}
D−u(x) =

{
p ∈ IRN : lim inf

y→x, y∈Ω

u(y)−u(x)−<p,y−x>
|x−y| ≥ 0

}
.

D+u(x) (D−u(x)) is called superdifferential (subdifferential) of u at x.

We recall a useful lemma stated in G. Barles [4].

Lemma 2.5

(i) u ∈ C(Ω) is a viscosity subsolution of F (D(u(x))) = 0 in Ω if and
only if, F (p) ≤ 0 for every x ∈ Ω, ∀p ∈ D+u(x).

(ii) u ∈ C(Ω) is a viscosity supersolution of F (D(u(x))) = 0 in Ω if and
only if, F (p) ≥ 0 for every x ∈ Ω, ∀p ∈ D−u(x).

We now give the proof of our first theorem.

Proof of Theorem 2.2:
1. Let u ∈W 1,∞(Ω) be a viscosity solution of (1.1).

(i) We first show that u is a viscosity supersolution of (1.7). Since u is a
viscosity supersolution of (1.1), then in light of Lemma 4.2 and 2.5 we have
for every x ∈ Ω, and every p ∈ D−u(x),

p ∈ conv(ZF ) and F (p) ≥ 0. (2.3)
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Combining (2.2), (2.3) and (H1), we obtain that p ∈ ∂(conv(ZF )), and so,
ρ(p)− 1 = 0. Hence, by Lemma 2.5, u is a viscosity supersolution of (1.7).

(ii) We next show that u is a viscosity subsolution of (1.7). Since u is
a viscosity subsolution of (1.1), then for every x ∈ Ω, and p ∈ D+u(x), we
have by Lemma 4.2, p ∈ conv(ZF ) and so, ρ(p)−1 ≤ 0. We therefore deduce
that u is a viscosity subsolution of (1.7).

Combining (i) and (ii) we have that u ∈W 1,∞(Ω), is a viscosity solution
of (1.7).

2. We show that u ∈ W 1,∞(Ω), the viscosity solution of (1.7) defined by
(1.8), is also a viscosity solution of (1.1).

(iii) We recall that
F (ξ) > 0, (2.4)

for all ξ ∈ IRN \ conv(ZF ). Since u is a viscosity supersolution of (1.7), then
for every x ∈ Ω, and p ∈ D−u(x), we have that ρ(p)− 1 ≥ 0, i.e.
p ∈ IRN − int(conv(ZF )). From (2.4), it follows that F (p) ≥ 0 and thus u is
a viscosity supersolution of (1.1).

(iv) Since u is a viscosity subsolution of (1.7), we have for every x ∈ Ω,
and p ∈ D+u(x), we have that ρ(p) − 1 ≤ 0, i.e. p ∈ conv(ZF ) and then
F (p) ≤ 0. Thus u is a viscosity subsolution of (1.1).

Combining (iii) and (iv) we conclude that u is a viscosity solution of
(1.1).

]

We now state the main result of this section (see also Theorem 3.4).

Theorem 2.6 Let F and ϕ satisfy (H1), (H2), (H3) and (2.2). If Ω is
bounded, open and convex and ϕ ∈ C1(Ω), then the two following conditions
are equivalent

1. There exists u ∈W 1,∞(Ω) viscosity solution of (1.1).

2. For every y ∈ ∂Ω, where the unit inward normal in y (denoted ν(y))
exists, there exists a unique λ0(y) > 0 such that{

Dϕ(y) + λ0(y)ν(y) ∈ ZF
ρ(Dϕ(y) + λ0(y)ν(y)) = 1.

(2.5)

Before proving Theorem 2.6, we make few remarks, mention an immediate
corollary and prove a lemma.
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Remarks 2.7 (i) By ν(y), the unit inward normal at y, exists we mean
that it is uniquely defined there. Since Ω is convex, then this is the case for
almost every y ∈ ∂Ω.

(ii) In particular if ϕ ≡ 0, then

λ0(y) =
1

ρ(ν(y))

and so, the necessary and sufficient condition becomes

ν(y)

ρ(ν(y))
∈ ZF .

(iii) If F is convex and coercive, then (2.5) is always satisfied and there-
fore no restriction on the geometry of Ω is imposed by our theorem (as in
the classical theory of M.G. Crandall- P.L. Lions [8]).

Corollary 2.8 Let Ω ⊂ IRN be a bounded open convex set, let
F : IRN −→ IR be continuous and such that

ZF ⊂ ∂(conv(ZF )) and ZF 6= ∂(conv(ZF )).

Then there exists ϕ affine with Dϕ(x) ∈ int(conv(ZF )), ∀x ∈ Ω such that
(1.1) has no W 1,∞(Ω) viscosity solutions.

In section 3 we will strengthen this corollary by assuming only that
∂(conv(ZF ))\ZF 6= ∅.

We next state a lemma which plays a crucial role in the proof of Theorem
2.6.

Lemma 2.9 Let Ω be bounded open and convex and ϕ ∈ C1(Ω) with
ρ(Dϕ(x)) < 1, ∀x ∈ Ω. Let u be defined by

u(x) = inf
y∈∂Ω
{ϕ(y) + ρo(x− y)} , x ∈ Ω.

Let y(x) ∈ ∂Ω be such that u(x) = ϕ(y(x))+ρo(x−y(x)). The two following
properties then hold
(i) If D−u(x) is nonempty then the inward unit normal ν(y(x)) at y(x)
exists (i.e. is uniquely defined).
(ii) Furthermore if p ∈ D−u(x) then there exists λ0(y(x)) > 0 such that,
p = Dϕ(y(x)) + λ0(y(x))ν(y(x)), where ν(y(x)) is the unit inward normal
to ∂Ω at y.
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Proof .

1. Let
I(x) = {z ∈ ∂Ω : u(x) = ϕ(z) + ρo(x− z)}.

If p ∈ D−u(x) then for every compact set K ⊂ IRN and h > 0, we have

u(x+ hω)− u(x) ≥ < p, hω > +ε(h) , ω ∈ K (2.6)

where ε satisfies lim inf
h→0

ε(h)
h = 0.

