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Abstract. We study the free probabilistic analog of optimal couplings for the quadratic cost, where clas-

sical probability spaces are replaced by tracial von Neumann algebras and probability measures on Rm are
replaced by non-commutative laws of m-tuples. We prove an analog of the Monge-Kantorovich duality

which characterizes optimal couplings of non-commutative laws with respect to Biane and Voiculescu’s

non-commutative L2-Wasserstein distance using a new type of convex functions. As a consequence, we
show that if (X,Y ) is a pair of optimally coupled m-tuples of non-commutative random variables in

a tracial W∗-algebra A, then W∗((1 − t)X + tY ) = W∗(X,Y ) for all t ∈ (0, 1). Finally, we illustrate

the subtleties of non-commutative optimal couplings through connections with results in quantum infor-
mation theory and operator algebras. For instance, two non-commutative laws that can be realized in

finite-dimensional algebras may still require an infinite-dimensional algebra to optimally couple. More-
over, the space of non-commutative laws of m-tuples is not separable with respect to the Wasserstein

distance when m is sufficiently large.

1. Introduction

1.1. Context and motivation. Tracial von Neumann algebras have long been viewed as a non-commutative
analog of probability spaces, where the elements of the von Neumann algebra play the role of non-
commuting random variables, but it was Voiculescu who pointed out that free products of operator
algebras provide an analog of probabilistic independence with its own central limit theorem [70, 71],
initiating the discipline of free probability theory. Free probability has since had many applications both
to random matrix theory e.g. [72] and to von Neumann algebras e.g. [75]. Many developments in free
probability theory have been motivated by information geometry (here by “information geometry” we
mean the study of the space P(M) of probability measures on a manifold M , both as a metric space
with the Wasserstein distance and as a formal Riemannian manifold, as well as the study of entropy and
Fisher’s information as functions on P(M); see [43, 45, 47, 56, 57]). For instance, Voiculescu introduced
free entropy and Fisher information [73, 74, 76] and Biane and Voiculescu [11] defined an analog of the
Lp Wasserstein distance for non-commutative laws (the analog of probability distributions for m-tuples
of non-commuting random variables), which was then used in free Talagrand inequalities [11, 36, 37, 22].

Information-geometric ideas have also been used in quantum information theory, another non-commutative
analog of probability theory that is distinct from free probability theory, even though it uses similar
concepts and terminology. For a survey of quantum information theory, see [79, 80]. To prevent any con-
fusion, in free probability, operators in a tracial von Neumann algebra are viewed as non-commutative
random variables (and there is no known analog of multivariable densities), while in quantum informa-
tion theory, a positive operator with trace 1 in a tracial von Neumann algebra is viewed as a density.1

Hence, for example, a random matrix is typically studied in free probability theory, while a matrix-valued
density is typically studied in quantum information theory. Our paper is focused on the free probabilis-
tic framework; however, in §5, we will draw a connection between free probabilistic optimal couplings

2020 Mathematics Subject Classification. Primary: 46L53; Secondary: 49Q22, 46L52, 81P45.
W.G. was supported by NSF grant DMS-1700202 and Air Force grant FA9550-18-1-0502. D.J. was supported by NSF

postdoc grant DMS-2002826. D.S. was supported by NSF grant DMS-1762360. We thank IPAM for the stimulating envi-

ronment in the online long program on High-dimensional Hamilton-Jacobi PDEs in Spring 2020 where some conversations
around this work began. D.S. thanks Alice Guionnet and Yoann Dabrowski for multiple discussions about free transport;
D.J. thanks Ben Hayes and Srivatsav Kunnawalkam Elayavalli for discussions about non-commutative laws and model
theory.

1More precisely, a positive operator ρ defines a non-tracial state on the von Neumann algebra, and ρ is the density of
this state with respect to the trace. However, tracial von Neumann algebra themselves are difficult to classify, which makes

it difficult to classify non-commutative laws in free probability.

1



2 WILFRID GANGBO, DAVID JEKEL, KYEONGSIK NAM, AND DIMITRI SHLYAKHTENKO

and certain aspects of quantum information theory, specifically quantum channels or unital completely
positive trace-preserving maps.

In classical information geometry, both the Wasserstein distance and the entropy are intimately related
to transport equations (differential equations describing functions which push forward some given prob-
ability distribution to another given probability distribution). In the free setting, there has been some
success in constructing non-commutative transport of measure for a special type of non-commutative law
known as a free Gibbs law from a convex potential V in [23, 31, 39, 40, 41]; these ideas have even been
generalized beyond the setting of tracial von Neumann algebras [53, 54, 64]. Unfortunately, the transport
maps constructed in [23, 39, 40] were not optimal. The transport in [31] was shown to be the gradient of
a convex function, hence one would expect it to be optimal in light of the classical Monge-Kantorovich
duality, but it was not clear yet how to prove this because there was no known non-commutative Monge-
Kantorovich duality. The optimality of these couplings was later verified in [41, Remark 9.11] by studying
a Legendre transform for (sufficiently regular, uniformly convex) non-commutative functions [41, Lemma
9.10]. This idea was one of the starting points for our current investigation into non-commutative optimal
couplings, Legendre transforms, and Monge-Kantorovich duality with minimal regularity assumptions.

One of the challenges in even formulating a Monge-Kantorovich duality for the free setting is to decide
what type of convex functions to use. Operator algebras are often thought of as non-commutative analogs
of algebras of functions on a topological space or a measure space, but without a clear analog for points of
the underlying space. Our approach is to consider functions that can be evaluated on random variables
rather than on points, or more precisely, to study functions f : L2(A)msa → R where A is a tracial
von Neumann algebra, L2(A) is the non-commutative L2 space, and the subscript sa indicates the real
subspace of self-adjoint elements. The classical analog would be a function L2(Ω, P ;Rm) → R where
(Ω, P ) is a probability space, rather than a function Rm → R. As we discuss in §1.4, such functions
on the space of classical random variables have already found applications to Hamilton-Jacobi equations
on the Wasserstein space [29, 26] as well as the master equation on Rm × P(Rm) in mean field games
[14, 27, 28].

As in [31] and [39], we remark that the complexity of classifying von Neumann algebras presents serious
obstructions to non-commutative transport theory that simply do not exist in the classical setting. It
is a widely used fact in classical probability theory that any two standard Borel probability spaces with
no atoms are measurably isomorphic; hence one can always arrange that their random variables are on
some canonical probability space. By contrast, McDuff [48] showed that there are uncountably many
non-isomorphic tracial von Neumann algebras that are diffuse with trivial center (that is, II1 factors).
This provides a real obstruction to non-commutative transport of measure, because if X = (X1, . . . , Xm)
and Y = (Y1, . . . , Ym) are m-tuples of self-adjoint non-commutative random variables such that X is
expressed as a “function” of Y and vice versa (for some reasonable notion of non-commutative functions),
then X and Y generate the same von Neumann algebra. Hence, non-commutative laws which produce
non-isomorphic von Neumann algebras simply cannot be transported to each other in an invertible way.
Another result of Ozawa [58] (based on group-theoretic results of Gromov [30] and Olshanskii [55]) shows
there is no separable II1 factor that contains an isomorphic copy of every separable II1-factor. Hence, we
cannot even expect that there is some non-commutative law µ such that all other non-commutative laws
can be expressed as push-forwards of µ.

These obstructions must inform how we go about defining the convex functions for the Monge-
Kantorovich duality, as well as the level of regularity that we expect from an optimal coupling. In fact,
in §5 we make a more explicit connection between optimal couplings and this result of Gromov, Olshan-
shkii, and Ozawa as well as exploring other pathological properties of the non-commutative Wasserstein
distance through connections with quantum information theory.

1.2. Main results. Before stating the non-commutative Monge-Kantorovich duality, we establish fol-
lowing notational conventions; see §2 for background. By tracial W∗-algebra we mean a pair A = (A, τ)
where A is a W∗-algebra (or von Neumann algebra) and τ : A → C is a faithful normal tracial state.
In analogy with classical probability, we will denote the underlying algebra A by L∞(A) and the trace
by τA when it is convenient to avoid naming A and τ explicitly. We denote by L2(A) the Hilbert space
obtained from the GNS construction of A and τ .
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We denote by L∞(A)msa the set ofm-tuples of self-adjoint elements of L∞(A) and forX = (X1, . . . , Xm) ∈
L∞(A)msa, we write ‖X‖L∞(A)msa

= maxj=1,...,m‖X‖. If X ∈ L∞(A)msa, then W∗(X) denotes the W∗-
algebra generated by X equipped with the appropriate trace.

For each X = (X1, . . . , Xm) ∈ L∞(A)msa, the non-commutative law λX is the linear map from the
non-commutative polynomial algebra C〈x1, . . . , xd〉 to C given by λX(p) = τA(p(X)). The space of non-
commutative laws (of self-adjoint m-tuples from any tracial W∗-algebra) is denoted Σm. Furthermore,
Σm,R denotes the subspace of those laws λX where ‖X‖L∞(A)msa

≤ R (where A is a tracial W∗-algebra
and X ∈ L∞(A)msa). The weak-∗ topology on Σm,R refers to the topology of pointwise convergence on
C〈x1, . . . , xm〉.

Following [11], a coupling of µ, ν ∈ Σm is a triple (A, X, Y ) where A is a tracial W∗-algebra and

X,Y ∈ L∞(A)msa such that λX = µ and λY = ν. The Wasserstein distance d
(2)
W (µ, ν) is the infimum of

‖X − Y ‖L2(A)msa
over all couplings (A, X, Y ). We denote by C(µ, ν) the supremum of 〈X,Y 〉L2(A)msa

over
all couplings (A, X, Y ). We say that a coupling is optimal if it is achieves the infimum of ‖X −Y ‖L2(A)msa
or equivalently if it achieves the supremum of 〈X,Y 〉L2(A)msa

. The existence of optimal couplings was
observed in [11]. That paper also showed that the non-commutative Wasserstein distance agrees with the
classical one in the situation that X1, . . . , Xm commute and Y1, . . . , Ym commute [11, Theorem 1.5].

As mentioned before, the functions used in the non-commutative Monge-Kantorovich duality are func-
tions on L2(A)msa for tracial W∗-algebra A with separable predual. However, because of Ozawa’s result
[58], it is not sufficient to fix a single such tracial W∗-algebra, but rather we must consider functions that
are defined on L2(A)msa for every such A. We give more precise versions of the definitions in §3.

Definition 1.1. A tracial W∗-function with values in (−∞,∞] is a collection of functions fA : L2(A)msa →
(−∞,+∞], such that whenever ι : A → B is an inclusion map of tracial W∗-algebras, fA = fB ◦ ι (here ι
is extended to a map L2(A)msa → L2(B)msa). If µ ∈ Σm and f is a tracial W∗-function, then µ(f) is defined
as fA(X) whenever A is a tracial W∗-algebra with separable predual and X ∈ L∞(A)msa with λX = µ;
this is well-defined because W∗(X) is determined up to isomorphism by λX = µ.

One example of a tracial W∗-function would be

fA(X) =

{
τA(p(X)), ‖X‖∞ ≤ R
∞, otherwise,

where p is a non-commutative polynomial. Tracial W∗-functions also include scalar-valued tracial non-
commutative smooth functions as in [40] and [41] in the following sense. If φ is such a tracial non-
commutative smooth function, then φA(X) is only a priori when X ∈ L∞(A)msa; however, in many cases
φ is Lipschitz with respect to ‖·‖L2(A)msa

and hence can be extended to a function on L2(A)msa which will
be a tracial W∗-function. However, tracial W∗-functions are much more general because they are not
assumed to be continuous in any sense.

Definition 1.2. We say that f is E-convex if fA is convex and lower semi-continuous on L2(A)msa
for each A, and if for every inclusion ι : A → B, letting E : B → A be the corresponding trace-
preserving conditional expectation, we have fA(E[X]) ≤ fB(X) for X ∈ L2(B)msa. Here we use the
notation E[X] = (E[X1], . . . , E[Xm]) when X = (X1, . . . , Xm).

Motivation for the definition of E-convexity will be given in Lemmas 1.10 and 1.17.

Proposition 1.3. C(µ, ν) is equal to the infimum of µ(f) + ν(g) over pairs (f, g) of E-convex W∗-
functions that satisfy fA(X) + gA(Y ) ≥ 〈X,Y 〉L2(A) for every tracial W∗-algebra with separable predual

and X, Y ∈ L2(A)msa. There exists an admissible pair of E-convex functions that achieves the infimum.
See Propositions 3.22 and 3.23.

Another consequence of the classification-related obstructions to non-commutative transport is that we
cannot expect too much regularity in general for the E-convex functions associated to an optimal coupling.
For instance, suppose two non-commutative laws µ and ν generate tracial von Neumann algebras that
cannot embed into each other. This implies that if (X,Y ) is an optimal coupling of these two laws on a
tracial W∗-algebra A, then neither of W∗(X) and W∗(Y ) is contained in the other. Thus, even though
the non-commutative laws may be diffuse, the situation is similar to when coupling the classical measures
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(1/2)(δ−1+δ1) and (1/3)(δ−1+δ0+δ1); in the optimal coupling, neither random variable can be expressed
as a function of the other. However, if a pair of E-convex functions associated to an optimal coupling
were differentiable, that would imply that X is in the von Neumann algebra generated by Y and vice
versa as a consequence of Lemma 3.10.

It is natural to ask how close an arbitrary non-commutative optimal coupling is to a coupling where
X and Y generate the same von Neumann algebra. As a first application of duality, we show that every
optimal coupling can be decomposed into an optimal coupling where the two variables generate the same
W∗-algebra and some additional orthogonal pieces.

Theorem 1.4. Suppose that (A, X, Y ) is an optimal coupling of µ, ν ∈ Σm. Then there exists a W∗-
subalgebra B such that the following hold. Let EB : A → B be the trace-preserving conditional expectation,
and let X ′ = E[X] and Y ′ = E[Y ].

(1) X ′ and Y ′ each generate B.
(2) (B, X ′, Y ′) is an optimal coupling of λX′ and λY ′ .
(3) B, X −X ′, Y − Y ′ are mutually orthogonal.

See Theorem 3.24.

Our main results in §4 concern the displacement interpolation. If (A, X, Y ) is an optimal coupling of
µ and ν, then the displacement interpolation refers to the family of random variables Xt = (1− t)X + tY
for t ∈ [0, 1]. The associated laws µt = λXt form a metric geodesic in Σm with respect to the Wasserstein
distance (see Proposition A.22). With the help of non-commutative Legendre transforms and Hopf-Lax
semigroups, we will see that the E-convex functions associated to the couplings (A, Xs, Xt) for s, t ∈ (0, 1)
have more regularity than the E-convex functions associated to the original coupling (A, X, Y ) (see
Proposition 4.12). As a consequence, we obtain the following non-commutative transport result.

Theorem 1.5. Let (A, X, Y ) be an optimal coupling of µ, ν ∈ Σm. Then W∗((1−t)X+tY ) = W∗(X,Y )
for all t ∈ (0, 1). For proof, see §4.3.

For instance, this theorem entails that for classical optimal couplings, the σ-algebra generated by Xt

is the same for all t ∈ (0, 1), which could be deduced directly from classical optimal transport theory
by a similar proof. The reader is encouraged to work out the classical example of (1/2)(δ−1 + δ1) and
(1/3)(δ−1 + δ0 + δ1) as motivation.

The results of §5 highlight additional ways in which non-commutative optimal transport theory is
significantly more complicated than its classical counterpart. The following proposition is a corollary of
the results of [32, 42, 52] obtained by reinterpreting non-commutative optimal couplings in the framework
of quantum information theory through Observation 5.5 and Lemma 5.7. Connes-embeddability is a
certain type of finite-dimensional approximation; see §5.3 for precise definition.

Proposition 1.6. Thanks to [32] and [42], for certain n ∈ N, there exist non-commutative laws µ and ν
associated to n2-tuples in Mn(C) for which an optimal coupling requires a non-Connes embeddable tracial
W∗-algebra; see Corollary 5.14. Furthermore, thanks to [52], for every n ≥ 11 and d ∈ N, there exist
n2-tuples in Mn(C) such that if (A, X, Y ) is a coupling that is optimal among couplings on Connes-
embeddable tracial W∗-algebras, then A must have dimension at least d; see Corollary 5.8 and Remark
5.15.

In contrast to classical probability theory, we show that the L2-Wasserstein metric does not generate
the weak-∗ topology on Σm,R. We call the topology on Σm,R generated by the Wasserstein distance
the Wasserstein topology. We characterize when the two topologies agree at some µ in terms of the
associated tracial W∗-algebra (Proposition 5.21) and hence obtain the following results (relying on the
work of Connes [17]).

Proposition 1.7. The Wasserstein topology on Σm,R is strictly stronger than the weak-∗ topology; see
[11] and Corollary 5.17. Furthermore, let Σfin

m,R denote the set of non-commutative laws λX where X

comes from L2(A)msa with A finite-dimensional. Let µ be a non-commutative law and let A be a tracial
W∗-algebra with a generating m-tuple X such that λX = µ and ‖X‖L∞(A)msa

≤ R. Then µ is in the

weak-∗ closure of Σfin
m,R if and only if A is Connes-embeddable; see Lemma 5.12. Moreover, in this case,
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the weak-∗ and Wasserstein topologies on Σm,R agree at µ if and only if µ is in the Wasserstein closure
of Σfin

m,R, which is equivalent to A being approximately finite-dimensional; see Proposition 5.26.