In the sequel we assume without loss of generality that

0 ∈ int(Ω), (2.7)

since, by a change of variables (2.7) holds. Let ρΩ be the gauge associated
to Ω i.e.

ρΩ(z) = inf {λ > 0 : z ∈ λΩ} .

We recall that
∂Ω = {z ∈ IRN : ρΩ(z) = 1}, (2.8)

and
Ω = {z ∈ IRN : ρΩ(z) < 1}. (2.9)

Now, let x0 ∈ Ω, let y0 ∈ I(x0) and let q0 ∈ ∂ρΩ(y0) (the subdifferential of
ρΩ at y0, in the sense of convex analysis, see R.T. Rockafellar [18]). Since
ρΩ is a convex function, we have ∂ρΩ(y0) = D−ρΩ(y0) (see [4]). We have

ρΩ(z) ≥ ρΩ(y0)+ < q0; z − y0 > , z ∈ IRN . (2.10)

Note that q0 6= 0 since otherwise we would have 0 ∈ ∂ρΩ(y0) and so, y0 would
be a minimizer for ρΩ whereas ρΩ(y0) > ρΩ(0) = 0. Define the hyperplane
touching ∂Ω at y0 and normal to q0,

P0 = {z ∈ IRN : < q0; z − y0 >= 0},

and the barrier function

v(z) = inf
y∈P0

{ϕ(y) + ρo(x− y)}.

2. Claim 1. We have u ≤ v on Ω and u(x0) = v(x0).
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Indeed, for x ∈ Ω, let y1(x) ∈ P0 be such that

v(x) = ϕ(y1(x)) + ρo(x− y1(x)),

and let
zt = (1− t)x+ ty1(x) , t ∈ [0, 1].

In light of (2.8), (2.9), (2.10), and the fact that y1(x) ∈ P0, we have

ρΩ(z0) = ρΩ(x) < 1 (2.11)

and
ρΩ(z1) = ρΩ(y1(x)) ≥ 1. (2.12)

Using (2.8), (2.11), and (2.12) we conclude that there exists µ ∈ (0, 1] such
that

zµ ∈ ∂Ω.

Using the homogenity of ρo we obtain that

ρo(x−y1(x)) = µρo(x−y1(x))+(1−µ)ρo(x−y1(x)) = ρo(x−zµ)+ρo(zµ−y1(x)).

We therefore deduce that

v(x) = ϕ(y1(x)) + ρo(x− y1(x))
= ϕ(y1(x)) + ρo(x− zµ) + ρo(zµ − y1(x))

(2.13)

As ρ(Dϕ) ≤ 1 we have (see Lemma 4.1)

ϕ(zµ)− ϕ(y1(x)) ≤ ρo(zµ − y1(x)). (2.14)

From (2.14) and the definition of u, we obtain

v(x) ≥ ϕ(zµ) + ρo(x− zµ) ≥ u(x).

So we have v(x) ≥ u(x). Observe also that v(x0) ≤ u(x0) and so, v(x0) =
u(x0). This concludes the proof of Claim 1.

3. Claim 2. We have p ∈ D−v(x0).
Indeed, in light of Claim 1 and (2.6) we have

v(x0 + hd)− v(x0)− < p, hd > ≥ u(x0 + hd) − u(x0)− < p, hd > ≥ ε(h),
(2.15)
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for every d in a compact set, and so,

p ∈ D−v(x0).

4. Claim 3. p−Dϕ(y0) is parallel to q0 (recall that q0 6= 0).
Let q1, · · · , qN−1 be such that {q0, · · · , qN−1} is a set of orthogonal vec-

tors. Using the definition of v, Claim 1 and the fact that

y0 + hqi ∈ P0 , i = 1, · · · ,N − 1, (2.16)

we obtain

v(x0 + hqi) ≤ ϕ(y0 + hqi) + ρo(x0 + hqi − y0 − hqi)

= ϕ(y0 + hqi) + ρo(x0 − y0)

= ϕ(y0 + hqi)− ϕ(y0) + v(x0). (2.17)

Combining (2.15) and (2.17) we deduce that

h < p, qi > ≤ h < Dϕ(y0), qi > +ε(h). (2.18)

When we divide both sides of (2.18) by h > 0 and let h tend to 0 we obtain

< p, qi > ≤< Dϕ(y0), qi > . (2.19)

Similarly, when we divide both sides of (2.18) by h < 0 and let h tend to 0
we obtain

< p, qi > ≥< Dϕ(y0), qi > . (2.20)

Using (2.19) and (2.20) we conclude that

< p−Dϕ(y0); qi >= 0 , i = 1, · · · ,N − 1,

thus,
p−Dϕ(y0) = λq0, (2.21)

for some λ ∈ IR. It is clear that λ 6= 0, since ρ(p) = 1 (by the fact that u is
a supersolution of (1.7) and by Lemma 4.2) and ρ(Dϕ(y0)) < 1.

5. Claim 4. ρΩ is differentiable at y0 (so ν(y0) exists and ν(y0) = q0 by
definition of q0).
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Suppose there exists q ∈ ∂ρΩ(y0) with q 6= q0. We obtain repeating the
same development as before, that

p−Dϕ(y0) = µq, (2.22)

for some µ 6= 0. So
q = αq0 (2.23)

with α = λ
µ 6= 0. If α < 0, then any convex combination of q and q0 is in

∂ρΩ(y0) and thus 0 ∈ ∂ρΩ(y0) which yields that y0 is a minimizer for ρΩ

which, as already seen, is absurd. So we have α > 0.
We will next prove that

ρoΩ(q) = 1, (2.24)

for every q ∈ ∂ρΩ(y0).
Assume for the moment that (2.24) holds and assume that q ∈ ∂ρΩ(y0)

satisfies (2.23). Then,

1 = ρoΩ(αq0) = αρoΩ(q0) = α.