Approximate finite-dimensionality (see §5.4 for definition) is the strongest way that a W∗-algebra can
be approximated by finite-dimensional algebras (besides being finite-dimensional itself), and thus the
latter condition is quite restrictive when m > 1. For instance, there is up to isomorphism only one AFD
II1 factor [67, §XIV.2]. In §6.1, we explain how Propositions 1.6 and 1.7 pose challenges to studying the
large-N convergence of Wasserstein distance for random matrix models.

The results of Propositions 1.6 and 1.7 constrast strongly with the classical situation. Some treatments
of optimal transport (e.g. [69, p. 75]) take for granted the fact that finitely supported probability measures
are weak-∗ dense in the space of probability measures on a compact set. Such approximation arguments
do not work in the non-commutative case for several reasons. Due to the negative resolution of the
Connes embedding problem [42], the non-commutative laws that can be realized in finite-dimensional
algebras are not weak-∗ dense. Furthermore, by Proposition 1.7, the weak-∗ closure of Σfin

m,R is much

larger than its Wasserstein closure (assuming m > 1). Finally, by Proposition 1.6, even if two laws µ and
ν can be realized in finite-dimensional algebras, an optimal coupling need not be weak-∗ approximable
by couplings in finite-dimensional algebras.

Because the weak-∗ and Wasserstein topologies are different for m > 1, one can deduce that Σm,R
with the Wasserstein distance is not compact (Corollary 5.27). The following even more startling result
is a consequence of Gromov, Olshanskii, and Ozawa’s work [58, Theorem 1].

Theorem 1.8. For m > 1 and R > 0, the space Σm,R is not separable with respect to d
(2)
W .

1.3. Organization. The paper is organized as follows:

• In §1.4 and §1.5, we motivate the definition of E-convex functions and the associated duality
result in terms of two toy examples, classical probability spaces and Mn(C).
• In §2, we recall standard background on tracial W∗-algebras and their interpretation as non-

commutative probability spaces for the sake of readers who are not specialists in that topic.
• In §3, we describe the properties of E-convex functions and the associated Legendre transform; we

prove the non-commutative Monge-Kantorovich duality (Proposition 1.3) and the decomposition
theorem for optimal couplings (Theorem 1.4).
• In §4, we study the non-commutative analog of inf-convolution and the regularity properties of
E-convex and semi-concave functions; we prove Theorem 1.5 and give further detail about the
functions associated to the displacement interpolation in Proposition 4.12.
• In §5, we connect non-commutative optimal couplings with quantum information theory and

prove Proposition 1.6. Then we study the differences between the weak-∗ and the Wasserstein
topology using a certain stability property (Proposition 5.21) and hence prove Proposition 1.7.
Finally, we show non-separability of the Wasserstein space in §5.5.

• In §6.1, we explain how §5 illustrates the difficulty of studying random matrix optimal transport
in the large-N limit. Then §6.2 sketches a different but analogous theory of non-commutative
optimal couplings that uses bimodules and UCPT-maps of tracial W∗-algebras.

• In the appendix §A, we define non-commutative laws and optimal couplings for elements of
non-commutative Lp spaces, and show the existence of Lp optimal couplings and Wasserstein
geodesics.

1.4. Motivation from classical probability. First, we recall the classical Monge-Kantorovich duality.
Fix a standard Borel probability space (Ω, P ) with no atoms. For probability measures µ and ν compactly
supported probability measures on Rm, a coupling of µ and ν is a pair (X,Y ) of random variables on Ω
with X ∼ µ and Y ∼ ν. The classical Wasserstein distance is the infimum of ‖X − Y ‖L2(Ω,P ;Rm) over all
such couplings, and a coupling is said to be optimal if it achieves this infimum.

Theorem 1.9 (See [69, Theorem 5.10, Particular Case 5.17]). Let (X,Y ) be a coupling of two compactly
supported measures µ and ν on Rm. Then (X,Y ) is optimal if and only if there exists a pair of convex
functions f, g : Rm → R satisfying f(x) + g(y) ≥ 〈x, y〉 for x, y ∈ Rm and E[f(X)] + E[g(Y )] = E〈X,Y 〉.
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Furthermore, E[f(X)] + E[g(Y )] = E〈X,Y 〉 implies that Y is almost surely in the subdifferential of f at
X and X is almost surely in the subdifferential of g at Y .

As explained above, E-convex functions will be an analog of functions on L2(Ω, P ;Rm) rather than
Rm. Every convex function on Rm defines a convex function on L2(Ω, P ;Rm) as follows.

Lemma 1.10. Let f : Rm → (−∞,∞] be convex and lower semi-continuous. Let (Ω, P ) be a non-atomic
standard Borel probability space with underlying σ-algebra F . Define

f̃ : L2(Ω, P ;Rm)→ R, X 7→ E[f(X)],

which is well-defined in (−∞,∞] thanks to Jensen’s inequality. Then

(1) f̃(X) only depends on the law (probability distribution) of X.

(2) f̃ is convex and lower semi-continuous.

(3) Suppose that f̃(X) < ∞. Then Y is in the subdifferential of f̃ at X if and only if Y is in the
subdifferential of f at X almost surely.

(4) f̃ is monotone under conditional expectations: If G is a sub-σ-algebra of F , then

f̃(E[X|G]) ≤ f̃(X).

Sketch of proof. (1) This is immediate.

(2) Convexity of f̃ is immediate from convexity of f . To show lower semi-continuity of f̃ , it suffices
to show lower semi-continuity of g̃ where g(x) = f(x) + |x|2/2. But g is bounded below and therefore
lower semi-continuity follows from Fatou’s lemma for convergence in probability (since convergence in
L2(Ω, P ;Rm) implies convergence in probability).

(3) If Y is in the subdifferential of f at X almost surely and Z ∈ L2(Ω, P ), then f(Z) ≥ f(X) +

〈X,Y 〉Rm almost surely, and thus by taking expectations f̃(Z) ≥ f̃(X) + 〈X,Y 〉L2(Ω,P ;Rm). For the
converse, let S = {x ∈ Rm : f(x) < ∞} and fix a countable dense subset Ξ of S. For each n > 0 and
ξ ∈ Ξ, let En,ξ be the event

En,ξ = {f(ξ) ≤ f(X) + 〈ξ −X,Y 〉Rm − 1/n}.

Because Y is in the subdifferential of f̃ at X, we have

f̃(1Ecn,ξX + 1En,ξξ) ≥ f̃(X) + 〈1En,ξ(ξ −X), Y 〉L2(Ω,P ;Rm).

On the other hand, by definition of En,ξ, we have

f̃(1Ecn,ξX + 1En,ξξ) ≤ f̃(X) + 〈1En,ξ(ξ −X), Y 〉L2(Ω,P ;Rm) +
1

n
P (En,ξ).

Therefore, P (En,ξ) = 0. Since this holds for all n ∈ N, we have f(ξ) ≥ f(X) + 〈ξ − X,Y 〉Rm almost
surely for each ξ. Since Ξ is countable, we have this condition every ξ ∈ Ξ at once almost surely. On this
event, if x ∈ Rm with f(x) < ∞, then f is continuous at x, and therefore by taking sequence of ξ ∈ Ξ
that converges to x we obtain f(x) ≥ f(X) + 〈x−X,Y 〉Rm .

(4) This follows from Jensen’s inequality and the existence of regular conditional distributions for
standard Borel probability spaces. �

Remark 1.11. Similar reasoning shows that if g is the Legendre transform of f on Rm, then g̃ is the
Legendre transform of f̃ on L2(Ω, P ;Rm).

Let us call a function F : L2(Ω, P ;Rm)→ (−∞,∞] classically E-convex if

(1) F (X) depends only on the law of X.
(2) F is convex and lower semi-continuous.
(3) We have F (E[X|G]) ≤ F (X) for every sub-σ-algebra G and every X ∈ L2(Ω, P ;Rm).

Then we have the following version of Monge-Kantorovich duality using classically E-convex functions
on L2(Ω, P ;Rm).
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Corollary 1.12. Let (X,Y ) be a coupling on (Ω, P ) of two compactly supported measures µ and ν
on Rm. Then (X,Y ) is optimal if and only if there exists a pair of classically E-convex functions F ,
G : L2(Ω, P ;Rm)→ (−∞,∞] such that

F (X ′) +G(Y ′) ≥ 〈X ′, Y ′〉L2(Ω,P ;Rm) for all X ′, Y ′ ∈ L2(Ω, P ;Rm),

and

F (X) +G(Y ) = 〈X,Y 〉L2(Ω,P ;Rm).

Proof. ( =⇒ ) By the classical Monge-Kantorovich duality, there are convex functions f, g : Rm →
(−∞,∞] with f(x) + g(y) ≥ 〈x, y〉Rm and Ef(X) + Ef(Y ) = 〈X,Y 〉L2(Ω,P ;Rm). Let F = f̃ and G = g̃.
By Lemma 1.10, F and G are classical E-convex and clearly F (X) + G(Y ) = 〈X,Y 〉L2(Ω,P ;Rm). Also,
F (X ′) +G(Y ′) ≥ 〈X ′, Y ′〉L2(Ω,P ;Rm) since f(x) + f(y) ≥ 〈x, y〉Rm .

(⇐= ) Suppose that (X ′, Y ′) is another coupling of µ and ν on (Ω, P ). Then

〈X ′, Y ′〉L2(Ω,P ;Rm) ≤ F (X ′) +G(Y ′) = F (X) +G(Y ) = 〈X,Y 〉L2(Ω,P ;Rm),

where in the middle equality we have used that F (X) = F (X ′) and G(Y ) = G(Y ′) since X ∼ X ′ and
Y ∼ Y ′ in law. Therefore, the coupling (X,Y ) is optimal. �

Corollary 1.12 is the statement that we will generalize to the non-commutative setting. We remark that
although classically E-convex functions are much less concrete than convex functions on Rm, Corollary
1.12 still has the power to prove the classical analogs of Theorems 1.4 and 1.5 by exactly the same
arguments that we will use in the non-commutative case.

In fact, convex functions on a space of classical random variables have also been used in the theory of
mean field games [28]. Mean field games involves the study of the master equation [14, 27], a differential
equation for a function u(t, x, µ) depending on a time variable t, a space variable x (representing the
position of an individual agent), and a measure µ (representing the distribution of the positions of a
continuum of other agents). We can define a function û on [0,∞)× Rm × L2(Ω, P ;Rm) by û(t, x,X) =
u(t, x, µX), where µX is the law of X. The first-order regularity conditions needed to solve the master
equation are more easily stated in terms of the function û on the Hilbert space Rm × L2(Ω, P ;Rm).
Moreover, the proof of existence and uniqueness of solutions to Hamilton-Jacobi equations on Wasserstein
space P2(Rm) [26, 29] relies on the theory of viscosity solutions to Hamilton-Jacobi equations on Hilbert
spaces [18, 19, 49, 46].

The inf-convolution techniques that we use in §4 are an important special case of this theory of
Hamilton-Jacobi equations on Hilbert spaces. In fact, part of our motivation was to understand the
non-commutative version of Hamilton-Jacobi equations for functions of a random variable. Recent work
has connected random matrix theory to viscosity solutions of Hamilton-Jacobi equations [10] and mean
field games [15]. However, these connections are restricted to the setting of a single random matrix
because they rely heavily on the description of self-adjoint random matrices in terms of their eigenvalues.
It would be of great interest to have a theory of viscosity solutions to partial differential equations in
several non-commuting variables as is suggested by the study of heat equations in [23, 38, 41] and the
Hamilton-Jacobi-Bellman equation in [21, 38].

1.5. Motivation from matrix tuples. In order to motivate some of the ideas of our paper, we explain
a toy model of couplings between tuples of n×n matrices. Let Mn(C) denote the space of complex n×n
matrices. Let trn = (1/n) Trn be the normalized trace on Mn(C). We define an inner product on Mn(C)
by

〈S, T 〉trn = trn(S∗T ).

LetMn(C)sa denote the real subspace of self-adjoint matrices. Then 〈X,Y 〉trn ∈ R for allX,Y ∈Mn(C)sa.
Every element of Mn(C) can be uniquely written as S + iT with S, T ∈ Mn(C)sa, and hence there is a
natural identification of the complex inner product space Mn(C) with the complexification of the real
inner product space Mn(C)sa.

From a non-commutative probability viewpoint, we can view Mn(C) as an algebra of “random vari-
ables” and the normalized trace trn : Mn(C) → C as the “expectation.” To motivate this, suppose
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X ∈Mn(C)sa. The empirical spectral distribution of X is the measure µ = 1
n

∑n
j=1 δλj where λ1, . . . , λn

are the eigenvalues of X listed with multiplicity. We then have for every polynomial p that

trn(p(X)) =

∫
p dµ.

Thus, µ is analogous to the distribution of a random variable.
If X = (X1, . . . , Xm) ∈Mn(C)msa, the “joint distribution” of X1, . . . , Xm is not described by a measure

on Rd, since X1, . . . , Xm do not commute. Rather we consider the non-commutative law λX , which is
the linear functional on the algebra of m-variable non-commutative polynomials given by

p 7→ trn(p(X1, . . . , Xm)).

It turns out that two tuples X and Y ∈Mn(C)msa agree if and only if they are unitarily conjugate (which is
equivalent to the fact that any two trace-preserving embeddings of a finite-dimensional tracial ∗-algebra
into Mn(C) are unitarily conjugate).

Lemma 1.13 (see e.g. [25, §2]). Let X,Y ∈Mn(C)msa. Then the following are equivalent

(1) trn(p(X)) = trn(p(Y )) whenever p is a non-commutative polynomial in m variables.
(2) There exists a unitary U in Mn(C) such that Yj = UXjU

∗ for j = 1, . . . , m.

We consider the toy problem of optimally coupling two matrix tuples inside Mn(C) (beware that
because of Proposition 1.6 an optimal coupling insideMn(C) is not necessarily optimal among all couplings
in tracial W∗-algebras). Because of Lemma 1.13, the toy problem reduces to the following: Given
X,Y ∈ Mn(C), find a unitary U so that ‖UXU∗ − Y ‖trn is as small as possible, where UXU∗ =
(UX1U

∗, . . . , UXmU
∗), and where ‖·‖trn is the normalized Hilbert-Schmidt norm

‖T‖trn =

 m∑
j=1

trn(T ∗j Tj)

1/2

.

This motivates the following definition: For X,Y ∈Mn(C)msa, we say that (X,Y ) are an optimal coupling
in Mn(C) if ‖UXU∗ − Y ‖trn ≥ ‖X − Y ‖trn for every unitary U . The next lemma guarantees existence
of optimal couplings.

Lemma 1.14. Let X, Y ∈Mn(C)msa. Then there exists an n×n unitary U that minimizes ‖UXU∗−Y ‖trn .
Moreover, every such unitary must satisfy

m∑
j=1

[UXjU
∗, Y ] = 0,

where [S, T ] = ST − TS is the commutator.

Proof. Existence of a minimizer follows from the fact that the unitary group is compact and U 7→
‖UXU∗ − Y ‖trn is continuous. Now suppose that U is a minimizer and let Z = UXU∗. Let A be a self-
adjoint matrix, and consider the unitary eitA for t ∈ R. By minimality, we have ‖eitAZe−itA − Y ‖2trn ≥
‖Z − Y ‖2trn . Since ‖eitAZe−itA‖2trn = ‖Z‖2trn , it follows that 〈eitAZe−itA, Y 〉trn is minimized at t = 0.
Differentiating at t = 0 yields

m∑
j=1

trn((iAZj − iZjA)Yj) =

m∑
j=1

trn(Ai(ZjYj − YjZj)) = trn

A m∑
j=1

i[Zj , Yj ]

 .

Since this holds for all A ∈Mn(C)msa, it follows that
∑m
j=1[Zj , Yj ] = 0 as desired. �

Remark 1.15. In the case m = 1, this lemma actually provides an alternative proof the spectral theorem
as follows. Let X ∈Mn(C)sa. Let Y be a fixed diagonal matrix with distinct diagonal entries y1 ,. . . , yn.
Let U be a unitary minimizing ‖UXU∗ − Y ‖trn . Then [UXU∗, Y ] = 0. Any matrix A that commutes
with Y must satisfy ai,jyj = yiai,j , and hence A must be diagonal. Therefore, UXU∗ is diagonal.2

2One might object that the preceding lemma seems to assume the spectral theorem already because it uses functional

calculus to define eitA. However, this only requires analytic functional calculus, not continuous functional calculus. One
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Next, we describe an analog of the Monge-Kantorovich duality for the setting of matrix tuples.

Lemma 1.16. Let X,Y ∈ Mn(C)msa. Then (X,Y ) is an optimal coupling in Mn(C) if and only if there
exist functions f, g : Mn(C)msa → R satisfying the following properties:

(1) f and g are convex.
(2) f and g are unitarily invariant, that is, f(UX ′U∗) = f(X ′) and g(UY ′U∗) = g(Y ′) for X ′, Y ′ ∈

Mn(C)msa.
(3) f(X ′) + g(Y ′) ≥ 〈X ′, Y ′〉trn for all X ′, Y ′ ∈Mn(C)msa.
(4) f(X) + g(Y ) = 〈X,Y 〉trn .

Proof. ( =⇒ ). Let U(Mn(C)) be the unitary group. Let

f(X ′) = sup
U∈U(Mn(C))

〈X ′, UY U∗〉trn .

Note that f is convex because it is the supremum of a family of affine functions. Moreover, f is unitarily
invariant because we took the supremum over all unitaries U .

Let g be the Legendre transform of f , that is,

g(Y ′) = sup
X′∈Mn(C)msa

(〈Y ′, X ′〉trn − f(X ′)) .

It is immediate that g is convex, g is unitarily invariant because f is unitarily invariant and the inner
product is unitarily invariant, and f(X ′) + g(Y ′) ≥ 〈X ′, Y ′〉trn for all X ′, Y ′ ∈ Mn(C)msa. In particular,
f(X) + g(Y ) ≥ 〈X,Y 〉trn .

On the other hand, note that the supremum defining f(X) is achieved when U = 1 because we assumed
that (X,Y ) is optimal coupling, hence 〈X,UY U∗〉 is maximized when U = 1. Hence, f(X) = 〈X,Y 〉.
Moreover,

f(X ′) ≥ 〈X ′, Y 〉trn ,
hence

g(Y ) ≤ sup
X′∈Mn(C)nsa

(〈X ′, Y 〉trn − 〈X ′, Y 〉trn) = 0.

Thus, f(X) + g(Y ) ≤ 〈X,Y 〉trn . Hence, f(X) + g(Y ) = 〈X,Y 〉 as desired.
(⇐= ) Suppose that f and g satisfy (1)–(4). Let U be a unitary. Then

〈UXU∗, Y 〉trn ≤ f(UXU∗) + g(Y ) = f(X) + g(Y ) = 〈X,Y 〉trn .
Therefore, (X,Y ) is optimal. �

Unitarily invariant convex functions on Mn(C)msa satisfy a monotonicity property with respect to the
non-commutative condition expectation from Mn(C) onto a ∗-subalgebra A, which is one motivation for
our notion of E-convexity in the tracial W∗-setting.

Lemma 1.17. Let A be a ∗-subalgebra of Mm(C), and let E : Mn(C) → A ⊆ Mn(C) be the orthogonal
projection with respect to the inner product 〈S, T 〉trn = trn(S∗T ). Then E[ST ] = SE[T ] and E[TS] =
E[T ]S and E[T ∗] = E[T ]∗ for T ∈ Mn(C) and S ∈ A. Moreover, if f : Mn(C)msa → R is a convex
function that is invariant under unitary conjugation, then for X = (X1, . . . , Xm) ∈Mn(C)msa, we have

f(E[X]) ≤ f(X).

Here E[X] = (E[X1], . . . , E[Xm]).

Proof. First, let us show that E is an A-A-bimodule map, that is, E[ST ] = SE[T ] and E[TS] = E[T ]S
for all T ∈Mn(C) and S ∈ A. For the second equality, note that E[T ]S ∈ A and for all Z ∈ A, we have

trn(Z∗(E[T ]S)) = trn(SZ∗E[T ]) = trn(SZ∗T ) = trn(Z∗(TS)).

The proof of the first equality is similar, even easier. To show that E[T ∗] = E[T ]∗, observe that for all
Z ∈ A, we have

trn(Z∗E[T ]∗) = trn(E[T ]Z) = trn(ZE[T ]) = trn(ZT ) = trn(T ∗Z∗) = trn(Z∗T ∗).

can use power series to define eitA, show that ei(s+t)A = eisAeitA for s, t ∈ R, show that (eitA)∗ = e−itA
∗
, and hence

conclude that eitA is unitary when A is self-adjoint.
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Therefore, the orthogonal projection of T ∗ onto A is E[T ]∗ as desired.
For a subalgebra A ⊆Mn(C), we denote by U(A) the group of unitary matrices that are contained in

A. We define the commutant

A′ = {S ∈Mn(C)|[S, T ] = 0 for all T ∈ A}.
We recall that A′′ = A by von Neumann’s bicommutant theorem [65, Theorem II.3.9].

Let µ be the Haar measure on U(A′), and define

X ′ =

∫
U(A′)

UXU∗ dµ(U).

We claim that X ′ = E[X]. First, by invariance of Haar measure, V X ′V ∗ = X ′ for V ∈ U(A′), hence
[X ′, V ] = 0. Since A′ is a ∗-algebra, it is linearly spanned by its unitaries, and therefore, [X ′, S] = 0 for
all S ∈ A′. So X ′ ∈ A′′ = A. Furthermore, for all T ∈ A, we have

trn(T ∗X ′) =

∫
U(A′)

trn(T ∗UXU∗) dµ(U) =

∫
U(A′)

trn(UT ∗XU∗) dµ(U) = trn(T ∗X).

Thus, X ′ = E[X] as desired. Since µ is a probability measure, Jensen’s inequality and the unitary
invariance of f imply that

f(E[X]) ≤
∫
U(A′)

f(UXU∗) dµ(U) = f(X). �

2. Background on tracial W∗-algebras

For the sake of readers who are less familiar tracial W∗-algebras, we explain the prerequisites needed for
the paper: the definition of a tracial W∗-algebra, its interpretation as a non-commutative generalization
of probability spaces, inclusions and trace-preserving conditional expectations of tracial W∗-algebras, free
products with amalgamation, and non-commutative laws.

2.1. Tracial W∗-algebras. Historically, von Neumann algebras and W∗-algebras were defined differ-
ently, but it turns out that these two definitions give the same objects thanks to work of Sakai; see e.g.
[63, Theorem 1.16.7]. Here we follow Sakai’s approach that starts with the definition of W∗-algebras as
C∗-algebras which are dual Banach spaces [63]. Other background references on von Neumann algebras
include [2, 65, 66, 67].

Definition 2.1. A unital ∗-algebra is a (unital) algebra A over C together with a skew-linear involution
a 7→ a∗ such that (ab)∗ = b∗a∗. If A and B are ∗-algebras, then a map ρ : A → B is said to be a
∗-homomorphism if it is linear and respects multiplication and the ∗-operation.

Definition 2.2. A unital C∗-algebra is a ∗-algebra A equipped with a norm ‖·‖ such that

• A is a Banach space with respect to ‖·‖;
• ‖ab‖ ≤ ‖a‖‖b‖ for a, b ∈ A;
• ‖a∗a‖ = ‖a‖2 for a ∈ A.

Definition 2.3. A W∗-algebra is a C∗-algebra A together with a topology T , such that A as a Banach
space is the dual of some Banach space A∗ and T is the weak-∗ topology on A.

We remark that A∗ can be uniquely recovered from (A,T ) as the subspace of A∗∗ consisting of linear
functionals that are continuous with respect to T . In fact, it turns out that the predual of A∗ of a
W∗-algebra A is uniquely determined by A alone without reference to its weak-∗ topology [63, Corollary
1.13.3].

Definition 2.4. If A is a W∗-algebra and A∗ is a predual of A, then a faithful normal trace on A is an
element τ ∈ A∗ satisfying the following properties:

• τ(1) = 1;
• τ(a∗a) ≥ 0 for a ∈ A;
• τ(a∗a) = 0 if and only if a = 0;
• τ(ab) = τ(ba) for a, b ∈ A.
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We remark that in general von Neumann algebra theory, the word “trace” is often used to refer to the
semi-finite trace on a semi-finite von Neumann algebra, but in this paper “trace” always means “tracial
state.”

Definition 2.5. A tracial W∗-algebra is a pair A = (A, τ), where A is a W∗-algebra and τ is a faithful
normal trace.

Example 2.6. Let (Ω, P ) be a probability space. We take A = L∞(Ω, P ), with the pointwise addition and
multiplication operations. The ∗-operation is pointwise complex conjugation. The norm is the standard
one for L∞(Ω, P ), and note that ‖fg‖ ≤ ‖f‖‖g‖ and ‖f∗f‖ = ‖f‖2. By the Riesz representation theorem,
L∞(Ω, P ) = L1(Ω, P )∗, and therefore, we can take A∗ = L1(Ω, P ), and then equip L∞(Ω, P ) with the
corresponding weak-∗ topology. We define τ using the element 1 ∈ L1(Ω, P ), so that τ(f) =

∫
Ω
f dP .

Since L∞(Ω, P ) is commutative, it is immediate that τ(fg) = τ(gf). The other properties of τ are
straightforward to check from well-known facts in measure theory. Conversely, it turns out that every
commutative tracial W∗-algebra is isomorphic to L∞ of some probability space [63, §1.18], [65, Theorem
1.18].

Example 2.7. Let H be an infinite-dimensional Hilbert space, and let A = B(H) be the algebra of
bounded operators on H equipped with the operator norm. Let A∗ be the space of trace class operators.
Then A can be canonically identified with the dual of A∗ by the pairing (a, T ) = Tr(aT ) for a ∈ A and
T ∈ A∗. The weak-∗ topology on B(H) is also known as the σ-weak operator topology. Thus, B(H) is a
W∗-algebra. However, it is not a tracial W∗-algebra because Tr is not well-defined on all of B(H) and
Tr(1) =∞. See for instance [63, Theorem 1.15.3].

Theorem 2.8 (GNS construction for tracial W∗-algebras). Let A = (A, τ) be a tracial W∗-algebra. Note
that 〈a, b〉A := τ(a∗b) defines an inner product on A (which is non-degenerate because τ is faithful). This
can be completed to a Hilbert space, which we denote by L2(A). Let us denote the map A → L2(A) by

a 7→ â. Then for each a ∈ A, there is are unique operators π`(a), πr(a) ∈ B(L2(A)) such that π`(a)̂b = âb

and πr(a)̂b = b̂a for b ∈ A. Moreover, π` defines a ∗-homomorphism A→ B(L2(A)) which is continuous
with respect to the weak-∗ topologies on A and B(L2(A)). Similarly, πr is a ∗-anti-homomorphism (it
preserves + and ∗ but reverses the order of multiplication) that is weak-∗ continuous. Furthermore, since

‖a∗‖L2(A) = ‖a‖L2(A), there is a unique skew-linear isometry J : L2(A) → L2(A) such that J(â) = â∗.
See [51, §IV] and [2, §7].

Example 2.9. Let A = L∞(Ω, P ) and let τ be integration against P . Then 〈f, g〉L2(A) =
∫

Ω
fg dP .

The completion L2(A) can be canonically identified with L2(Ω, P ). The map ̂ is the standard inclusion
L∞(Ω, P )→ L2(Ω, P ). The operator π(f) ∈ B(L2(Ω, P )) is the operator of multiplication by f .

Remark 2.10. Our examples indicate that if A = (A, τ) is a tracial W∗-algebra, then A is an analog of
L∞(Ω, P ), A∗ is an analog of L1(Ω, P ) and L2(A) is an analog of L2(Ω, P ). In fact, there is an even a
non-commutative analog of measurable functions on Ω that are finite almost everywhere; this is known as
the algebra Aff(A) of operators affiliated to A, certain closed unbounded operators on the Hilbert space
L2(A). The space L2(A) can be canonically identified with a subspace of the affiliated operators. Thus,
the left and right multiplication operators π`(a) and πr(a) for a ∈ A become instances of multiplying
affiliated operators. Moreover, there are subspaces Lp(A) ⊆ Aff(A) for p ∈ [1,∞) which share many
properties of the classical Lp spaces. There is also a natural identification of A∗ with L1(A). See §A.1
and the references therein for details.

2.2. W∗-embeddings, trace-preserving conditional expectations, and W∗-isomorphisms.

Notation 2.11. If A = (A, τ) is a tracial W∗-algebra, we will use the notation L∞(A) for A and τA for
τ when it is convenient to avoid naming A and τ explicitly. In particular, the norm on A will be denoted
‖·‖L∞(A). Furthermore, we will treat L∞(A) as a subspace of L2(A). We will also write ab rather than

π`(a)̂b and ba rather than πr(a)̂b for a ∈ L∞(A) and b ∈ L2(A). Finally, we write a∗ instead of J(a) for
a ∈ L2(A). We denote by L2(A)sa the real subspace of L2(A) consisting of those elements fixed by J .

Definition 2.12. Let A and B be tracial W∗-algebras. A linear map φ : L∞(A)→ L∞(B) is said to be
trace-preserving if τA = τB ◦ φ.
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Lemma 2.13 (See [12, Lemma 1.5.11] and [2, §9.1]). Let A and B be tracial W∗-algebras. Let φ :
L∞(A)→ L∞(B) be a trace-preserving unital ∗-homomorphism. Then

(1) φ extends to an isometry L2(A)→ L2(B), and in particular φ is injective on A.
(2) φ is a contraction L∞(A)→ L∞(B).
(3) The adjoint map E = φ∗ : L2(B) → L2(A) restricts to a map L∞(B) → L∞(A) that is contractive

with respect to the L∞ norm.
(4) We have E[b∗] = E[b]∗ for b ∈ L∞(B), and in fact also for b ∈ L2(B).
(5) E is a bimodule map over L∞(A), that is, for a ∈ L∞(A) and b ∈ L2(B), we have E(φ(a)b) = aE(b)

and E(bφ(a)) = E(b)a.
(6) E is unital (E(1) = 1) and trace-preserving (τA ◦ E = τB).

Definition 2.14. In the situation of the previous lemma, we call φ a (tracial W∗)-embedding A → B and
E the associated trace-preserving conditional expectation. (Note that both maps are unital by definition
and the previous proposition.)

Remark 2.15. It turns out that a trace-preserving ∗-homomorphism L∞(A) → L∞(B) is automatically
continuous with respect to the weak-∗ topology, essentially because the weak-∗ topology can be recovered
from the action of L∞(A) on L2(A) by Theorem 2.8; see [24] or [2, Proposition 2.6.4]. For similar reasons,
the trace-preserving conditional expectation is also weak-∗ continuous.

Example 2.16. Suppose that B = L∞(Ω,F , P ) for some probability space (Ω,F , P ), where F is the σ-
algebra associated to the measure. Let G be a σ-subalgebra of F . Then there is an expectation-preserving
inclusion L∞(Ω,G, P ) → L∞(Ω,F , P ). This extends to a map on the L2 spaces, and the adjoint of this
map is the conditional expectation E : L2(Ω,F , P )→ L2(Ω,G, P ) sending X to E[X|G]. The properties
in Lemma 2.13 then reduce to the well-known classical properties of conditional expectation. For instance,
(2) the conditional expectation is contractive on L∞, (3) The conditional expectation respects complex
conjugation, (4) ff X ∈ L2(Ω,F , P ) and Y ∈ L∞(Ω,G, P ), then E[XY |G] = E[X|G]Y , (5) the conditional
expectation is expectation-preserving: E[E[X|G]] = E[X].

Notation 2.17. If A and B are tracial W∗-algebras, we say that A ⊆ B if L∞(A) ⊆ L∞(B), the
addition, product, ∗-operation and weak-∗ topology for L∞(A) are the restrictions of those from L∞(B),
and τA = τB|L∞(A). In this case, we denote the conditional expectation B → A by EA.

As the paper will often deal with m-tuples of self-adjoint elements of L2, we

Notation 2.18. If A and B are tracial W∗-algebras and φ : L∞(A)→ L∞(B) is a tracial W∗-embedding
or a trace-preserving conditional expectation, then we will use the same letter φ to denote the extension
of the map to the L2 spaces. Furthermore, if X = (X1, . . . , Xm) ∈ L2(A)msa, then we will write φ(X) =
(φ(X1), . . . , φ(Xm)).

Definition 2.19. A tracial W∗-embedding φ : A → B is said to be a tracial W∗-isomorphism if it is
bijective and the inverse map is also a tracial W∗-embedding.

For reasons of mathematical logic, the class of tracial W∗-algebras is not a set. However, it will be
convenient for us in §3.2 to have a set of isomorphism class representatives of tracial W∗-algebras with
separable predual.

Lemma 2.20. There exists a set W of tracial W∗-algebras, such that

(1) the elements of W are pairwise non-isomorphic,
(2) every tracial W∗-algebra with separable predual is isomorphic to some element of W.

Sketch of proof. We saw earlier that if A = (A, τ) is a tracial W∗-algebra with separable predual, then
there is a W∗-embedding A→ B(HA). Also, HA ∼= L2(A) is separable and hence isomorphic as a Hilbert
space to `2(N). Therefore, A is isomorphic to some W∗-subalgebra of B(`2(N)). Let S1 be the set of
W∗-subalgebras of B(`2(N)) (which is a subset of the power set of B(`2(N))). Let S2 be the set of pairs
{(A, τ) : A ∈ S1, τ : A → C faithful normal trace}. If (A, τ) ∈ S2, then the adjoint of the inclusion map
produces a map from the space B(`2(N))∗ of trace class operators to A∗ ∼= L1(A, τ), and hence A∗ is
separable. Thus, S2 is a set of tracial W∗-algebras such that every tracial W∗-algebra with separable
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predual is isomorphic to some element of S2. Finally, observe that tracial W∗-isomorphism defines an
equivalence relation on S2, and let S3 be the set of equivalence classes. �

2.3. Amalgamated free products. Next, we explain the definition of free independence with amalga-
mation. This is an analog of conditional independence in classical probability theory. For background
see for instance [78] or [12, §4.7].

Definition 2.21. Let A = (A, τ) be a tracial W∗-algebra. Let B, A1, . . . , AN be a W∗-algebras of A
with B ⊆ Aj for every j. Let B = (B, τ |B) and let EB : A → B be the trace-preserving conditional
expectation. We say that A1, . . . , AN are freely independent with amalgamation over B if the following
condition holds: Whenever ` ∈ N and i1, . . . , i` ∈ {1, . . . , N} with i1 6= i2, i2 6= i3, . . . , i`−1 6= i` and
aj ∈ Aij with EB[aj ] = 0 j = 1, . . . , `, then EB[a1 . . . a`] = 0.

Proposition 2.22. Let B = (B, σ) be a tracial W∗-algebra. For j = 1, . . . , N , let Aj = (Aj , τj) be a
tracial W∗-algebra and let ιj : B → Aj be a tracial W∗-embedding. Then there exists a tracial W∗-algebra
A = (A, τ) and tracial W∗-embeddings ι : B → A and φj : Aj → A such that ι = φj ◦ ιj for all j, and
such that φ1(A1), . . . , φN (AN ) are freely independent in A with amalgamation over ι(B). Moreover,

(A, τ, ι, φ1, . . . , φj) are unique up to a canonical isomorphism; in other words, if (Ã, τ̃ , ι̃, φ̃1, . . . , φ̃N ) are

another such tuple, then there is a unique tracial W∗-isomorphism π : A → Ã satisfying π ◦ ι = ι̃ and
π ◦ φj = φ̃j for all j.