Consequently, α = 1, q = q0 and so,

∂ρΩ(y0) = {q0}. (2.25)

By (2.25) we deduce that ρΩ is differentiable at y0 (see [18] Theorem 25.1).
We now prove (2.24). Denoting by ρ∗Ω the Legendre tranform of ρΩ, one

can readily check that

ρ∗Ω(x∗) =

{
0 if ρoΩ(x∗) ≤ 1
+∞ if ρoΩ(x∗) > 1

(2.26)

We recall the following well known facts:

ρΩ(y0) + ρ∗Ω(q) = < y0, q >, (2.27)

for every q ∈ ∂ρΩ(y0), (see [18] Theorem 23.5) and

< y0, q > ≤ ρΩ(y0)ρoΩ(q). (2.28)

Since y0 ∈ ∂Ω, we have ρΩ(y0) = 1, which, together with (2.27) and (2.28)
implies that

ρoΩ(q) ≥ 1 + ρ∗Ω(q). (2.29)
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Hence, ρoΩ(q) being finite, we deduce ρ∗Ω(q) = 0. Using (2.26) and (2.29) we
obtain that

ρoΩ(q) = 1. (2.30)

6. Claim 5. We have p = Dϕ(y0)+λ0ν(y0), where ν(y0) is the unit inward
normal at y0.

By Claim 3 and Claim 4, there exists λ0 ∈ IR such that

p = Dϕ(y0) + λ0ν(y0). (2.31)

The task will be to show that λ0 > 0. Let

xh = (1− h)x0 + hy0, h ∈ (0, 1).

We have

u(xh) = inf
y∈∂Ω
{ϕ(y) + ρo(xh − y)} ≤ ϕ(y0) + ρo(xh − y0). (2.32)

Using the definition of xh and the homogeneity of ρo we get

ρo(xh − y0) = ρo((1− h)(x0 − y0)) = (1− h)ρo(x0 − y0),

which, along with (2.32) implies

u(xh) ≤ ϕ(y0) + ρo(x0 − y0)− hρo(x0 − y0) = u(x0)− hρo(x0 − y0). (2.33)

In light of (2.6) and (2.33), we have

h < p, y0 − x0 > +ε(h) ≤ −hρo(x0 − y0),

which yields,
< p, y0 − x0 > ≤ −ρ

o(x0 − y0). (2.34)

Using the definition of ρo (see (1.9)) we have

− < Dϕ(y0), y0 − x0 > = < Dϕ(y0), x0 − y0 > ≤ ρ(Dϕ(y0))ρo(x0 − y0).

Also, by (H3), there exists δ > 0 such that

ρ(Dϕ(z)) ≤ 1− δ, z ∈ Ω. (2.35)

Combining (2.34) and (2.35) we obtain

< p−Dϕ(y0), y0 − x0 > ≤ −δρ
o(x0 − y0). (2.36)
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Moreover, since we can express y0−x0 as a linear combination of the normal
ν(y0) and the tangential vectors {qi}

N−1
i=1 at ∂Ω in y0, there exist α and µi

with i = 1, · · · ,N − 1 such that

y0 − x0 = αν(y0) +
N−1∑
i=1

µiqi.

As x0 ∈ Ω and Ω is convex, α < 0. Using (2.31), and (2.36) we obtain

αλ0 = α < p−Dϕ(y0), ν(y0) > ≤ −δρo(x0 − y0).

Thus, λ0 > 0.

]

We now give the proof of the main theorem

Proof of Theorem 2.6:

1.(1)⇒ (2) We assume that u is a viscosity solution of (1.1).
From Theorem 2.2, we have that every viscosity solution of (1.1) is a

viscosity solution of (1.7) and therefore by (1.8) u can be written as

u(x) = inf
y∈∂Ω
{ϕ(y) + ρo(x− y)}. (2.37)

Let y0 ∈ ∂Ω be a point where ∂ρΩ(y0) = {ν(y0)} (see the notations of the
proof of Lemma 2.9). Let x ∈ Ω be such that u is differentiable at x and
x sufficiently close from y0. Moreover the minimum in (2.37) is attained, at
some y(x) ∈ ∂Ω close to y0. In light of Lemma 2.9 there exists λ0(y(x)) > 0
such that

Du(x) = Dϕ(y(x)) + λ0(y(x))ν(y(x)), (2.38)

(i.e Du(x)−Dϕ(y(x)) is perpendicular to the tangential hyperplane).
Note that λ0(y(x)) is bounded by 2|Du|∞. Indeed, using the homogene-

ity of ρ, assuming that |ν(y(x))| = 1 we have

|λ0(y(x))ν(y(x))| ≤ |Du(x)|+ |Dϕ(y(x))| ≤ 2|Du|∞. (2.39)

As u is a solution of (1.1), i.e. Du(x) ∈ ZF , we obtain that

Dϕ(y(x)) + λ0(y(x))ν(y(x)) ∈ ZF . (2.40)
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Letting x tend to y0, we obtain that y(x) tends to y0. Since ∂ρΩ(y0) =
{ν(y0)} we have from Theorem 25.1 in [18] that ρΩ is differentiable at y0.
By Lemma 2.9 we have that ∂ρΩ(y(x)) = {ν(y(x))} and ρΩ is differentiable
at y(x). Using Theorem 25.5 in [18], we obtain that ν(y(x)) tends to ν(y0).
Also, by (2.39) λ0(y(x)) tends, up to a subsequence, to a limit, denoted λ0

when x goes to y0. Since ZF is closed, and F is continuous, and so is Dϕ,
(2.40) implies

Dϕ(y0) + λ0ν(y0) ∈ ZF .

As λ0(y(x)) > 0, we have that λ0 ≥ 0. Moreover u is solution of (1.7) and
so λ0 is uniquely determined by the equation

ρ(Dϕ(y0) + λ0ν(y0)) = 1.

As ρ(Dϕ(y0)) < 1, we have that λ0 6= 0 and so λ0 > 0. This establishes that
(1)⇒ (2).

2. (2)⇒ (1) Conversely, assume that (2.5) holds.
Using (1.8) we obtain that u defined by

u(x) = inf
y∈∂Ω
{ϕ(y) + ρo(x− y)}

is the viscosity solution of (1.7). We have to show that u is a viscosity
solution of (1.1).

• Since u is a viscosity subsolution of (1.7), then for every x ∈ Ω
and ∀p ∈ D+u(x), we have from Lemma 4.2, p ∈ conv(ZF ) (i.e.
ρ(p) ≤ 1). As (H1) is satisfied (with the convention : F (ξ) < 0,
∀ξ ∈ int(conv(ZF ))) and as F is continuous, it follows that F (p) ≤ 0.
So u is a viscosity subsolution of (1.1).

• u is also a viscosity supersolution of (1.7), and so, for every x ∈ Ω
and every p ∈ D−u(x) we have ρ(p) ≥ 1 and, from Lemma 4.2, since
p ∈ conv(ZF ) (i.e. ρ(p) ≤ 1), we obtain ρ(p) = 1. From Lemma 2.9,
there exists y(x) ∈ ∂Ω where the inward unit normal is well defined
such that

p = Dϕ(y(x)) + λ(y(x))ν(y(x)).

Since ρ(p) = 1, then λ(y(x)) > 0 is uniquely determined by

ρ(Dϕ(y(x)) + λ(y(x))ν(y(x))) = 1.
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And so from (2.5), we deduce that p ∈ ZF . Thus F (p) = 0, ∀p ∈
D−u(x). We have therefore obtained that u is a viscosity supersolution
of (1.1).

The two above obsevations complete the proof of the sufficiency part of
the theorem.

]

We conclude this section with the proof of Corollary 2.8.

Proof of Corollary 2.8
To prove that there exists ϕ ∈ C1(Ω) such that the problem (1.1) has no
viscosity solution, it is sufficient using Theorem 2.6 to find y ∈ ∂Ω, where
ν(y) the unit inward normal exists, such that

Dϕ(y) + λν(y) /∈ ZF , ∀λ > 0.

1. Without loss of generality, we suppose that 0 ∈ int(conv(ZF )). Let ρ
be the gauge associated with the set conv(ZF ). We have (Using the same
argument as in Remark 2.7 and the proof of Lemma 2.9 (Claim 4) which
apply to ρΩ) that ρ is differentiable for almost every α ∈ ∂(conv(ZF )). So,
since ZF 6= ∂(conv(ZF )) and ZF is closed, we can choose α ∈ ∂(conv(ZF ))\
ZF such that α is a point of differentiability of ρ.
2. We first prove that there exists y ∈ ∂Ω, where ν(y) exists, with

α+ λν(y) ∈ int(conv(ZF )), (2.41)

for λ < 0 small enough. Ab absurdo, we suppose that α+λν(y) /∈ int(conv(ZF ))
for every λ < 0 and for every y ∈ ∂Ω, where ν(y) exists, i.e.

ρ(α+ λν(y)) ≥ 1.

Since ρ is differentiable in α, it follows that (keeping in mind that ρ(α) = 1)

< Dρ(α); ν(y) >= lim
λ→0−

ρ(α+ λν(y))− ρ(α)

λ
≤ 0

That is in contradiction with the Lemma 4.3 (with a = Dρ(α)). Thus we
have proved (2.41)
3. Choose y ∈ ∂Ω, where ν(y) exists, and λ̄ < 0, such that β = α +
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λ̄ν(y) ∈ int(conv(ZF )) (such λ exists by the previous step). Observe that
by convexity of ρ we have since ρ(α) = 1 and ρ(α + λ̄ν(y)) < 1 that ρ(α +
λν(y)) > 1 for every λ > 0. Let ϕ(x) =< β;x >. We therefore have

Dϕ(x) + λν(y) = β + λν(y) /∈ ZF

for every λ > 0. That is the claimed result.

]

3 The viability approach

In the previous section, we have assumed that ZF ⊂ ∂(conv(ZF )) and Ω is
convex. We have proved that a necessary and sufficient conditions for the
Hamilton-Jacobi equation{

F (Du) = 0 a.e. in Ω
u = ϕ on ∂Ω

(3.1)

to admit a W 1,∞(Ω) viscosity solution is that, for any y ∈ ∂Ω where there
is an inward unit normal, ν(y), there exists λ(y) > 0 such that

Dϕ(y) + λ(y)ν(y) ∈ ZF

In this section, we no longer assume that ZF ⊂ ∂(conv(ZF )) and Ω
is convex. We investigate the existence of a W 1,∞(Ω) viscosity solution
for Hamilton-Jacobi equation (3.1) for any ϕ satisfying the compatibility
condition Dϕ(y) ∈ int(conv(ZF )).

The main result of this section is that, if

∂(conv(ZF ))\ZF 6= ∅,

then there is some affine map ϕ satisfying the compatibility condition, and
for which there is no W 1,∞(Ω) viscosity solution to (3.1) (c.f. Corrolary 2.8).

Theorem 3.1 Let F : IRN → IR be continuous such that the set
ZF = {ξ ∈ IRN | F (ξ) = 0) is compact and ∂(conv(ZF ))\ZF 6= ∅.

Then for any bounded domain Ω ⊂ IRN , there is some affine function ϕ

with Dϕ ∈ int(conv(ZF )) such that the problem{
F (Du) = 0 a.e. in Ω

u = ϕ on ∂Ω

has no W 1,∞(Ω) viscosity solution.
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The proof of Theorem 3.1 is a consequence of Theorem 3.4 below. For
stating this result, we need the definition of generalized normals (see also
[1]).

Definition 3.2 Let K be a locally compact subset of IRP , x ∈ K. A vector
v ∈ IRP is tangent to K at x if there are hn → 0+, vn → v such that x+hnvn
belongs to K for any n ∈ N .

A vector ν ∈ IRP is a generalized normal to K at x if for every tangent
v to K at x

< v, ν > ≤ 0

We denote by NK(x) the set of generalized normals to K at x.

Remark 3.3 i) If the boundary of K is piecewise C1, then the generalized
normals coincide with the usual outward normals at any point where these
normals exist.

ii) If Ω is an open subset of IRP and x belongs to ∂Ω, then a generalized
normal
ν ∈ NIRP \Ω(x) can be regarded as an interior normal to Ω at x.