Definition 2.23. If B, A1, . . . , AN , and A are as above (with the specified maps ι, φ1, . . . , φN ), then
we say that A is a free product of A1, . . . , AN with amalgamation over ι1(B), . . . , ιN (B).

In the case where B = C, we refer to these concepts simply as free independence and free products.

2.4. Non-commutative laws and generators. Next, we describe the space of non-commutative laws.
A non-commutative law is the analog of a linear functional C[x1, . . . , xm] → R given by f 7→

∫
f dµ

for some compactly supported measure on Rm. Instead of C[x1, . . . , xm], we use the non-commutative
polynomial algebra in d variables.

Definition 2.24 (Non-commutative polynomial algebra). We denote by C〈x1, . . . , xm〉 the universal
unital algebra generated by variables x1, . . . , xm. As a vector space, C〈x1, . . . , xm〉 has a basis consisting
of all products xi1 . . . xi` for ` ≥ 0 and i1, . . . , i` ∈ {1, . . . , d}. We equip C〈x1, . . . , xm〉 with the
unique ∗-operation such that x∗j = xj ; more explicitly, the ∗-operation is defined on monomials by
(xi1 . . . xi`)

∗ = x∗i` . . . x
∗
i1

.

Definition 2.25 (Non-commutative law). A linear functional λ : C〈x1, . . . , xm〉 is said to be exponentially
bounded if there exists R > 0 such that |λ(xi1 . . . xi`)| ≤ R` for all ` ∈ N0 and i1, . . . , i` ∈ {1, . . . , d},
and in this case we say R is an exponential bound for λ. A non-commutative law is a unital, positive,
tracial, exponentially bounded linear functional λ : C〈x1, . . . , xm〉 → C. We denote the space of non-
commutative laws by Σm, and we equip it with the weak-∗ topology (that is, the topology of pointwise
convergence on C〈x1, . . . , xm〉). We denote by Σm,R the subset of Σm comprised of non-commutative
laws with exponential bound R.

Observation 2.26. The space Σm,R is convex, compact, and metrizable.

Observation 2.27. Let A be a ∗-algebra and X = (X1, . . . , Xm) ∈ L∞(A)msa. Then there is a unique
∗-homomorphism πX : C〈x1, . . . , xm〉 → A such that πX(xj) = Xj for j = 1, . . . , d.

Definition 2.28 (Non-commutative law of an m-tuple). Let A be a tracial W∗-algebra. Let X =
(X1, . . . , Xm) ∈ L∞(A)msa. Then we define λX : C〈x1, . . . , xm〉 → C by λX = τ ◦ ρX .

Notation 2.29. If A is a tracial W∗-algebra and X ∈ L∞(A)m, we write

‖X‖L∞(A)m := max(‖Xj‖L∞(A) : j = 1, . . . ,m).

Observation 2.30. If A and X are as above, then λX is a non-commutative law with exponential bound
‖X‖∞. Conversely, if R is an exponential bound for λX , then

‖X‖L∞(A)msa
= max

j
lim
m→∞

τ(X2n
j )1/2n ≤ R.
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Hence, ‖X‖∞ is the smallest exponential bound for λX and in particular it is uniquely determined by λX .

In the case of a single operator X, we can apply the spectral theorem to show that there is a unique
probability measure µX on R satisfying∫

R
f dµX = τ(f(X)) for f ∈ C0(R).

Since X is bounded, µX is compactly supported and thus makes sense to evaluate on polynomials. If
p is a polynomial, then λX [p] =

∫
R p dµX . Thus, λX is simply the linear functional on polynomials

corresponding to the spectral distribution.
We use the notation λX in particular when A = Mn(C). We denote by trn the normalized trace

(1/n) Tr on Mn(C); recall that this is the unique (unital) trace on Mn(C). Thus, for any X ∈Mn(C)msa,
a non-commutative law λX is unambiguously specified by the previous definition. In the m = 1 case,
the non-commutative law is given by the empirical spectral distribution. Note that when X is a random
m-tuple of matrices, we will use the notation λX by default to refer to the empirical non-commutative
law, that is, the (random) non-commutative law of X with respect to trn.

The next proposition shows that any non-commutative law can be realized by a self-adjoint m-tuple
in some tracial W∗-algebra. This is a version of the Gelfand-Naimark-Segal construction (or GNS con-
struction). A proof can be found in [3, Proposition 5.2.14(d)].

Proposition 2.31 (GNS construction for non-commutative laws). Let λ ∈ Σm,R. Then we may define
a semi-inner product on C〈x1, . . . , xm〉 by

〈p, q〉λ = λ(p∗q).

Let Hλ be the separation-completion of C〈x1, . . . , xm〉 with respect to this inner product, that is, the
completion of C〈x1, . . . , xm〉/{p : λ(p∗p) = 0}, and let [p] denote the equivalence class of a polynomial p
in Hλ.

There is a unique unital ∗-homomorphism π : C〈x1, . . . , xm〉 → B(Hλ) satisfying ρ(p)[q] = [pq] for p,
q ∈ C〈x1, . . . , xm〉. Moreover, ‖π(xj)‖ ≤ R.

Let Xj = π(xj), let X = (X1, . . . , Xm) and let A be the W∗-subalgebra of B(Hλ) generated by X1,
. . . , Xm. Define τ : A → C by τ(Y ) = 〈[1], Y [1]〉λ. Then τ is a faithful normal trace on A, and hence
A = (A, τ) is a tracial W∗-algebra.

Definition 2.32. In the situation of the previous proposition, we call (A, X) the GNS realization of λ.

The tracial W∗-algebra associated to λ is canonical in the sense that any other construction would yield
an isomorphic tracial W∗-algebra. The following lemma can be deduced from the well-known properties
of the GNS representation associated to a faithful trace τ on a W∗-algebra A (which gives the so-called
standard form of a tracial W∗-algebra).

Lemma 2.33. Let A and B be tracial W∗-algebras. Let X ∈ L∞(A)msa and Y ∈ L∞(B)msa such that
λX = λY . Let W∗(X) and W∗(Y ) be the W∗-subalgebras of A and B generated by X and Y respectively.
Then there is a unique tracial W∗-isomorphism ρ : W∗(X)→W∗(Y ) such that ρ(Xj) = Yj.

Here is a related lemma about generating sets for a tracial W∗-algebra, which relies on the Kaplansky
density theorem [65, Theorem II.4.8].

Lemma 2.34. Let A be a tracial W∗-algebra. Let S ⊆ L∞(A). Let W∗(S) be the smallest W∗-subalgebra
of A containing S, which is equal to the weak-∗ closure of the unital ∗-algebra generated by S. Then every
Z ∈ W∗(S) can be approximated in the L2(A) norm by a sequence Zn in the unital ∗-algebra generated
by S such that ‖Zn‖L∞(A) ≤ ‖Z‖L∞(A). Furthermore, if φ : A → B is a W∗-embedding, then φ|W∗(S) is
uniquely determined by φ|S.

In fact, the notion of generators for a W∗-algebra extends to elements of L2(A). For instance, for
a self-adjoint tuple X ∈ L2(A)msa, using the theory of affiliated operators sketched in §A.1, it is valid
to apply a bounded Borel function f to Xj through functional calculus, and f(Xj) will be an element
of A. Thus, we may define W∗(X) as (for instance) the W∗-subalgebra generated by arctan(X1), . . . ,
arctan(Xm), and then, as one would hope, X turns out to be in L2(W∗(X))msa. See also [12, p. 482-483].
We can state a characterization of W∗(X) without reference to affiliated operators as follows.
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Lemma 2.35. Let A be a tracial W∗-algebra and X ∈ L2(A)msa. Then there exists a unique smallest
subalgebra B (denoted by W∗(X)) of A such that X ∈ L2(B)msa.

3. Duality for L2 optimal couplings

Our goal is to prove a version of the Monge-Kantorovich duality for the non-commutative version of the
L2 Wasserstein distance defined by Biane and Voiculescu [11]. In §3.1 we recall the definitions of optimal
couplings that were stated more succinctly in the introduction. We define E-convex functions in §3.2 and
the corresponding Legendre transform in §3.3. Then we prove the non-commutative Monge-Kantorovich
duality in §3.4, and as an application we prove a decomposition result for optimal couplings in §3.5.

3.1. Wasserstein distance and optimal couplings.

Definition 3.1 (Biane-Voiculescu [11, §1.1]). Let µ, ν ∈ Σm be non-commutative laws. A coupling of
µ and ν is a triple (A, X, Y ) where A is a tracial W∗-algebra and X, Y ∈ L∞(A)msa such that λX = µ

and λY = ν. For µ, ν ∈ Σm, the (non-commutative L2) Wasserstein distance d
(2)
W (µ, ν) is the infimum

of ‖X − Y ‖L2(A)msa
over all couplings (A, X, Y ) for A ∈W.

It is shown in [11, Theorem 1.3] that d
(2)
W is a metric on the set Σm, and for each R > 0, Σm,R is

complete in this metric. However, as shown in §5.4, the topology generated by d
(2)
W is strictly stronger

than the weak-∗ topology on Σm. The notion of optimal couplings corresponding to the Wasserstein
distance is as follows.

Definition 3.2. A coupling (A, X, Y ) of two non-commutative laws µ and ν is optimal if ‖X−Y ‖L2(A)msa
=

d
(2)
W (µ, ν).

Remark 3.3. As remarked in [11], for every µ, ν ∈ Σm, some optimal coupling exists. To see this, suppose
R > 0 is an exponential bound for µ and ν. Note that that if (A, X, Y ) is a coupling and γ is the joint

law of (X,Y ), then ‖X − Y ‖L2(A)msa
=
(∑m

j=1 γ((xj − xm+j)
2)
)1/2

. The space of joint laws γ ∈ Σ2m,R

with marginals µ and ν is closed in Σ2m,R and therefore compact, and γ 7→
(∑m

j=1 γ((xj − xm+j)
2)
)1/2

is continuous. Thus, it achieves a minimum at some γ∗, and we obtain an optimal coupling (A, X, Y )
from the GNS construction with γ∗ (Proposition 2.31).

Just as in classical optimal transport theory, it is convenient to frame L2 optimal couplings in terms
of inner products rather than L2 norms in order to relate them with Legendre transforms. If (A, X, Y )
is a coupling of µ and ν, then

‖X − Y ‖2L2(A)msa
= ‖X‖2L2(A)msa

− 2〈X,Y 〉L2(A)msa
+ ‖Y ‖2L2(A)msa

.

Since ‖X‖2L2(A)msa
and ‖Y ‖2L2(A)msa

are uniquely determined by µ and ν, a coupling minimizes ‖X −
Y ‖L2(A)msa

if and only if it maximizes the inner product 〈X,Y 〉L2(A)msa
. This motivates the following

definition.

Definition 3.4. For µ, ν ∈ Σm, we denote by C(µ, ν) the maximal value of 〈X,Y 〉L2(A)msa
over all

probabilistic couplings (A, X, Y ) of µ and ν.

The preceding paragraph shows that

d
(2)
W (µ, ν)2 =

m∑
j=1

µ(x2
j ) +

m∑
j=1

ν(x2
j )− 2C(µ, ν).

The goal of the section is to establish a duality result that C(µ, ν) is the infimum of µ(f) + ν(g) over
certain pairs (f, g) of E-convex functions.
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3.2. E-convex functions. Fix a set W of isomorphism class representatives for tracial W∗-algebras with
separable predual, as was given by Lemma 2.20.

Definition 3.5. Let S be a set. A tracial W∗-function with values in S is tuple f = (fA)A∈W, where
fA : L2(A)msa → S if whenever ι : A → B is a tracial W∗-embedding, we have fA = fB ◦ ι. (Here the
inclusion ι is understood to extend to a map L2(A)msa → L2(B)msa per Notation 2.18.)

Thus, roughly speaking, being a W∗-function means that the evaluation of f on some X ∈ L2(A)msa is
independent of the ambient algebra. Hence, in particular, for bounded operators, fA(X) only depends
on the non-commutative law of X.

Although the definition of f only specifies fA when A is in the set W, it will sometimes be convenient
to use the notation fA for a general tracial W∗-algebra A with separable predual. This is defined by
fixing an isomorphism φ from A to some B ∈ W and letting fA = fB ◦ φ. This is independent of the
choice of φ because fB ◦ ψ = fB for every automorphism ψ of B; this in turn follows from the definition
of W∗-functions since an automorphism ψ is in particular an inclusion from B into B.

Definition 3.6. A tracial W∗-function f = (fA)A∈W with values in [−∞,+∞] is said to be E-convex if
either it is identically equal to −∞ or the following conditions hold:

(1) For each A, fA is a convex and lower semi-continuous function L2(A)msa → (−∞,+∞].
(2) If ι : A → B is a trace-preserving embedding, and if E = ι∗ : B → A is the corresponding trace-

preserving conditional expectation, then

fA(E[X]) ≤ fB(X)

for X ∈ Bmsa. (Here E is understood to extend to a map L2(B)msa → L2(A)msa per Notation 2.18.)

Example 3.7. For t ∈ (0,∞), let qAt (X) = (1/2t)‖X‖2L2(A)msa
. Then qt is E-convex. Indeed, it is convex

because of the Cauchy-Schwarz and arithmetic-geometric mean inequalities. It is clearly continuous.
Finally, it satisfies monotonicity under conditional expectation because conditional expectations are con-
tractive in ‖·‖L2(A)msa

.

We next explain an equivalent characterization of E-convexity using subgradient vectors.

Definition 3.8. If H is a real Hilbert space and let f : H → (−∞,∞] is a function, we say that y ∈ H
is a subgradient for f at x if

f(x′) ≥ f(x) + 〈y, x− x′〉 for all x′ ∈ H.
We define the subdifferential ðf(x) as the set of subgradient vectors at x.

The following facts are well-known in convex analysis.

Lemma 3.9. Let H be a Hilbert space. If f : H → [−∞,∞] is convex and lower semi-continuous and
f(x) is finite, then ðf(x) is nonempty, closed, and convex. Conversely, f : H → (−∞,∞) and ðf is
nonempty for every x, then f is convex.

Analogously, we will show that E-convex W∗-functions are characterized by the existence of a sub-
gradient vector Y to fA at X such that Y ∈ L2(W∗(X))msa (where W∗(X) is given by Lemma 2.35). In
addition, we handle the case where f can take the value +∞.

Lemma 3.10. Let f be a W∗-function taking values in (−∞,∞). Then f is E-convex if and only if for
each A ∈W and X ∈ L2(A)msa, there exists Y ∈ L2(W∗(X))msa which is a subgradient vector to fA at X.
Here W∗(X) is given by Lemma 2.35.

Proof. First, suppose that f is E-convex. Fix X ∈ L2(A)msa. By a corollary of the Hahn-Banach theorem,
there exists some subgradient vector Z to fA(X). Let B = W∗(X), let E : A → B be the trace-preserving
conditional expectation, and let Y = E[Z]. Then for X ′ ∈ L2(A)msa, we have

fA(X ′) ≥ fB(EB[X ′]) = fA(E[X ′])

≥ fA(X) + 〈Z,E[X ′]−X〉L2(A)msa

= fA(X) + 〈Z,E[X ′ −X]〉L2(A)msa

= fA(X) + 〈Y,X ′ −X〉L2(A)msa
.
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Thus, the desired subgradient condition holds.
Conversely, suppose this subgradient condition holds. Lower semi-continuity of fA follows from the

existence of subgradient vectors. For X0, X1 ∈ L2(A)msa and t ∈ (0, 1), we have

fA((1− t)X0 + tX1) ≤ (1− t)fA(X0) + tfA(X1).

because of the existence of a subgradient vector at (1 − t)X0 + tX1. To check the monotonicity under
conditional expectation, consider an embedding ι : A → B and let E : B → A be the corresponding
conditional expectation. Let X ∈ L2(B)msa and let X ′ = E[X]. By (1), there is a subgradient vector Y to
fB at the point X ′ that is in L2(W∗(X ′))msa, and in particular Y ∈ L2(A)msa. But then

fB(X) ≥ fB(X ′) + 〈Y,X −X ′〉L2(B)msa

= fB(E[X]) + 〈Y,X − E[X]〉L2(B)msa

= fB(E[X]).

�

Remark 3.11. The same argument shows that for a W∗-function taking values in (−∞,+∞], E-convexity
is equivalent to the combination of the following three conditions:

(1) For each A ∈ W and X ∈ L2(A)msa, if fA(X) < ∞, then there exists Y ∈ L2(W∗(X)) which is a
subgradient vector to fA at X.

(2) For each A, the set (fA)−1((−∞,M ]) is closed and convex in L2(A)msa.
(3) If ι : A → B is a tracial W∗-embedding and E = ι∗ : B → A is the corresponding conditional

expectation, then fB(X) < +∞ implies fA(E[X]) < +∞.

Remark 3.12. If f is a tracial W∗-function, then fA(UXU∗) = fA(X) for every unitary U in L∞(A)
and X ∈ L2(A)msa; this is because conjugation by U defines an automorphism of A (hence in particular a
tracial W∗-embedding A → A), and f respects tracial W∗-embeddings.