Theorem 3.4 Let Ω ⊂ IRN be a bounded domain and let F : IRN → IR be
continuous such that the set ZF = {ξ ∈ IRN | F (ξ) = 0} is compact. Let
ϕ(y) =< b, y > with b ∈ int(conv(ZF )).

If F (ξ) < 0 (resp. F (ξ) > 0) for every |ξ| sufficiently large and if
equation (3.1) has a W 1,∞(Ω) viscosity supersolution (resp. subsolution),
then for any y ∈ ∂Ω, for any non zero generalized normal νy ∈ NIRN\Ω(y)
to Ω at y, there is some λ ≥ 0 such that

b+ λνy ∈ ZF

Remark 3.5 In some sense, Theorem 3.4 improves the necessary part of
Theorem 2.6 since we do not assume any more that ZF ⊂ ∂(conv(ZF ))
and that Ω is convex. Moreover, this result gives a necessary condition of
existence for sub or supersolution.

For proving Theorem 3.4 and 3.1, we assume for a moment that the
following lemma holds.

Lemma 3.6 Let Ω ⊂ IRN and F be as in Theorem 3.4. If there is some
a ∈ IRN\{0} such that
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1. ∀λ ≥ 0, F (λa) < 0,

2. ∃x ∈ ∂Ω such that a ∈ NIRN\Ω(x),

then there is no W 1,∞(Ω) viscosity supersolution to{
F (Du) = 0 a.e. in Ω

u = 0 on ∂Ω

Proof of Theorem 3.4 :
Assume for instance that F (ξ) < 0 for |ξ| sufficiently large. Fix
b ∈ int(conv(ZF )) and a 6= 0 for which there is some x ∈ ∂Ω such that
a ∈ NIRN\Ω(x).

If F (b) ≥ 0, then the result is clear because F is continuous and F (b+λa)
is negative for λ sufficiently large.

Let us now assume that F (b) < 0. Let u be a W 1,∞(Ω) supersolution to{
F (Du) = 0 a.e. in Ω
u(y) =< b, y > on ∂Ω

Set F̃ (ξ) := F (ξ + b) and ũ(y) := u(y)− < b, y >. It is easy to check that

ũ is a supersolution to {
F̃ (Dũ) = 0 a.e. in Ω
ũ(y) = 0 on ∂Ω

So, from Lemma 3.6 there is some λ0 ≥ 0 such that F̃ (λ0a) ≥ 0, i.e.,
F (b+ λ0a) ≥ 0. Since F (b+ λa) is negative for λ sufficiently large, there is
λ ≥ λ0 such that F (b+ λa) = 0.

We have therefore proved that there is λ ≥ 0 such that b+ λa ∈ ZF .

]

Proof of Theorem 3.1 :
Since F is continuous and ZF is bounded, F (ξ) has a constant sign for |ξ|
sufficiently large. Say it is negative.

Let b ∈ ∂(conv(ZF ))\ZF and r > 0 be such that Br(b) ∩ ZF = ∅. From
the Separation Theorem, there is some a ∈ IRN , |a| = 1, such that

< b, a >= sup
ξ∈ZF

< ξ, a > .
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Note that F (b) < 0. Indeed, F is continuous and F (b+λa) < 0 for large
λ. Moreover, b+ λa never belongs to ZF for positive λ because

< (b+ λa), a > > sup
ξ∈ZF

< ξ, a > .

From Lemma 5.3 in Appendix 2, there is some x ∈ ∂Ω and a generalized
normal νx ∈ NIRN\Ω(x) such that

< νx, a > > 0

Set 0 < ε =< νx, a >, σ = rε/(|νx|+ ε), bσ = b− σa. Let λ ≥ 0. We are
going to prove that bσ + λνx /∈ ZF . If λ ≤ σ/ε, then

|bσ + λνx − b| = |λνx − σa| ≤ λ|νx|+ σ ≤ r

so that F (bσ + λνx) < 0 because Br(b) ∩ ZF = ∅ and F (b) < 0.
If λ > σ/ε, then

< (bσ + λνx), a > ≥ < b, a > −σ + λε > < b, a > = sup
ξ∈ZF

< ξ, a >

so that bσ + λνx /∈ ZF .

Since νx is a generalized normal to IRN\Ω at x and since bσ + λνx /∈ ZF
for any λ ≥ 0, Theorem 3.4 states that there is no viscosity supersolution
W 1,∞(Ω) to the problem (3.1) with ϕ(y) =< bσ, y >.

]

Proof of Lemma 3.6 :
The main tool for proving Lemma 3.6 is the viability theorem. The viability
theorem (c.f. Theorem 3.3.2 and 3.2.4 in [2]) states that, if G is a compact
convex subset of IRP and K is a locally compact subset of IRP , then there
is an equivalence between

i) ∀x ∈ K, there exists τ > 0 and a solution to
x′(t) ∈ G a.e. t ∈ [0, τ),
x(t) ∈ K ∀t ∈ [0, τ),
x(0) = x

(3.2)

ii) ∀x ∈ K, ∀ν ∈ NK(x), inf
g∈G

< g, ν >≤ 0.
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As usual, the solution of the constrained differential inclusion (3.2) can be
extended on a maximal interval of the form [0, τ) such that either τ = +∞,
or x(τ) belongs to ∂K\K.

Assume now that, contrary to our claim, there is some W 1,∞(Ω) viscosity
supersolution u to the problem. We will proceed by contradiction.

First step : We claim that

∀x ∈ Ω, u(x) > 0. (3.3)

Indeed, otherwise, there is some x ∈ Ω minimum of u. Note that
0 ∈ D−u(x), so that F (0) ≥ 0 because u is a viscosity supersolution. This
is in contradiction with F (λa) < 0 for all λ ≥ 0.

The proof of the lemma consists in showing that inequality (3.3) does
not hold.

Second step : Without loss of generality we set |a| = 1. Since ZF is
compact and F (λa) < 0 for λ ≥ 0, there is some positive ε such that

∀λ ≥ 0,∀ξ ∈ IRN , if |ξ − λa| ≤ λε, then F (ξ) < 0. (3.4)

Since u is a W 1,∞(Ω) supersolution, we know, from a result due to H.
Frankowska [15] (see also Lemma 5.1 in Appendix 2), that

∀x ∈ Ω, ∀(νx, νρ) ∈ NEpi(u)(x, u(x)), νρ < 0 and F

(
νx
|νρ|

)
≥ 0.

Let x ∈ Ω and (νx, νρ) ∈ NEpi(u)(x, u(x)). Since F ( νx|νρ|) ≥ 0, we have

thanks to (3.4),

∀λ ≥ 0, |
νx
|νρ|
− λa| > λε.

An easy computation shows that this inequality implies

< a, νx > −(1− ε2)1/2 |νx| ≤ 0

Let G = {a+ (1− ε2)1/2 B}×{0} where B is the closed unit ball of IRN .
Then the previous inequality is equivalent with the following

inf
g∈G

< g, (νx, νρ) >≤ 0
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so that K = Epi(u) ∩ (Ω× IR) is a locally compact subset such that

∀x ∈ Ω, ∀(νx, νρ) ∈ NK(x, u(x)), inf
g∈G

< g, (νx, νρ) > ≤ 0.

In particular, it satisfies the condition (ii) of the viability theorem.
Thus, from the viability theorem, ∀(x, u(x)) ∈ K, there is a maximal

solution to 
(x′(t), ρ′(t)) ∈ G, a.e. t ∈ [0, τ)
(x(t), ρ(t)) ∈ K, ∀t ∈ [0, τ)
x(0) = x, ρ(0) = u(x)

(3.5)

where either τ =∞ or x(τ) ∈ ∂Ω.

Let us point out that ρ′(t) = 0, so that ρ(t) = u(x) on [0, τ).

Third step : Let x ∈ ∂Ω be such that a ∈ NIRN\Ω(x)\{0}. We claim that
there is a solution to (3.5) starting from (x, u(x)) = (x, 0) defined on (0, τ).

Since a belongs to NIRN\Ω(x)\{0}, from Lemma 5.2 of the Appendix 2,

applied to C = {a+ (1− ε2)1/2 B}, there is some α > 0 such that

∀c ∈ C, ∀b ∈ IRN with |b| ≤ 1, ∀θ ∈ (0, α), x+ θ(c+ αb) ∈ Ω

Since 0 /∈ C, we can choose also α > 0 sufficiently small such that
0 /∈ C + αB, where B is the closed unit ball.

We denote by S the set

S = {x+ θ(c+ αb), c ∈ C, b ∈ IRN with |b| ≤ 1, θ ∈ (0, α)}.

It is a subset of Ω and x ∈ ∂S.

Let xn ∈ S converge to x, (xn(·), ρn(·)) be maximal solutions to (3.5)
with initial data (xn, u(xn)) defined on [0, τn). Let us first prove by con-
tradiction that the sequence τn is bounded from below by some positive τ .
Assume on the contrary that τn → 0+. Note that

∀n ∈ N, xn(τn) ∈ xn + τnC

because x′(t) ∈ C which is convex compact. Thus, for any n, there is cn ∈ C
such that xn(τn) = xn + τncn.
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Since xn ∈ S, for any n ≥ N there are θn ∈ (0, α), bn ∈ B and c′n ∈ C
such that xn = x+ θn(c′n + αbn). Since xn converges to x and 0 /∈ C + αB,
we have θn → 0+. Let N0 be such that ∀n ≥ N0, θn + τn < α.

Then

xn(τn) = x+ (θn + τn)

[
θn

θn + τn
c′n +

τn
θn + τn

cn + α
θn

θn + τn
bn

]
Since C is convex,

θn
θn + τn

c′n +
τn

θn + τn
cn (3.6)

belongs to C. Moreover,

|
θn

θn + τn
bn| ≤ 1. (3.7)

Thus, for any n ≥ N0, xn(τn) belongs to S which is a subset of Ω and we
have a contradiction with xn(τn) ∈ ∂Ω.

So we have proved that the sequence τn is bounded from below by some
positive τ .

Since G is convex compact and since the solutions (xn(·), ρn(·)) are de-
fined on [0, τ ], the solutions (xn(·), ρn(·)) converge up to a subsequence to
some (x(·), ρ(·)) solution to

(x′(t), ρ′(t)) ∈ G, a.e. t ∈ [0, τ)
(x(t), ρ(t)) ∈ K, ∀t ∈ [0, τ)
x(0) = x, ρ(0) = u(x) = 0

(see Theorem 3.5.2 of [2] for instance).
Since, x′(t) ∈ C, for any t ∈ [0, τ ] there is some c(t) ∈ C such that

x(t) = x+ tc(t). Thus, for t ∈ (0, inf{τ, α}), x(t) belongs to S and so to Ω.

In particular, (x(t), ρ(t)) = (x(t), 0) belongs to the epigraph of u for
t ∈ (0, τ ′) (with τ ′ = inf{τ, α}), i.e.,

∀t ∈ (0, τ ′), u(x(t)) ≤ 0.

This is in contradiction with inequality (3.3).

]
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4 Appendix 1

We now state two lemmas which are well-known in the literature. The
first one is a Mac Shane type extension lemma for Lipschitz functions. The
second one can be found in F.H. Clarke [7] and H. Frankowska [14]. However
for the sake of completeness we prove them again.

Lemma 4.1 Let Ω be a convex set of IRN and u ∈W 1,∞(Ω) with ρ(Du(x)) ≤
1 a.e. in Ω, then there exists an extension ũ ∈ W 1,∞(IRN ) of u with
ρ(Dũ(x)) ≤ 1 a.e. in IRN .

Proof.
The task here is to check that ũ given by

ũ(x) = sup
y∈Ω
{u(y)− ρo(y − x)}, ∀x ∈ IRN .

satisfies the requirements of Lemma 4.1. (Note the similarity with the vis-
cosity solution (1.8).)
1. We first show that ũ is an extension of u.