If f is E-convex, then this unitary invariance gives rise to a “sum of commutators” condition on
subgradient vectors related to Lemma 1.14. More precisely, suppose f is E-convex, Y ∈ ðfA(X) and U
is a unitary in L∞(A). Then

fA(X) = fA(UXU∗) ≥ fA(X) + 〈UXU∗ −X,Y 〉L2(A)msa
.

As in Lemma 1.14, by taking U = eitA for A ∈ L∞(A)sa and differentiating at t = 0, we obtain∑m
j=1[Xj , Yj ] = 0.

The next lemma describes how the subdifferential interacts with conditional expectations.

Lemma 3.13. Let f be an E-convex W∗-function. Let A ∈ W and X ∈ L2(A)msa. Let B be a tracial
W∗-subalgebra of A.

(1) If fB(EB[X]) = fA(X), then

ðfB(EB[X]) = L2(B)msa ∩ ðfA(X).

(2) If Y ∈ ðfA(X), then EW∗(X)[Y ] ∈ ðfA(X).

Proof. (1) First, we show that ðfB(EB[X]) ⊆ L2(B)msa ∩ ðfA(X). If Y ∈ ðfB(EB[X]), then clearly
Y ∈ L2(B)msa. Moreover, for all Z ∈ L2(A), we have

fA(Z) ≥ fB(EB[Z])

≥ fB(EB[X]) + 〈Y,EB[Z]− EB[X]〉L2(B)msa

= fA(X) + 〈Y, Z −X〉L2(A)msa
,

where we have used the fact that EB is self-adjoint and EB[Y ] = Y . Hence, Y ∈ ðfA(X) as desired.
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Conversely, to show that L2(B)msa ∩ ðfA(X) ⊆ ðfB(EB[X]), suppose that Y ∈ L2(B)msa ∩ ðfA(X).
Then for Z ∈ L2(B)msa,

fB(Z) = fA(Z)

≥ fA(X) + 〈Y,Z −X〉L2(A)msa

= fB(EB[X]) + 〈Y,Z − EB[X]〉L2(B)msa
,

because EB is a self-adjoint operator on L2(A) and Y ∈ L2(B)msa.
(2) Let B = W∗(X) (where the trace is given by the restriction of τA). Let Z ∈ L2(B)msa. Then

fB(Z) = fA(Z)

≥ fA(X) + 〈Y,Z −X〉L2(A)msa

= fB(X) + 〈EB[Y ], Z −X〉L2(B)msa
.

Thus, EB[Y ] ∈ ðfB(X), and so by (1), EB[Y ] ∈ ðfA(X). �

Lemma 3.14. Let f be an E-convex W∗-function. Let A ∈W and X ∈ L2(A)msa.

(1) There exists a unique Y ∈ ðfA(X) of minimal L2-norm.
(2) Y ∈ L2(W∗(X))msa.
(3) Let B = W∗(Y ) as described in Lemma 2.35. Then fB(EB[X]) = fA(X) and B = W∗(EB[X]).

Proof. (1) Because ðfA(X) is a closed convex set, it has a unique element of minimal L2-norm.
(2) Let C = W∗(X). Let Y ′ = EC [Y ]. We claim that Y ′ ∈ ðfC(X). Let Z ∈ L2(C)msa. Then

fC(Z) = fA(Z)

≥ fA(X) + 〈Y,Z −X〉L2(A)msa

= fC(X) + 〈Y ′, Z −X〉L2(C)msa .

Thus, Y ′ ∈ ðfC(X). By the previous lemma, Y ′ ∈ ðfA(X). But because Y has minimal norm, we have
‖EC [Y ]‖L2(A)msa

= ‖Y ‖L2(A)msa
, hence EC [Y ] = Y , so Y ∈ L2(C)msa.

(3) First, we show that fB(EB[X]) = fA(X). By E-convexity, fB(EB[X]) ≤ fA(X). Conversely,

fB(EB[X]) = fA(EB[X]) ≥ fA(X) + 〈Y,EB[X]−X〉L2(A)msa
= fA(X).

Let D = W∗(EB[X]) and φ = τ |D. By Lemma 3.13 (2), ED[Y ] ∈ ðfB(EB[X]), hence also ED[Y ] ∈
ðfA(X) by Lemma 3.13 (1). Because Y was chosen to have minimal norm, we have ED[Y ] = Y , and
thus, D ⊇ W∗(Y ) = B by the characterization of W∗(Y ) given in Lemma 2.35. Hence, B = D =
W∗(EB[X]). �

3.3. Legendre transforms.

Definition 3.15. We define the Legendre transform as the tuple Lf = (LfA)A∈W by

LfA(X) = sup{〈ι(X), Y 〉 − fB(Y ) : B ∈W, ι : A → B a tracial W∗-embedding}.

Example 3.16. Consider again qAt (X) = (1/2t)‖X‖2L2(A)msa
. A standard computation with norms and

inner products shows that Lqt = q1/t.

Proposition 3.17. Let f be a tracial W∗-function f .

(1) The Legendre transform Lf is an E-convex tracial W∗-function.
(2) If f ≤ g, then Lf ≥ Lg.
(3) We have L2f ≤ f with equality if and only if f is E-convex.
(4) L2f is the maximal E-convex function that is less than or equal to f .

Proof. (1) If f is identically equal to −∞ or +∞, Lf will be +∞ or −∞ respectively and there is nothing
to prove. Hence, assume that f attains some finite value at some Y ∈ L2(B)msa for some B ∈W.
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For any A ∈W, the free product A ∗ B is isomorphic to some C ∈W. Let ι1 : A → C and ι2 : B → C
be the corresponding tracial W∗-embeddings. Then

LfA(X) ≥ 〈ι1(X), ι2(Y )〉 − fC(ι2(Y )) > −∞,
since fC(ι2(Y )) = fB(Y ) > −∞. Hence, Lf is never equal to −∞.

For each A, the function LfA is a supremum of affine functions, and therefore it is convex and lower
semi-continuous.

Let ι : A → B be a tracial W∗-embedding and let E : B → A be the corresponding trace-preserving
conditional expectation. Let X ∈ L2(B)msa. Let ι̃ : A → B̃ be another inclusion. Let M ∈ W be

isomorphic to the amalgamated free product of B and B̃ over the subalgebra A (or more precisely, over

the images of ι(A) ⊆ B and ι̃(A) ⊆ B̃) as in Proposition 2.22. Let ρ : B → M and ρ̃ : B̃ → M be the

inclusions. Then for Y ∈ L2(B̃),

LfB(X) ≥ 〈ρ(X), ρ̃(Y )〉L2(M)msa
− fM(ρ̃(Y ))

= 〈ι̃ ◦ E(X), Y 〉L2(B̃)msa
− f B̃(Y ),

where we have used free independence with amalgamation to compute the inner product, and we have
used the fact that f is a tracial W∗-function. Because ι̃ : A → B̃ and Y were arbitrary, we have

LfB(X) ≥ LfA(E(X)),

which establishes condition (2) in the definition of E-convexity.
It only remains to show that f is a tracial W∗-function. Suppose ι : A → B is a tracial W∗-inclusion.

If ι′ : B → C is a tracial W∗-inclusion, then so is ι′ ◦ ι, which implies that

LfA(X) ≥ sup
ι′:B→C

Y ∈L2(C)msa

〈ι′ ◦ ι(X), Y 〉L2(C)msa − f
C(Y ) = LfB(ι(X)).

If E : B → A is the conditional expectation corresponding to ι, then by the preceding argument

LfA(X) = LfA(E ◦ ι(X)) ≤ LfB(ι(X)).

Thus, LfA = LfB ◦ ι, so Lf is a tracial W∗-function.
(2) This is immediate from the definition and the properties of suprema and infima.
(3) By definition of Lf , for every A ∈W and X, Y ∈ L2(A)msa, we have

LfA(X) ≥ 〈X,Y 〉L2(A)msa
− fA(Y ),

hence
LfA(X) + fA(Y ) ≥ 〈X,Y 〉L2(A)msa

.

Hence, given an inclusion ι of A into B and Y ∈ L2(A)msa and X ∈ L2(B)msa, we have

fA(Y ) = fB(ι(Y )) ≥ 〈ι(Y ), X〉L2(B)msa
− LfB(X).

Taking the supremum on the right-hand side, fA(Y ) ≥ L2fA(Y ). Thus, f ≥ L2f .
Now suppose that f is E-convex, and we must show that f = L2f . If f is identically −∞ or +∞,

there is nothing to prove. Otherwise, fix A. Because fA is convex and lower semi-continuous, classical
results about convex functions tell us that fA can be expressed as the supremum of a family of affine
functions (gα)α∈I , where

gα(X) = 〈X,Zα〉L2(A)msa
+ cα

with Zα ∈ L2(A)msa and cα ∈ R. Let ι : A → B be an inclusion and let E : B → A be the corresponding
conditional expectation. If Y ∈ L2(B)msa, then by the E-convexity property

〈ι(Zα), Y 〉L2(B)msa
−fB(Y ) ≤ 〈ι(Zα), Y 〉L2(B)msa

−fA,σ(E(Y )) ≤ 〈Zα, E(Y )〉L2(A)msa
−〈Zα, E(Y )〉L2(A)msa

−cα = −cα.

Therefore, LfA(Zα) ≤ −cα, which implies that

L2fA(X) ≥ 〈X,Zα〉L2(A)msa
− LfA(Zα) ≥ 〈X,Zα〉L2(A)msa

+ cα = gα(X).

Therefore,
L2fA(X) ≥ sup

α∈I
gα(X) = fA(X).
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So L2f = f as desired. Conversely, if f = L2f , then f is E-convex because it is the Legendre transform
of some function.

(4) We already showed that L2f is E-convex and L2f ≤ f . Moreover, if g is E-convex and g ≤ f ,
then Lg ≥ Lf and hence g = L2g ≤ L2f . �

Remark 3.18. It follows from E-convexity that for every ι : A → B and X ∈ L2(A)msa and Y ∈ L2(B)msa,
we have

〈ι(X), Y 〉L2(B)msa
− fB(Y ) ≤ 〈X,E[Y ]〉L2(A)msa

− fA(E[Y ]),

where E : B → A is the conditional expectation corresponding to ι. Therefore,

LfA(X) = sup
Y ∈L2(A)msa

(
〈X,Y 〉L2(A)msa

− fA(Y )
)
.

Hence, if f is E-convex, there is no need to consider a larger W∗-algebra when computing the Legendre
transform, and moreover LfA agrees with the classical Legendre transform of fA as a function on the
real Hilbert space L2(A)msa.

The next lemma states the relationship between Legendre transforms and subgradients, which is exactly
analogous to the behavior of classical Legendre transforms. We will this lemma many times.

Lemma 3.19. Let f be an E-convex W∗-function, let A ∈ W and X,Y ∈ L2(A)msa. Then fA(X) +
LfA(Y ) = 〈X,Y 〉L2(A)msa

if and only if Y ∈ ðfA(X).

Proof. First, suppose that fA(X) + LfA(Y ) = 〈X,Y 〉L2(A)msa
. By definition of Lf , we have for all

X ′ ∈ L2(A)msa that

〈X ′, Y 〉L2(A)msa
− fA(X ′) ≤ LfA(Y ) = 〈X,Y 〉L2(A)msa

− fA(X),

hence, fA(X ′) ≥ fA(X) + 〈X ′ −X,Y 〉L2(A)msa
, so Y ∈ ðfA(X).

Conversely, if Y ∈ ðfA(Y ) and if ι : A → B is a W∗-inclusion, then by Lemma 3.13, ι(Y ) ∈ ðfB(ι(X)).
Hence, for any Z ∈ L2(B)msa, we have

〈Z, ι(Y )〉L2(B)msa
− fB(Z) ≤ 〈ι(X), ι(Y )〉L2(B)msa

− fB(ι(X)) = 〈X,Y 〉L2(B)msa
− fA(X).

Since ι, B, and Z were arbitrary, the supremum defining LfA(Y ) is attained at the point X, so that
fA(X) + LfA(Y ) = 〈X,Y 〉L2(A)msa

. �

3.4. A non-commutative Monge-Kantorovich duality.

Definition 3.20. If f is a tracial W∗-function and µ ∈ Σm, then we define µ(f) = fA(X), where A ∈W
is (isomorphic to) the GNS representation of µ and X is the canonical generating m-tuple.

If f is a tracial W∗-function, for every A and every X ∈ Amsa with λX = µ, we have µ(f) = fA(X).
This follows by the definition of tracial W∗-function and the fact that W∗(X) is isomorphic to the GNS
representation of µ.

Definition 3.21. Let us call a pair (f, g) of tracial W∗-functions admissible if they take values in (−∞,∞]
and for every A ∈W,

fA(X) + gA(Y ) ≥ 〈X,Y 〉L2(A)msa
for all X,Y ∈ L2(A)msa.

Proposition 3.22. Let µ, ν ∈ Σm. The following quantities are equal:

(1) C(µ, ν).
(2) inf{µ(f) + ν(g) : (f, g) admissible}.
(3) inf{µ(f) + ν(Lf) : f a tracial W∗-function not identically ∞}.
(4) inf{µ(f) + ν(g) : (f, g) admissible and E-convex}.
(5) inf{µ(f) + ν(Lf) : f E-convex not identically ∞}.
Here all the functions under consideration take values in (−∞,∞].
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Proof. (1) ≤ (2) Let (A, X, Y ) be a coupling of µ and ν, and let (f, g) be an admissible pair. Then

〈X,Y 〉L2(A)msa
≤ fA(X) + gA(Y ) = µ(f) + ν(g).

Taking the supremum over couplings on the left-hand side and the infimum over admissible pairs (f, g)
on the right-hand side, we have (1) ≤ (2).

(2) ≤ (3). It is clear from the definition of Lf that fA(X) + LfA(Y ) ≥ 〈X,Y 〉L2(A)msa
. Therefore,

(f,Lf) is always an admissible pair, and hence (3) is the infimum over a smaller set than (2).
(3) ≤ (1). Define

fA(X) =

{
0, if X ∈ L∞(A) and λX = µ,

+∞, otherwise.

Note that f is a tracial W∗-function. Let A be the GNS-representation of ν with the canonical generators
Y . Then LfA(Y ) is the supremum of 〈ι(Y ), X〉L2(B)msa

where ι : A → B is an inclusion and X ∈ L∞(B)msa
satisfies λX = µ. In particular for a non-commutative law ν, letting (A, Y ) be the GNS realization of ν,
we have ν(Lf) = LfA(Y ) = C(µ, ν). Moreover, µ(f) = 0 and hence C(µ, ν) = µ(f) + ν(Lf).

(2) ≤ (4). This is immediate since (4) is the infimum over a smaller set.
(4) ≤ (5). Suppose that f is E-convex. Then (f,Lf) is admissible as noted above. Also, Lf is always

E-convex, so (5) is the infimum over a smaller set than (4).
(5) ≤ (3). Let f be a tracial W∗-function. Then L2f ≤ f and (L2f,Lf) is an E-convex admissible

pair. Therefore,

µ(f) + ν(Lf) ≥ µ(L2f) + ν(Lf).

Of course, since L(L2f) = L2(Lf) = Lf , the term on the right-hand side participates in the infimum
(5). Since the f on the left-hand side was chosen arbitrarily, (3) ≥ (5). �

Proposition 3.23. Let (A, X, Y ) be a coupling of µ and ν ∈ Σm. The following are equivalent:

(1) The coupling is optimal.
(2) There exists an admissible pair (f, g) such that 〈X,Y 〉L2(A)msa

= fA(X) + gA(Y ).

(3) There exists a tracial W∗-function f such that 〈X,Y 〉L2(A)msa
= fA(X) + LfA(Y ).

(4) There exists an admissible, E-convex pair (f, g) such that 〈X,Y 〉L2(A)msa
= fA(X) + gA(Y ).

(5) There exists an E-convex f such that 〈X,Y 〉L2(A)msa
= fA(X) + LfA(Y ).

(6) There exists an E-convex W∗-function f such that Y is a subgradient vector to fA at the point X.

Proof. It is immediate from the previous proposition that each of the conditions (2) – (5) implies (1).
For the converse implication, assume the coupling is optimal. Let

fB(Z) =

{
0, if λZ = µ,

+∞, otherwise.

As in the proof of the previous proposition, we have µ(f)+ν(Lf) = C(µ, ν), or equivalently 〈X,Y 〉L2(A)msa
=

fA(X) + LfA(Y ). We also have C(µ, ν) = µ(L2f) + ν(Lf) ≤ µ(f) + ν(Lf) = C(µ, ν). Thus, the pair
(L2f,Lf) fulfills all of the criteria of (2) – (5).

The equivalence of (5) and (6) follows from Lemma 3.19. �

3.5. A decomposition result for optimal couplings. As an initial application of duality, we present
the following result that expresses an optimal coupling (X,Y ) in terms of another optimal coupling
(X ′, Y ′) with B = W∗(X ′) = W∗(Y ′).

Theorem 3.24. Let µ, ν ∈ Σm,R, and let (A, X, Y ) be an optimal coupling of µ and ν. Then there exists
a subalgebra B ⊆ A with the following properties, letting X ′ = EB[X] and Y ′ = EB[Y ]:

(1) B = W∗(X ′) = W∗(Y ′).
(2) X −X ′, X ′ − Y ′, and Y ′ − Y are orthogonal.
(3) (A, X ′, Y ′) is an optimal coupling of λX′ and λY ′ . Similarly, (A, X, Y ′) and (A, X ′, Y ) are optimal

couplings of the respective laws.
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We may choose B to be contained in W∗(X) (or symmetrically, we may choose it to be contained in
W∗(Y )).

Furthermore, there exists some optimal coupling (A, X, Y ) and a B satisfying (1) – (3) with respect to
this coupling such that W∗(X,B) and W∗(Y,B) are freely independent with amalgamation over B.

Proof. Let

B = {B ⊆ A : 〈EB[X], EB[Y ]〉L2(A)msa
= 〈X,Y 〉L2(A)msa

},
which is partially ordered by inclusion. We claim that B has a minimal element. By Zorn’s lemma, it
suffices to show that every chain in B has a lower bound. Consider a chain C ⊆ B, and let C =

⋂
B∈C B.

We claim that limB∈C EB[X] = EC [X]. Let

δ = inf
B∈C
‖EB[X]‖2L2(A)msa

.

Given ε > 0, there exists B0 ∈ C such that ‖EB0 [X]‖2L2(A)msa
< δ2 + ε2. Then for all B ∈ C with B ⊆ B0,

we have

‖EB[X]− EB0 [X]‖2L2(A)msa
= ‖EB0 [X]‖2L2(A)msa

− ‖EB[X]‖2L2(A)msa
≤ δ2 + ε− δ2 = ε2.

This implies that Z = limB∈C EB[X] exists in L2. But clearly Z ∈
⋂
B∈C B = C, and 〈Z,W 〉L2(A)msa

=

〈Z,W 〉L2(A)msa
for W ∈ L2(C)msa. Thus, limB∈C EB[X] = EC [X]. By the same token limB∈C EB[Y ] =

EC [Y ]. Therefore,

〈EC [X], EC [Y ]〉L2(A)msa
= lim
B∈C
〈EB[X], EB[Y ]〉L2(A)msa

= 〈X,Y 〉L2(A)msa
.

Therefore, C ∈ B as desired.
So by Zorn’s lemma, B has some minimal element, which we will call B. Let X ′ = EB[X] and

Y ′ = EB[Y ]. Now W∗(X ′) ⊆ B and we have

〈X ′, EW∗(X′)[Y
′]〉L2(A)msa

= 〈X ′, Y ′〉L2(A)msa
.

By minimality of B, we have B = W∗(X ′), and similarly, B = W∗(Y ′). Hence, (1) holds.
To show that B can be chosen inside W∗(X), note that

〈EW∗(X)[X], EW∗(X)[Y ]〉L2(A)msa
= 〈X,EW∗(X)[Y ]〉L2(A)msa

= 〈X,Y 〉L2(A)msa
.

Thus, we can apply the same argument with B replaced by the elements of B contained inside W∗(X).
To prove (2), since X ′ = EB[X] is orthogonal to B, it is immediate that X − X ′ and X ′ − Y ′ are

orthogonal. Similarly, X −X ′ and Y ′ − Y are orthogonal. Next, note that

‖X − Y ‖2L2(A)msa
= ‖X‖2L2(A)msa

− 2〈X,Y 〉L2(A)msa
+ ‖Y ‖2L2(A)msa

= (‖X − EB[X]‖2L2(A)msa
+ ‖EB[X]‖2L2(A)msa

)− 2〈EB[X], EB[Y ]〉L2(A)msa
+ ‖Y ‖2L2(A)msa

= ‖X − EB[X]‖2L2(A)msa
+
(
‖EB[X]‖2L2(A)msa

)− 2〈EB[X], Y 〉L2(A)msa
+ ‖Y ‖2L2(A)msa

)
= ‖X −X ′‖2L2(A)msa

+ ‖X ′ − Y ‖2L2(A)msa
.

Thus, X−X ′ and X ′−Y satisfy the Pythagorean identity, so they are orthogonal. In particular, X−X ′
is orthogonal to Y ′ − Y = (Y ′ −X ′)− (Y −X ′).

To prove (3), by Proposition 3.23, there exists an admissible pair of E-convex W∗-functions f and g
such that fA(X) + gA(Y ) = 〈X,Y 〉L2(A)msa

. By construction of B and by E-convexity,

fA(X ′) + gA(Y ′) ≥ 〈X ′, Y ′〉L2(A)msa

= 〈X,Y 〉L2(A)msa

= fA(X) + gA(Y )

≥ fA(X ′) + gA(Y ′).

This implies that (X ′, Y ′) is an optimal coupling. By similar reasoning, since 〈X,Y ′〉L2(A)msa
= 〈X ′, Y ′〉L2(A)msa

and fA(X ′) ≤ fA(X), we see that (X ′, Y ) is an optimal coupling, and symmetrically (X,Y ′) is an optimal
coupling.
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Let A1 be a copy of W∗(X,B) and let A2 be a copy of W∗(Y,B). Let Ã = A1∗BA2 be the amalgamated

free product (with its canonical trace τ̃). Let X̃, X̃ ′, Ỹ , and Ỹ ′ be the images of the original variables in

Ã. Then using free independence∥∥∥X̃ − Ỹ ∥∥∥2

L2(Ã)msa

=
∥∥∥X̃ − X̃ ′∥∥∥2

L2(Ã)msa

+
∥∥∥X̃ ′ − Ỹ ′∥∥∥2

L2(Ã)msa

+
∥∥∥Ỹ ′ − Ỹ ∥∥∥2

L2(Ã)msa

= ‖X −X ′‖2L2(A)msa
+ ‖X ′ − Y ‖2L2(A)msa

+ ‖Y ′ − Y ‖2L2(A)msa

= ‖X − Y ‖2L2(A)msa
.

Therefore, (X̃, Ỹ ) is also an optimal coupling of µ and ν. The subalgebra B ⊆ Ã also satisfies

〈EB[X̃], EB[Ỹ ]〉τ̃ = 〈X̃, Ỹ 〉τ̃ ,

and satisfies (1). Thus, the same arguments as above show that B in Ã satisfies (2) and (3). �

4. The displacement interpolation

If (A, X, Y ) is an L2-optimal coupling of µ, ν ∈ Σm, then one can consider the displacement interpo-
lation Xt = (1− t)X + tY for t ∈ [0, 1]. As shown in Proposition A.22 the corresponding family of laws

defines a geodesic in (Σm, d
(2)
W ). In this section, we study how the displacement interpolation interacts

with non-commutative Monge-Kantorovich duality and use this to prove Theorem 1.5.
By Proposition 3.23, there exists an E-convex function f such that 〈X,Y 〉L2(A)msa

= fA(X) +LfA(Y ),

or equivalently Y ∈ ðfA(X). Letting qt be the W∗-function qAt (X) = (1/2t)‖X‖2L2(A)msa
, we observe

that Xt ∈ ðfAt (X) where ft = (1 − t)q1 + tf . Hence, X ∈ ð(Lft)A(Xt). In order to show that
X ∈ L2(W∗(Xt))

m
sa, we want to understand the regularity properties of Lft.

It is well-known that for a convex function f on a Hilbert space H, the Legendre transform of f(x) +
(t/2)‖x‖2 is given by the inf-convolution gt = infy∈H [f∗(y) + (1/2t)‖x− y‖2], where f∗ is the Legendre
transform of f . Furthermore, gt has a Lipschitz gradient for every t > 0, and it satisfies the Hamilton-
Jacobi equation

d

dt
gt = −1

2
‖∇gt‖2.

This can be checked by hand, or deduced for instance from [6, §2, Theorem 1]; also relevant to Hamilton-
Jacobi equations on Hilbert space are [7, 8, 18, 19, 49, 46].

In this section, we adapt the theory of inf-convolutions to the setting tracial W∗-functions. In §4.1,
we define inf-convolutions of W∗-functions and prove their basic properties. In §4.2, we describe how
inf-convolutions interact with E-convexity and semi-concavity. In §4.3, we conclude the proof of Theorem
1.5.

We emphasize that the novelty in our work is not in the form of the Hamilton-Jacobi equation but
rather in the fact that we study variables from infinite-dimensional non-commutative algebras and want
the function to be defined consistently with respect to inclusions of these algebras (that is, to be a tracial
W∗-function). This means for instance that if f and g are tracial W∗-functions and f�g is their inf-
convolution as defined below, then (f�g)A need not agree with the inf-convolution of fA and gA as
functions on the Hilbert space L2(A)msa (Remark 4.5); however, they do agree if f and g are E-convex
(Lemma 4.6). Hence, a notion of viscosity solutions compatible with our theory of inf-convolutions will
thus have to take into account the inclusions of one tracial W∗-algebra into another.

4.1. Inf-convolutions. We begin with the definition and basic properties of the inf-convolution.

Definition 4.1. Let f, g be two W∗-functions with values in [−∞,∞]. We define the inf-convolution
f�g by

(f�g)A(X) = inf
{
fB(ι(X)− Y ) + gB(Y )|ι : A → B embedding, Y ∈ L2(B)msa

}
.

Lemma 4.2. The object f�g is a W∗-function.
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Proof. Let ι : A → B be an inclusion, and we first show that

(4.1) (f�g)A(X) ≤ (f�g)B(ι(X)).

If ι′ : B → C is another inclusion and Y ∈ L2(B)msa as in the definition of (f�g)B, then of course ι′ ◦ ι is
an inclusion and which can be used in the definition of (f�g)A. This shows (4.1).

Conversely, suppose that ι′ : A → C is an inclusion and Y ∈ L2(C)msa as in the definition of (f�g)A.

Then let C̃ be the free product of B and C with amalgamation over the images of A in the respective
algebras. Then the image of Y in C̃ participates in the infimum defining (f�g)B(ι(X)) and hence
(f�g)B(ι(X)) ≤ (f�g)A(X). �

Lemma 4.3. The inf-convolution is commutative and associative, that is, if f , g, h are W∗-functions,
then f�g = g�f and (f�g)�h = f�(g�h).

Proof. We have

(f�g)A(X) = inf
ι:A→B

inf
Y ∈L2(B)msa

[fB(ι(X)− Y ) + gB(Y )].

We substitute Z = ι(X)− Y and thus obtain

inf
ι:A→B

inf
Y ∈L2(B)msa

[fB(Z) + gB(ι(X)− Z)] = (g�f)A(X).

For associativity,

((f�g)�h)A(X) = inf
ι1:A→B
Y ∈L2(B)msa

(
(f�g)B(ι1(X)− Y ) + hB(Y )

)
= inf

ι1:A→B
Y ∈L2(B)msa

inf
ι2:B→C

Z∈L2(B)msa

(
fC(ι2(ι1(X))− ι2(Y )− Z) + gC(Z) + hC(ι2(Y ))

)
.(4.2)

We claim that is equal to

(4.3) inf
ι:A→B

Y,Z∈L2(B)msa

(
fC(ι(X)− Y − Z) + gB(Z) + hB(Y )

)
,

or in other words, in our earlier expression we can without loss of generality impose the condition that
C = B and ι2 = id. The reason is that if we allowed Z to come only from the smaller algebra C, then
the infimum could only increase, hence by shrinking C to B, (4.3) ≥ (4.2). On the other hand, if in (4.2),
we allowed Y to come from the larger algebra C instead of B, then the infimum could only decrease, and
hence by enlarging B to C, we see that (4.2) ≤ (4.3). Now the expression (4.3) is symmetric in g and h,
and hence

(f�g)�h = (f�h)�g.

This relation, together with commutativity, implies the associativity relation since

(f�g)�h = (g�f)�h = (g�h)�f = f�(g�h). �

The relationship between inf-convolution and Legendre transform is exactly what one would expect
based on the classical case.

Lemma 4.4. Let f and g be W∗-functions. Then

L(f�g) = Lf + Lg.

Proof. Observe that

L(f�g)A(X) = sup
ι1:A→B
Y ∈L2(B)msa

(
〈ι1(X), Y 〉L2(B)msa

− (f�g)B(Y )
)

= sup
ι1:A→B
Y ∈L2(B)msa

〈ι1(X), Y 〉L2(B)msa
− inf

ι2:B→C
Z∈L2(C)msa

(
fC(ι2(Y )− Z) + gC(Z)

) ,
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where we take the supremum over B and C ∈ W and inclusions ι1 : A → B and ι2 : B → C and
Y ∈ L2(B)msa and Z ∈ L2(C)msa. This can be rewritten as

sup
ι1:A→B
Y ∈L2(B)msa

sup
ι2:B→C

Z∈L2(C)msa

(
〈ι2(ι1(X)), ι2(Y )〉L2(C)msa − f

C(ι2(Y )− Z)− gC(Z)
)
.

We can assume without loss generality that B = C and ι2 = id. Indeed, allowing Y to range over the
larger space L2(C)msa rather than L2(B)msa would only increase the supremum, but on the other hand,
restricting Z to the smaller space L2(B)msa instead of L2(C)msa would only decrease the supremum. Thus,
taking B = C and renaming ι1 to ι, we obtain

sup
ι:A→B

sup
Y,Z∈L2(B)msa

(
〈ι(X), Y 〉L2(B)msa

− fB(Y − Z)− gB(Z)
)
.

Substituting Z ′ = Y − Z, we have

(4.4) sup
ι:A→B

sup
Z,Z′∈L2(B)msa

(
〈ι(X), Z + Z ′〉L2(B)msa

− fB(Z ′)− gB(Z)
)

= sup
ι:A→B

sup
Z,Z′∈L2(B)msa

(
〈ι(X), Z ′〉L2(B)msa

− fB(Z ′) + 〈ι(X), Z〉L2(B)msa
− gB(Z)

)
.

We want to show that this is equal to

(4.5) LfA(X) + LgA(X) = sup
ι1:A→B1

sup
Z′∈L2(B1)msa

(
〈ι(X), Z ′〉L2(B)msa

− fB(Z ′)
)

+ sup
ι2:A→B2

sup
Z∈L2(B1)msa

(
〈ι(X), Z〉L2(B)msa

− gB(Z)
)
.

The only difference between the two expressions is that the latter allows ι1 : A → B1 and ι2 : A → B2

to be different, but the former takes them to be the same, and thus a priori the (4.4) ≤ (4.5). However,
in (4.5), for any given B1, B2, ι1 and ι2, let B be the free product of B1 and B2 with amalgamation over
the subalgebras ι1(A) in the first factor and ι2(A) in the second factor. Allowing Z ′ and Z to range over
L2(B)msa rather than L2(B1)msa and L2(B2)msa respectively only increases the suprema over Z and Z ′, and
hence (4.5) remains unchanged when we restrict to the case ι1 = ι2, so it equals (4.4). �

Remark 4.5. Suppose f and g are tracial W∗-functions. Let fA�gA denote the classical inf-convolution
of fA and gA as functions on the Hilbert space L2(A)msa. Then (f�g)A ≤ fA�gA. However, the
following example shows that two functions do not necessarily agree. Take m = 2, and fA(X1, X2) =
(1/2)‖(X1, X2)‖2L2(A)2 and gA(X1, X2) = τA([X1, X2]2). The formula for g is to be understood in the

sense of affiliated operators (see §A); since i[X1, X2] is a self-adjoint affiliated operator, −[X1, X2]2 is
positive and hence τA([X1, X2]2) is well-defined in [−∞, 0]; see Theorem A.3 (4). Then gC = 0 because
C is commutative, and hence also fC�gC = 0. On the other hand, let ι : C → M2(C) be the canonical
inclusion, and let

Y1 =

(
0 1
1 0

)
, Y2 =

(
0 i
−i 0

)
, [Y1, Y2] =

(
−2i 0

0 2i

)
.

Then for x1, x2, t ∈ R,

(f�g)C(x1, x2) ≤ 1

2
‖ι(x1)− tY1‖2L2(M2(C)) +

1

2
‖ι(x2)− tY2‖2L2(M2(C)) + t4τM2(C)([Y1, Y2]2)

=
1

2
‖ι(x1)− tY1‖2L2(M2(C)) +

1

2
‖ι(x2)− tY2‖2L2(M2(C)) − 4t4.

The first two terms are quadratic in t, and thus, taking the infimum over t ∈ R, we see that (f�g)C =
−∞ < fC�gC.
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4.2. Inf-convolutions and regularity of E-convex functions.

Lemma 4.6. If f and g are E-convex W∗-functions with f <∞, then f�g is E-convex. Moreover, for
any E-convex f and g, we have

(4.6) (f�g)A(X) = inf
Y ∈L2(A)msa

(
fA(X − Y ) + gA(Y )

)
.

Proof. We prove the second claim first. Clearly,

(f�g)A(X) ≤ inf
Y ∈L2(A)msa

(
fA(X − Y ) + gA(Y )

)
.

For the opposite inequality, suppose that ι : A → B is an embedding and Y ∈ L2(B)msa. Let E : B → A
be the conditional expectation. Then by E-convexity of f and g,

fA(X − E[Y ]) + gA(E[Y ]) ≤ fB(ι(X)− Y ) + gB(Y ),

and hence
inf

Y ∈L2(A)msa

(
fA(X − Y ) + gA(Y )

)
≤ (f�g)A(X).

Now let us show that f�g is E-convex when f < ∞. If g is identically ∞, then f�g is identically
∞, so there is nothing to prove. Suppose gB(Y ) is finite for some A and Y . Then (f�g)A(X) < ∞
everywhere because, letting C be the free product of A and B and letting ι1 : A → C and ι2 : B → C be
the corresponding inclusions,

(f�g)A(X) ≤ fC(ι1(X)− ι2(Y )) + gC(ι2(Y )) <∞.
To prove convexity of (f�g)A, let X0, X1 ∈ L2(A)msa, and let Xt = (1− t)X0 + tX1 for t ∈ (0, 1). If Y0,
Y1 ∈ L2(A)msa and if Yt = (1− t)Y0 + tY1, then

(f�g)A(Xt) ≤ fA(Xt − Yt) + gA(Yt)

≤ (1− t)fA(X0 − Y0) + tfA(X1 −X1) + (1− t)gA(Y0) + tgA(Y1).