For this, it will be sufficient to show

ρ(Du(x)) ≤ 1 a.e. =⇒ u(y)− u(x) ≤ ρo(y − x). (4.1)

To prove (4.1) we proceed by regularization. We introduce the mollifier
function

f(x) =

{
Ce

1
|x|2−1 if |x| < 1
0 if |x| ≥ 1.

and the sequence fn(x) = nNf(nx) where C is chosen so that
∫
f = 1. First,

we extend u, as a Lipschitz function, to the whole of IRN and we still denote
this extension by u (this can be done by Mac-Shane lemma). We then set

un(x) =

∫
IRN

fn(x− y)u(y) dy.

It is well known that un → u uniformly on every compact set. Let Ωδ be
the compact subset of Ω defined by

Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≥ δ}.
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for δ > 0 and n > 1
δ . As ρ is convex and homogeneous of degree one, using

Jensen inequality, we obtain that

ρ(D(un(x))) ≤
∫
IRN

fn(x− y)ρ(D(u(y)) dy ≤ 1 , ∀x ∈ Ωδ. (4.2)

Since un is of class C1, (4.2) implies that for x, y ∈ Ωδ, there exists x̃ ∈ IRN

such that
un(y)− un(x) = < Dun(x̃), y − x >

≤ ρ(Dun(x̃)) . ρo(y − x)
≤ ρo(y − x),

and so, letting n tend to infinity, we obtain

u(y)− u(x) ≤ ρo(y − x).

Letting then δ tend to 0, we have deduced (4.1) and so, ũ is an extension of
u.

2. We next show that

ũ(z) − ũ(x) ≤ ρo(z − x) , x, z ∈ IRN . (4.3)

Indeed we have

ũ(z)− ũ(x) = sup
y∈Ω
{u(y) − ρo(y − z)} − sup

y∈Ω
{u(y)− ρo(y − x)}

≤ sup
y∈Ω
{−ρo(y − z) + ρo(y − x)}

≤ ρo(z − x).

3. We then show that (4.3) implies that ρ(Dũ(x)) ≤ 1 a.e.
As ũ is a Lipschitz function we can use Rademacher theorem and obtain

that for almost every x ∈ IRN

lim
h→0

ũ(x+ h)− ũ(x)− < Dũ(x), h >

|h|
= 0.

This means that for every ε > 0, there exists δ > 0 such that

ũ(x+ h)− ũ(x)− < Dũ(x), h >

|h|
≤ ε.
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for every |h| ≤ δ, and so,

ũ(x+ h)− ũ(x)− < Dũ(x), h >

ρo(−h)
≤ ε

|h|

ρo(−h)
.

From (4.3), we get that

−1−
< Dũ(x), h >

ρo(−h)
≤ ε

|h|

ρo(−h)
. (4.4)

As ρ is convex and homogeneous of degree one, we have

ρ(Dũ(x)) = ρoo(Dũ(x)) = sup
|λ|≤δ

< Dũ(x), λ >

ρo(λ)
. (4.5)

Taking the supremum over every |h| < δ in (4.4) we obtain

−1 + sup
|h|≤δ

< Dũ(x),−h >

ρo(−h)
≤ sup
|h|≤δ

ε
|h|

ρo(−h)
= εD

where,

0 < sup
|h|≤δ

|h|

ρo(−h)
= D <∞.

Letting now ε tend to 0, and using (4.5) we obtain

ρ(Dũ(x)) ≤ 1.

]

Lemma 4.2 Let u ∈W 1,∞(Ω) with Du(y) ∈ conv(ZF ) a.e.
(i.e ρ(Du) ≤ 1 a.e.), then

D+u(x) ∪D−u(x) ⊂ conv(ZF ),

for every x ∈ Ω.

Proof.
We first show that D+u(x) ⊂ conv(ZF ). Observe that from (4.1) we have :

u(x+ h)− u(x)

ρo(−h)
≥ −1.
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Using the definition of D+u we have for every x ∈ Ω and p ∈ D+u(x)

lim sup
h→0

u(x+ h)− u(x)− < p, h >

|h|
≤ 0.

Proceeding as in Lemma 4.1, we observe that for every p ∈ D+u(x), and
every ε > 0, there exists δ > 0

u(x+ h)− u(x)− < p, h >

|h|
≤ ε,

for every |h| ≤ δ. We therefore get

−1 +
< p,−h >

ρo(−h)
≤ ε

|h|

ρo(−h)

since ρ is convex and homogeneous of degree one. Taking the supremum
over every |h| ≤ δ, we obtain

−1 + sup
|h|≤δ

< p,−h >

ρo(−h)
≤ ε sup

|h|≤δ

|h|

ρo(−h)
. (4.6)

Defining

0 < D = sup
|h|≤δ

|h|

ρo(−h)
<∞,

and using (4.6), we get
−1 + ρ(p) ≤ εD.

Letting ε tend to 0, we obtain ρ(p) ≤ 1. Using the same argument for
D−u(x) we conclude that

D+u(x) ∪D−u(x) ⊂ conv(ZF ).

]

In the proof of Corollary 2.8, we used the following result (see also Lemma
5.3).
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Lemma 4.3 Let Ω be a bounded, open and convex set. For every a ∈
IRN \ {0} there exists y ∈ ∂Ω, where ν(y) the unit inward normal exists,
such that

< a; ν(y) > > 0.

Proof.
1. By the divergence theorem, we have∫

∂Ω
< a; ν(y) > dσ(y) = 0.

It is then clear from the above identity that the claim of this lemma will
follow if we can prove that < a; ν(y) >6= 0 on a set of positive measure.
This will be achieved in the next step.
2. Suppose for the sake of contradiction that < a, ν(y) >= 0 a.e.. We next
assume without loss of generality that 0 ∈ Ω. Let ρΩ be the gauge associated
with the set Ω. ρΩ is a convex homogeneous of degree one function. We
have (see Remark 2.7 and the proof of Lemma 2.9 (Claim 4)) that ρΩ is
differentiable for almost every y ∈ ∂Ω and DρΩ(y) = ν(y) . Let

∆ = {y ∈ ∂Ω | DρΩ(y) exists}.