Since Y0 and Y1 were arbitrary, we can take the infimum over Y0 and Y1 and apply (4.6) to conclude that

(f�g)A(Xt) ≤ (1− t)(f�g)A(X0) + t(f�g)A(X1).

This shows that (f�g)A is convex. Furthermore, since f�g <∞, this relation implies that if (f�g)A is
−∞ at one point in L2(A)msa, then it is −∞ everywhere. Moreover, if (f�g)B is −∞, then so (f�g)A, as
we can see by considering the free product of A and B.

It is automatic from these facts that (f�g)A is lower semi-continuous, since convexity automatically
implies lower semi-continuity at points where (f�g)A <∞.

Finally, we must show the monotonicity of (f�g) under conditional expectation. Let ι : A → B be an
embedding and let E : B → A be the corresponding conditional expectation. If X,Y ∈ L2(A)msa, then

(f�g)A(E[X]) ≤ fA(E[X]− E[Y ]) + gA(E[Y ]) ≤ fB(X − Y ) + gB(Y ).

Since Y on right-hand side was arbitrary, we conclude by (4.6) that (f�g)A(E[X]) ≤ (f�g)B(X) as
desired. �

Observation 4.7. For t ∈ (0,∞), let qAt (X) = (1/2t)‖X‖2L2(A)msa
. For s, t ∈ (0,∞), because qs and qt

are E-convex and take finite values, we have

qs�qt = L2(qs�qt) = L(Lqs + Lqt) = L(q1/s + q1/t) = L(q1/(s+t)) = qs+t.

Then by associativity of inf-convolution, for any W∗-function f , we have

qs�(qt�f) = (qs�qt)�f = qs+t�f.

Thus, (qt�(·))t>0 defines a semigroup acting on W∗-functions. This is the W∗-analog of the Hopf-Lax
semigroup.

Definition 4.8. If f is a W∗ function, we say that f is convex if fA is convex for every A ∈W. We say
that f is semi-concave if qt − f is convex for some t > 0.

Lemma 4.9. Suppose f and g are W∗-functions and qt − f is convex. Then qt − f�g is convex.
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Proof. Note that

(qt − f�g)A(X) = sup
ι:A→B

Y ∈L2(B)msa

(
qBt (ι(X))− fB(ι(X)− Y )− gB(Y )

)
= sup

ι:A→B
Y ∈L2(B)msa

(
qBt (ι(X)− Y )− fB(ι(X)− Y ) +

1

t
〈ι(X), Y 〉L2(B)msa

− qBt (Y )− gB(Y )

)
.

The right-hand side is the supremum of a family convex functions of X and therefore is convex. �

As a consequence of Lemmas 4.6 and 4.9, if f is E-convex, then qt�f is an E-convex and semi-concave
function. The next results give a characterization of such functions as well as some of their regularity
properties. These results are quite close to the standard results about convex functions on a Hilbert space,
so we do not claim any originality, but nonetheless we include the proofs for the sake of completeness.

Proposition 4.10. Let f be an E-convex W∗-function that is not identically ∞ or −∞. Then the
following are equivalent:

(1) f = qt�g for some E-convex function g.
(2) qt − f is convex.
(3) qt − f is E-convex.
(4) Lf − q1/t is convex and lower semi-continuous.
(5) Lf − q1/t is E-convex.

Moreover, in this case, f <∞ everywhere.

Proof. (1) =⇒ (2) follow from Lemma 4.9.
(2) =⇒ (3). Because qt − f takes finite values everywhere, by Lemma 3.10, it suffices to show that

for every X ∈ L2(A), there exists a some Z ∈ ðfA(X) ∩ L2(W∗(X))msa. Because qt − f is convex, it has
a subgradient vector Z at X, so that

qAt (X ′)− fA(X ′)− qAt (X) + fA(X) ≥ 〈X ′ −X,Z〉L2(A)msa
,

which implies that
(4.7)

fA(X ′)−fA(X) ≤ 〈X−X ′, Z〉+ 1

2t
(‖X ′‖2L2(A)msa

−‖X‖2L2(A)msa
) = 〈X ′−X,Z+(1/t)X〉L2(A)msa

+
1

2t
‖X ′−X‖2L2(A)msa

.

Because f is E-convex, there exists some Y ∈ ðfA(X) ∩ L2(W∗(X))msa. Of course,

(4.8) fA(X ′)− fA(X) ≥ 〈X ′ −X,Y 〉L2(A)msa
.

This implies that

〈X ′ −X,Z + (1/t)X − Y 〉L2(A)msa
≥ − 1

2t
‖X ′ −X‖2L2(A)msa

for all X ′. We X ′ = X + tW for some W ∈ L2(A)msa, divide by t, and then send t → 0 to obtain
〈W,Z + (1/t)X − Y 〉L2(A)msa

≥ 0 for all W . Therefore, Y = Z + (1/t)X. This implies Z ∈ L2(W∗(X))msa.
(3) =⇒ (4). Note that

LfA(X)− qA1/t(X) = sup
ι:A→B

Y ∈L2(B)msa

(
〈ι(X), Y 〉L2(B)msa

− t

2
‖ι(X)‖2L2(B)msa

− fB(Y )

)

= sup
ι:A→B

Z∈L2(B)msa

(
〈ι(X), Z + tι(X)〉L2(B)msa

− t

2
‖ι(X)‖2L2(B)msa

− fB(Z + tι(X))

)

= sup
ι:A→B

Z∈L2(B)msa

(
− 1

2t
‖Z‖2L2(B)msa

+
1

2t
‖Z + tι(X)‖2L2(B)msa

− fB(Z + tι(X))

)
.

Because qt− f is convex and lower semi-continuous, the right-hand side is the supremum of convex lower
semi-continuous functions of X, and therefore is convex and lower semi-continuous.
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(4) =⇒ (5). Let h = Lf . Since f is not identically −∞ or∞, the same is true of h. We assumed in (3)
that h− q1/t is convex and lower semi-continuous. Moreover, if E : B → A is a conditional expectation,

then hB(X) < ∞ implies (h − q1/t)
B(X) < ∞ implies (h − q1/t)

A(E[X]) < ∞ implies hA(E[X]) < ∞.

Thus, it remains to show that hA(E[X]) ≤ hB(X) whenever hA(E[X]) is finite. As in Lemma 3.10, it
suffices to show that for every A and X ∈ L2(A)msa with hA(X) < ∞, there exists some subgradient
vector Y ∈ L2(W∗(X), τ |W∗(X))

m
sa. By E-convexity of h, there exists some Z ∈ ðhA(X) ∩ L2(W∗(X))msa.

Then we claim that Z− tX ∈ ðhA(X). To prove this, observe that by convexity of h− q1/t, for s ∈ (0, 1),

and X ′ ∈ L2(A)msa,

s(h− q1/t)
A(X ′) ≥ (h− q1/t)

A((1− s)X + sX ′)− (1− s)(h− q1/t)
A(X)

≥ hA(X) + 〈(1− s)X + sX ′ −X,Z〉L2(A)msa
− qA1/t((1− s)X + sX ′)− hA(X)

+ qA1/t(X) + s(h− q1/t)
A(X)

= s(h− q1/t)
A(X) + s〈X ′ −X,Z〉L2(A)msa

qA1/t(X)− qA1/t((1− s)X + sX ′)

= s(h− q1/t)
A(X) + s〈X ′ −X,Z〉L2(A)msa

+
t

2
‖X‖2L2(A)msa

− t

2
‖X + s(X ′ −X)‖2L2(A)msa

= s(h− q1/t)
A(X) + s〈X ′ −X,Z − tX〉L2(A)msa

+
ts2

2
‖X ′ −X‖2L2(A)msa

.

Dividing by s and sending s→ 0+, we obtain

(h− q1/t)
A(X ′) ≥ (h− q1/t)

A(X) + 〈X ′ −X,Z − tX〉L2(A)msa
.

Hence, Z − tX ∈ ð(h− q1/t)
A(X). Since Z − tX ∈ L2(W∗(X))msa, the proof is complete.

(5) =⇒ (1). Since Lf − q1/t is E-convex, we have Lf − q1/t = Lg for some E-convex function g by
Proposition 3.17. Thus, since g and q1/t are both E-convex, we have

f = L2f = L(Lg + q1/t) = LL(g�qt) = g�qt,

where the last line follows because g�qt is E-convex by Lemma 4.6.
Finally, (1) implies that f < ∞ everywhere. Indeed, if X ∈ L2(A)msa, and if Y is some point where

gB(Y ) < ∞, then let C be the free product of A and B and let ι1 : A → C and ι2 : B → C be the
corresponding inclusions. Then (g�qt)A(X) ≤ 1

2t‖ι1(X)− ι2(Y )‖2L2(A)msa
+ gC(ι2(Y )) <∞. �

Proposition 4.11. Let f be an E-convex W∗-function taking values in R. Then the following are
equivalent:

(1) qt − f is convex.
(2) If A ∈W and Y ∈ ðfA(X) and Y ′ ∈ ðfA(X ′), then ‖Y − Y ′‖L2(A)msa

≤ (1/t)‖X −X ′‖L2(A)msa
.

(3) If A ∈ W, then ðfA(X) consists of a single point ∇fA(X) ∈ L2(W∗(X))msa, and ∇fA defines a
(1/t)-Lipschitz function L2(A)msa → L2(A)msa.

(4) For each A and X ∈ L2(A)msa and Y ∈ ðfA(X), we have

(4.9) 〈X ′ −X,Y 〉L2(A)msa
≤ fA(X ′)− fA(X) ≤ 〈X ′ −X,Y 〉L2(A)msa

+
1

2t
‖X ′ −X‖2L2(A)msa

for all X ′ ∈ L2(A)msa.

Proof. (1) =⇒ (2). By the previous Proposition 4.10, Lf − q1/t is E-convex. Let Y ∈ ðfA(X) and

Y ′ ∈ ðfA(X ′). Then by Lemma 3.19, we have X ∈ ðLfA(Y ) and X ′ ∈ ðLfA(Y ′). By the same
argument as (4) =⇒ (5) in the proof of Proposition 4.10, we have Z = X − tY ∈ ð(Lf − q1/t) and
Z ′ := X ′ − tY ′ ∈ ð(Lf − q1/t). It follows that

〈Z ′, Y − Y ′〉L2(A)msa
≤ LfA(Y )− LfA(Y ′) ≤ 〈Z, Y − Y ′〉L2(A)msa

,
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hence

0 ≤ 〈Z ′ − Z, Y ′ − Y 〉L2(A)msa

= 〈X ′ −X − t(Y ′ − Y ), Y ′ − Y 〉L2(A)msa

= 〈X ′ −X,Y ′ − Y 〉L2(A)msa
+ t‖Y ′ − Y ‖2L2(A)msa

≤ ‖X ′ −X‖L2(A)msa
‖Y ′ − Y ‖L2(A)msa

+ t‖Y ′ − Y ‖2L2(A)msa
.

Therefore, ‖Y ′ − Y ‖L2(A)msa
≤ (1/t)‖X −X ′‖L2(A)msa

as desired.

(2) =⇒ (3). By taking X = X ′ in (2), we see that there is a unique Y ∈ ðfA(X) and that X 7→ Y is
a (1/t)-Lipschitz function. By Lemma 3.10, we know that ðfA(X) contains some point in L2(W∗(X))msa,
and this point must equal Y .

(3) =⇒ (4). Let A and X be given. By our assumption of (3), there is a unique point Y = ∇fA(X) in
ðfA(X). Let X ′ ∈ L2(A)msa. The lower bound 〈X ′−X,Y 〉L2(A)msa

≤ fA(X ′)−fA(X) follows immediately

from convexity. For the upper bound, let Xt = (1− t)X ′ + tX and let Yt = ∇fA(Xt).
For n ∈ N, observe that

fA(X ′)− fA(X) =

n∑
j=1

(
fA(Xj/n)− fA(X(j−1)/n)

)
≤

n∑
j=1

〈Xj/n −X(j−1)/n, Yj/n〉L2(A)msa

=

n∑
j=1

〈Xj/n −X(j−1)/n, Y 〉L2(A)msa
+

n∑
j=1

‖Xj/n −X(j−1)/n‖L2(A)msa
‖Yj/n − Y ‖L2(A)msa

≤ 〈X ′ −X,Y 〉L2(A)msa
+

n∑
j=1

1

n
‖X ′ −X‖L2(A)msa

1

t
‖Xj/n −X‖L2(A)msa

≤ 〈X ′ −X,Y 〉L2(A)msa
+

1

t
‖X ′ −X‖2L2(A)msa

n∑
j=1

j

n2

= 〈X ′ −X,Y 〉L2(A)msa
+

1

t
‖X ′ −X‖2L2(A)msa

n(n+ 1)

2n2
.

Taking n→∞ shows that fA(X ′)− fA(X) ≤ 〈X ′ −X,Y 〉L2(A)msa
+ (1/2t)‖X ′ −X‖2L2(A)msa

as desired.

(4) =⇒ (1). Let A ∈ W. We show that (qt − f)A is convex by exhibiting a subgradient vector for
every X ∈ L2(A)msa. Let Y ∈ ðfA(X) and let X ′ ∈ L2(A)msa. By (4),

(qt − f)A(X ′)− (qt − f)A(X) ≥ 1

2t
‖X ′‖2L2(A)msa

− 1

2t
‖X‖2L2(A)msa

− 〈X ′ −X,Y 〉2L2(A)msa
− 1

2t
‖X ′ −X‖2L2(A)msa

= 〈X ′ −X,−Y + (1/t)X〉L2(A)msa
.

Hence, −Y + (1/t)X is a subgradient vector for qt − f at X as desired. �

4.3. Main results on the displacement interpolation. We start out by proving Theorem 1.5 which
states that if (A, X, Y ) is an L2 optimal coupling and Xt = (1− t)X + tY , then W∗(Xt) = W∗(X,Y ) for
all t ∈ (0, 1).

Proof of Theorem 1.5. By Proposition 3.23, there exists an E-convex function f such that Y ∈ ∂fA(X).
Let ft = (1− t)q1 + tf , where qA1 (X) = (1/2)‖X‖2L2(A)msa

. Since (1− t)X is a subgradient to (1− t)q1 at

X and tY is a subgradient to fA at X, we have Xt ∈ ðfAt (X). By Lemma 3.19, we have X ∈ ðLfAt (Xt).
Since ft − q1/(1−t) = ft − (1− t)q1 = tf is E-convex, q1−t −Lft is E-convex by Proposition 4.10. Hence,

by Proposition 4.11, ðLfAt (Xt) consists of a single point which is in L2(W∗(Xt))
m
sa. But we already know

that X ∈ ðLfAt (Xt), and therefore X ∈ L2(W∗(Xt))
m
sa.

A symmetrical argument shows that Y ∈ L2(W∗(Xt))
m
sa. Therefore, W∗(X,Y ) ⊆W∗(Xt). The reverse

inclusion W∗(Xt) ⊆W∗(X,Y ) is obvious since Xt = (1− t)X + tY . �
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It follows from the triangle inequality that (A, Xs, Xt) is an optimal coupling of the laws of Xs and Xt

(see Proposition A.22). Another way to show that is, given an E-convex function f such that Y ∈ ðfA(X),
to derive E-convex functions ft,s for s, t ∈ [0, 1] such that Xt ∈ ðfAt,s(Xs). The next proposition gives
an explicit construction of ft,s from f , and gives the properties of ft,s. The specific cases relevant to the
displacement interpolation are then summarized in Corollary 4.13. All of these results are completely
analogous to the classical statements.

Proposition 4.12. Let f be an E-convex function. For s, t ∈ [0, 1], define ft,s as follows: For s = 0, set

ft,0 = (1− t)q1 + tf ; f0,t = Lft,0;

if s > 0 and s ≤ t, set

fAt,s(X) = inf
Y ∈L2(A)msa

(
t

2s
‖X‖2L2(A)msa

− t− s
s
〈X,Y 〉L2(A)msa

+
(t− s)(1− s)

2s
‖Y ‖2L2(A)msa

+ (t− s)fA(Y )

)
;

if s > 0 and s ≥ t, set

fAt,s(X) = sup
Y ∈L2(A)msa

(
t

2s
‖X‖2L2(A)msa

− t− s
s
〈X,Y 〉L2(A)msa

+
(t− s)(1− s)

2s
‖Y ‖2L2(A)msa

+ (t− s)fA(Y )

)
.

(In particular, ft,t = q1 for all t ∈ [0, 1].) Then we have the following:

(1) ft,s is E-convex and fs,t = Lft,s.
(2) If s ≤ t, then ft,s − 1−t

1−sq1 is E-convex for s < 1 and t
sq1 − ft,s is E-convex for s > 0.

(3) If t ≤ s, then ft,s − t
sq1 is E-convex for s > 0 and 1−t

1−sq1 − ft,s is E-convex for s < 1.

(4) In particular, if s ∈ (0, 1) and X ∈ L2(A)msa, then ðfAt,s(X) consists of a unique point ∇fAt,s(X) and

∇fAt,s is Lipschitz.
(5) Suppose 0 ≤ s < t ≤ 1. If u ∈ (s, t), then

fu,s =
t− u
t− s

q1 +
u− s
t− s

ft,s

and

ft,u =

(
t− s
u− s

q1

)
�

(
t− u
t− s

ft,s

(
t− s
t− u

(·)
))

.

(6) Suppose 0 ≤ s < t ≤ 1 and X,Y ∈ L2(A)msa with Y ∈ ðft,s(X). For u ∈ [s, t], let

Xu =
t− u
t− s

X +
u− s
t− s

Y.

Then Xu ∈ ðfu,s(X) and Y ∈ ðft,u(Xu).
(7) For s, t, u ∈ (0, 1), we have ∇fu,t ◦ ∇ft,s = ∇fu,s.