We therefore get by the absurd assumption (see Theorem 25.5 in R.T. Rock-
afellar [18])

< a; ν(y) >= 0 ∀y ∈ ∆, (4.7)

and (see Theorem 25.1 in R.T. Rockafellar [18])

ρΩ(ξ) ≥ ρΩ(y)+ < ξ − y;DρΩ(y) > ∀y ∈ ∆.

Let be ξ = y + µa, with µ ∈ IR. So by (4.7) we have (keeping in mind that
ρΩ(y) = 1)

ρΩ(y + µa) ≥ 1 + µ < a,DρΩ(y) >= 1 + µ < a; ν(y) >= 1. (4.8)

Using the continuity of ρΩ, we have that (4.8) is verified for every y ∈ ∂Ω.
Therefore for every µ ∈ IR and every y ∈ ∂Ω, we have

y + µa /∈ Ω. (4.9)

Let x ∈ Ω, since Ω is open and bounded, there exists µ̄ ∈ IR such that
x+ µ̄a ∈ ∂Ω. By (4.9), for every µ ∈ IR we have

x+ (µ̄+ µ)a /∈ Ω.

In particular if µ = −µ̄, we obtain a contradiction.

]
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5 Appendix 2

We collect here some lemmas needed throughout the proofs of Theorem 3.1
and 3.4 and Lemma 3.6. Lemma 5.1 appeared in [15], but we will give a
proof for sake of completeness. Lemma 5.2 and 5.3 are well known results of
non smooth analysis, although it is not easy to find a proof in the literature.
We think that the proof of Lemma 5.3 is new and interesting.

Lemma 5.1 If Ω is an open subset of IRN and u is a W 1,∞(Ω) supersolution
of

F (Du) = 0 on Ω

then

∀x ∈ Ω, ∀(νx, νρ) ∈ NEpi(u)(x, u(x))\{(0, 0)}, νρ < 0 and F

(
νx
|νρ|

)
≥ 0.

Let us point out that the converse of this result holds also true (see [15]).

Lemma 5.2 Let Ω be an open subset of IRN , x ∈ ∂Ω and a ∈ NIRN\Ω(x)

with a 6= 0. Let C be a compact subset of IRN be such that

inf
c∈C

< c, a > > 0.

Then there is some α > 0 such that

∀c ∈ C, ∀b ∈ IRN with |b| ≤ 1, ∀θ ∈ (0, α), x+ θ(c+ αb) ∈ Ω.

Lemma 5.3 If Ω ⊂ IRN is open and bounded, then, for any a ∈ IRN\{0},
there is some x ∈ ∂Ω and a generalized normal νx ∈ NIRN\Ω(x) such that

< νx, a > > 0

Proof of Lemma 5.1 :
Let (νx, νρ) 6= (0, 0) be a generalized normal to Epi(u) at (x, u(x)). We have
to prove that νρ < 0 and νx/|νρ| belongs to D−u(x).

Since (x, u(x)) + t(0, 1) belongs to Epi(u) for t > 0, (0, 1) is tangent to
Epi(u) at (x, u(x)), and so < (0, 1), (νx, νρ) > ≤ 0. In particular, νρ ≤ 0.

Assume for a while that νρ = 0. Then, νx 6= 0. Set hn := 1/n. Since u
is Lipschitz, the sequence

(x+ hnνx, u(x+ hnνx)− (x, u(x))

hn
(5.1)
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is bounded and it converges, up to a subsequence, to some (νx, θ) which is
tangent to Epi(u) at (x, u(x)).

Thus < (νx, 0), (νx, θ) > ≤ 0 which is impossible since νx 6= 0. So νρ < 0.

Set p := νx/|νρ|. We now have to check that, ∀v ∈ IRN ,

lim inf
h→0+

u(x+ hv)− u(x)− h < p, v >

h
≥ 0

Fix v ∈ IRN\{0} and denote by θ the lower limit as above. Since u is
Lipschitz, θ is finite. We have to prove that θ ≥ 0.

Let {hn} be a sequence converging to 0 such that

u(x+ hnv)− u(x)− hn < p, v >

hn
(5.2)

converge to θ.
Note that

(x+ hnv, u(x + hnv))− (x, u(x))

hn
(5.3)

converges to (v,< p, v > +θ). Thus (v,< p, v > +θ) is tangent to Epi(u) at
(x, u(x)) and

< (v,< p, v > +θ), (νx, νρ) > ≤ 0.

This implies that

< v, νx > + < (
νx
−νρ

), v > νρ + θνρ ≤ 0.

So θ ≥ 0 because νρ < 0.

Since u is a supersolution and νx/|νρ| ∈ D−u(x), we deduce from Lemma
2.5, F (νx/|νρ|) ≥ 0.

]

Proof of Lemma 5.2 :
Assume that, contrary to our claim, for any n > 0 there are 0 < θn ≤

1
n ,

cn ∈ C, bn ∈ B with x+ θn(cn + 1
nbn) /∈ Ω.

Then cn converges, up to a subsequence, to some c ∈ C. Clearly c is
tangent to IRN\Ω at x.

Since a ∈ NIRN\Ω(x), this implies that < a, c > ≤ 0, which is in contra-
diction with the assumption.
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]

Proof of Lemma 5.3 :
Assume that the conclusion of the lemma is false. Then

∀x ∈ ∂Ω, ∀νx ∈ NIRN\Ω(x), < νx, a > ≤ 0.

This means (from the viability Theorem (again !) applied to the closed set
K := IRN\Ω and G := a) that for any x ∈ ∂Ω, the solution to x′(t) = a,
x(0) = x remains in K forever.

Let now y belong to Ω. Since Ω is bounded, there is some τ sufficiently
large such that x − τa /∈ Ω. The previous remark applied to x − τa yields
that x(t) = x− τa+ ta belongs to IRN\Ω for any t ≥ 0, which, for t = τ , is
in contradiction with x ∈ Ω.

]
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