The next corollary describes the most relevant cases of the proposition for optimal transport; the
claims are special cases of (4) and (6) of the proposition.

Corollary 4.13. Let (A, X, Y ) be an optimal coupling of µ, ν ∈ Σm. Let f be an E-convex function
such that Y ∈ ðf(X). Let ft,s be as in Proposition 4.12. Let Xt = (1 − t)X + tY for t ∈ [0, 1]. Then
Xt ∈ ðft,s(Xs) for all s, t ∈ [0, 1]. In particular, if s ∈ (0, 1), then ft,s has a Lipschitz gradient and we
have Xt = ∇ft,s(Xs).

In order to prove Proposition 4.12, we need the following scaling relation for Legendre transform.

Lemma 4.14. Let f be a tracial W∗-function and let c > 0. Then L(cf)A(X) = cLfA(c−1X).

Proof. Observe that

L(cf)A(X) = sup
ι:A→B

Y ∈L2(B)msa

(
〈ι(X), Y 〉L2(B)msa

− cfB(Y )
)

= sup
ι:A→B

Y ∈L2(B)msa

(
c〈ι(c−1X), Y 〉L2(B)msa

− cfB(Y )
)

= cLfA(c−1X). �
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The bulk of the proof of the proposition is the following lemma which explains how fs,t were obtained
through addition of and inf-convolution with quadratic functions, using the same idea as in the proof of
Theorem 1.5.

Lemma 4.15. Consider the setup of Proposition 4.12. If 0 < s < t ≤ 1, then

ft,s =
1− t
1− s

q1 +
t− s
1− s

[(
1

s
q1

)
�

(
(1− s)f

(
1

1− s
(·)
))]

(4.10)

Lft,s =

(
1− s
1− t

q1

)
�

[
t− s
1− s

[sq1 + (1− s)Lf ]

(
1− s
t− s

(·)
)]

(4.11)

and

ft,s =
t

s
q1�

[
t− s
t

[(1− t)q1 + tf ]

(
t

t− s
(·)
)]

(4.12)

Lft,s =
s

t
q1 +

t− s
t

[(
1

1− t
q1

)
�tLf

(
1

t
(·)
)]

.(4.13)

Proof. Fix A ∈W and X ∈ L2(A)msa, and evaluate the right-hand side of (4.10) at X to obtain

1− t
1− s

q1(X) +
t− s
1− s

[(
1

s
q1

)
�

(
(1− s)f

(
1

1− s
(·)
))]

(X)

=
1− t

2(1− s)
‖X‖2L2(A)msa

+
t− s
1− s

inf
Y ∈L2(A)msa

[
1

2s
‖X − Y ‖2L2(A)msa

+ (1− s)fA
(

1

1− s
Y

)]
,

where we have used the result from Lemma 4.6 that it suffices to take the infimum over Y ∈ L2(A)msa
rather than Y in L2(B)msa for some larger tracial W∗-algebra B. Next, we substitute (1− s)Y instead of
Y to obtain

1− t
2(1− s)

‖X‖2L2(A)msa
+
t− s
1− s

inf
Y ∈L2(A)msa

[
1

2s
‖X − (1− s)Y ‖2L2(A)msa

+ (1− s)fA(Y )

]
= inf
Y ∈L2(A)msa

[
1− t

2(1− s)
‖X‖2L2(A)msa

+
t− s

2s(1− s)
‖X‖2L2(A)msa

+
t− s
s
〈X,Y 〉L2(A)msa

+
(t− s)(1− s)

2s
‖Y ‖2L2(A)msa

+ (t− s)fA(Y )

]
.

Combining the two coefficients in front of ‖X‖2L2(A)msa
, we arrive at the formula for fAt,s(X).

The equation (4.11) is obtained from (4.10) by applying the Legendre transform, using the fact that
L(cq1) = c−1q1 for c > 0, the relation between Legendre transform and inf-convolution in Lemma 4.4,
and the scaling relation Lemma 4.14.

The proof of (4.12) is similar to the proof of (4.10), and then (4.13) is obtained by taking the Legendre
transform. �

Proof of Proposition 4.12. (1) It is immediate that ft,0 and f0,t are E-convex and are Legendre transforms
of each other. Also, in the case of s = t, we have ft,s = q1, so there is nothing to prove. For 0 < s < t ≤ 1,
it follows from Lemma 4.15 that ft,s is E-convex for because it is expressed by applying scaling, addition
of quadratics, and inf-convolution with quadratics to f .

Next, we show that for 0 < s < t, we have Lft,s = fs,t. We evaluate Lft,s starting from (4.12) as

Lft,s =
s

t
q1 + L

[
t− s
t

[(1− t)q1 + tf ]

(
t

t− s
(·)
)]

Now we evaluate the second term at some X ∈ L2(A)msa, where A ∈ W. Using Remark 3.18, we may
compute the Legendre transform of an E-convex function by taking the Hilbert-space Legendre transform
for each A (without considering a larger W∗-algebra B). This yields

sup
Y ∈L2(A)msa

[
〈X,Y 〉 − t− s

t
[(1− t)q1 + tf ]A

(
t

t− s
Y

)]
.
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We substitute t−s
t Y for Y to obtain

sup
Y ∈L2(A)msa

[
t− s
t
〈X,Y 〉L2(A)msa

− (t− s)(1− t)
2t

‖Y ‖2L2(A)msa
− (t− s)f(Y )

]
.

Adding back the term s
t q
A
1 (X), we obtain

sup
Y ∈L2(A)msa

[
s

2t
‖X‖2L2(A)msa

− s− t
t
〈X,Y 〉L2(A)msa

+
(s− t)(1− t)

2t
‖Y ‖2L2(A)msa

+ (s− t)f(Y )

]
,

which is precisely fs,t.
Therefore, for s > t > 0, we have ft,s = Lfs,t, hence ft,s is E-convex and Lft,s = fs,t. This is the last

remaining case.
(2) If s = t, then ft,s = q1, so there Let s ≤ t. If s ∈ (0, 1), then by (4.10), ft,s is 1−t

1−sq1 plus an

E-convex function, hence ft,s− 1−t
1−sq1 is E-convex. If s ∈ (0, 1], then by (4.12), ft,s is the inf-convolution

of t
sq1 with an E-convex function and therefore t

sq1 − ft,s is E-convex by Proposition 4.10.
(3) Let s ≥ t. Then ft,s = Lfs,t. Thus, can we argue symmetrically to (2) using (4.11) and (4.13).
(4) This follows from (2) and (3) together with Proposition 4.11.
(5) Consider the first relation fu,s = t−u

t−s q1 + u−s
t−s ft,s. If s = 0, this follows from direct computation

from the definition of fu,0 and ft,0. In the case s > 0, we apply (4.10) to get

t− u
t− s

q1 +
u− s
t− s

ft,s =
t− u
t− s

q1 +
u− s
t− s

1− t
1− s

q1 +
u− s
1− s

[(
1

s
q1

)
�

(
(1− s)f

(
1

1− s
(·)
))]

=
1− u
1− s

q1 +
u− s
1− s

[(
1

s
q1

)
�

(
(1− s)f

(
1

1− s
(·)
))]

= fu,s.

Analogously, using (4.13), we obtain for s ∈ (0, 1) that

Lft,u =
u− s
t− s

q1 +
t− u
t− s

Lft,s;

in fact, this relation also holds when s = 0 by evaluating Lft,u on the left-hand side with (4.13) and
evaluating Lft,0 on the right-hand side L[(1−t)q1+tf ] = ( 1

1−tq1)�tLf( 1
t (·)). Taking Legendre transforms

of the previous equation implies that

ft,u =

(
t− s
u− s

q1

)
�

(
t− u
t− s

ft,s

(
t− s
t− u

(·)
))

.

(6) Since X ∈ ðqA1 (X) and Y ∈ ðfAt,s(X), we have

Xu =
t− u
t− s

X +
u− s
t− s

Y ∈ ð
[
t− u
t− s

q1 +
u− s
t− s

ft,s

]A
(X) = ðfAu,s(X).

Since Y ∈ ðfAt,s(X), we have X ∈ ð(Lft,s)A(Y ). Hence, using the same relation as in the proof (5),

Xu =
u− s
t− s

Y +
t− u
t− s

X ∈ ð
[
u− s
t− s

q1 +
t− u
t− s

Lft,s
]A

(Y ) = ð(Lft,u)A(Y ).

So Xu ∈ ð(Lft,u)A(Y ), so that Y ∈ ðft,u(Xu).
(7) In light of (4), for s, t ∈ (0, 1), the functions fs,t and ft,s have Lipschitz gradients. They are

Legendre transforms of each other, which implies that X ∈ ðfs,t(Y ) if and only if Y ∈ ðft,s(X). Hence,
∇fs,t = (∇ft,s)−1.

Suppose that s < u < t. Let Y = ∇ft,s(X), and let Xu = u−s
t−sX+ t−u

t−sY . Then by (6), Xu = ∇fu,s(X)

and Y = ∇ft,u(Xu), hence ∇ft,s(X) = Y = ∇ft,u(Xu) = ∇ft,u ◦ ∇fu,s(X).
So ∇ft,s = ∇ft,u◦∇fu,s. By applying ∇fs,u = (∇fu,s)−1 on the right, we obtain ∇ft,s◦∇fs,u = ∇ft,u.

By taking inverses, ∇fu,s ◦ ∇fs,t = ∇fu,t. In fact, using composition and inverses in this way, we can
achieve all permutations of u, s, and t. The only remaining case is when some of s, t, u are equal to each
other, but this follows from the relations ∇ft,t = id and ∇fs,t = (∇ft,s)−1. �
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5. Optimal couplings, quantum information theory, and operator algebras

In this section, we give several indications of why non-commutative optimal couplings are significantly
more complicated than the commutative case by making connections to other results in operator algebras
and quantum information theory. Specifically, using results from [52], we show that there exist n×nmatrix
tuples for which an optimal coupling requires a tracial W∗-algebra of arbitrarily large dimension. Next,
based on [33] and [42], we conclude that there exist matrix tuples for which the optimal coupling requires
a non-Connes-embeddable tracial W∗-algebra (that is, it cannot even be approximated by couplings in
finite-dimensional algebras). Next, we show that the topology induced by the Wasserstein distance is
strictly stronger than the weak-∗ topology on Σm,R, and we characterize the points at which the two
topologies agree. Finally, we show that Σm,R with the Wasserstein distance is not separable based on
[58, Theorem 1].

5.1. Completely positive and factorizable maps. We recall some standard definitions in operator
algebras; see e.g. [60]. If A is a tracial W∗-algebra, we denote by Mn(A) the algebra Mn(L∞(A)) ∼=
Mn(C)⊗L∞(A) equipped with the trace trn⊗τA and the weak-∗ topology given by the entrywise weak-∗
topology on L∞(A); it is a standard fact that Mn(A) is indeed a tracial W∗-algebra. If Φ : A → B is
a linear map between tracial W∗-algebras, then we define Φ(n) : Mn(A) → Mn(B) as the map obtained
from entrywise application of Φ. If A is a tracial W∗-algebra and a ∈ L∞(A), then we say that a ≥ 0
if a = x∗x for some x ∈ L∞(A); this is equivalent to a defining a positive operator on L2(A) by left
multiplication.3

Definition 5.1. We say that Φ is completely positive if for every n ∈ N, if a ∈Mn(A) with a ≥ 0, then
Φ(n)(a) ≥ 0. For tracial W∗-algebras A and B, we denote by CP(A,B) the space of completely positive
maps A → B. We denote by UCPT(A,B) the space of unital completely positive trace-preserving maps.
These maps are known in quantum information theory as quantum channels from A to B.

Definition 5.2 (Anantharaman-Delaroche [1]). Let A and B be tracial W∗-algebras. A linear map
Φ : A → B is said to be factorizable if there exist tracial W∗-inclusions ι1 : A → C and ι2 : B → C such
that Φ = ι∗2 ◦ ι1, where ι∗2 : C → B is the conditional expectation adjoint to ι2. We also say that Φ factors
through C if there exist ι1 and ι2 as above.

We denote the space of factorizable maps by FM(A,B). We denote by FMfin(A,B) the set of maps
that factorize through a finite-dimensional algebra C.
Proposition 5.3. Let A, B, and C be tracial W∗-algebras.

(1) We have FM(A,B) ⊆ UCPT(A,B).
(2) UCPT(A,B), FM(A,B), and FMfin(A,B) are convex sets.
(3) UCPT(A,B) and FM(A,B) are closed in the pointwise weak-∗ topology.
(4) If Φ ∈ UCPT(A,B) and Ψ ∈ UCPT(B, C), then Ψ ◦ Φ ∈ UCPT(A, C). The same holds with UCPT

replaced by FM.

This proposition is well-known in operator algebras. For the sake of exposition, let us recall why
FM(A,B) ⊆ UCPT(A,B). Let Φ ∈ FM(A,B), and take a factorization Φ = ι∗2ι1 where ι1 : A → C and
ι2 : B → C are tracial W∗-inclusions. Since ι1 and ι2 are ∗-homomorphisms, they are completely positive
and unital. Now observe that 〈ι∗2(c), b〉L2(B)msa

= 〈c, ι2(b)〉L2(C)msa ≥ 0 for c ∈ Mn(C)+ and b ∈ Mn(B)+; it
follows that ι∗2(c) ≥ 0 in Mn(B) for every c ∈Mn(C)+. Since ι2 is unital, ι∗2 is trace-preserving, and since
ι2 is trace-preserving, ι2∗ is unital. Finally, one verifies directly that UCPT is closed under composition,
hence, ι∗2ι1 ∈ UCPT(A,B).

To show that factorizable maps are closed under composition in (4), one uses amalgamated free prod-
ucts. For convexity of FM(A,B), see e.g. [12, Lemma 2.3.6].

The next lemma summarizes some well-known facts about completely positive maps.

Lemma 5.4. Let A and B be tracial W∗-algebras, and let Φ ∈ UCPT(A,B).

(1) Φ(X∗) = Φ(X)∗ for all X ∈ A.
(2) Φ extends to a contractive map L2(A)→ L2(B).

3Of course, definitions make sense more generally for C∗-algebras.
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(3) There exists a unique Φ∗ ∈ UCPT(B,A) such that 〈X,Φ∗(Y )〉L2(A) = 〈Φ(X), Y 〉L2(B) for X ∈ L2(A)

and Y ∈ L2(B).

The connection between factorizable maps and non-commutative optimal couplings is as follows.

Observation 5.5. Let A and B be tracial W∗-algebras and let X ∈ L∞(A)msa and Y ∈ L∞(B)msa. Then

C(λX , λY ) = sup
Φ∈FM(A,B)

〈Φ(X), Y 〉L2(B)msa
.

Proof. In fact, we will show that the two sets {〈X ′, Y ′〉L2(C)msa : (C, X ′, Y ′) a coupling} and {〈Φ(X), Y 〉L2(B)msa
:

Φ ∈ FM(A,B)} are equal. Suppose that (C, X ′, Y ′) is a coupling of λX and λY . Since λX′ = λX , there
is a tracial W∗ embedding ι1 : W∗(X)→ C sending X to X ′. Similarly, there is a tracial W∗-embedding
ι2 : W∗(Y ) → C sending Y to Y ′. Let φ1 : W∗(X) → A and φ2 : W∗(Y ) → B be the canonical inclu-
sion maps, and let Φ = φ2ι

∗
2ι1φ

∗
1 : A → B, which is factorizable by Proposition 5.3 (4) because it is a

composition of factorizable maps. Moreover,

〈Φ(X), Y 〉L2(B)msa
= 〈ι1φ∗1(X), ι2φ

∗
2(Y )〉L2(C)msa = 〈ι1(X), ι2(Y )〉L2(C)msa .

Conversely, given Φ ∈ FM(A,B), we may factorize it as ι∗2ι1 for tracial W∗-embeddings ι1 : A → C and
ι2 : B → C, and let X ′ = ι1(X) and Y ′ = ι2(Y ) to obtain a coupling (C, X ′, Y ′) of λX and λY . �

5.2. Matrix tuples with optimal couplings of large dimension. This connection allows us to
address a natural question: Suppose that µ and ν are non-commutative laws that can be realized by
self-adjoint tuples X and Y in a finite-dimensional algebra; then is there a non-commutative optimal
coupling (A, X ′, Y ′) of µ and ν such that A is finite-dimensional? And do we have some control over
the dimension? The classical analog of this question certainly has a positive answer. Indeed, if µ and
ν are finitely supported measures on Rm, with supports S and T respectively, then a classical optimal
coupling is given by a measure π on the product space S×T . Hence, there exist random variables X and
Y ∈ L2(π,Rm) such that (A, X, Y ) is an optimal coupling of µ and ν, where A is the finite-dimensional
algebra L∞(S × T, π) equipped with the trace coming from π.

Our first negative result in the non-commutative setting shows that, even in situations when an optimal
coupling can occur in a finite dimensional algebra, there can be no control over its dimension. This is
a consequence of the following result of Musat and Rørdam [52]. Here FMfin(A,B) denotes the space
factorizable maps that factorize through a finite-dimensional tracial ∗-algebra.

Theorem 5.6 (Musat-Rørdam [52, Theorem 4.1]). If n ≥ 11, then FMfin(Mn(C),Mn(C)) is not closed,
hence there exist factorizable maps Mn(C) → Mn(C) that do not factor through any finite-dimensional
algebra.

In order to translate this result into a statement about non-commutative optimal couplings, we use
the following lemma, which is an application of the hyperplane separation theorem, vector space duality,
and adjointness of tensor and hom functors.

Lemma 5.7. Let LR(Mn(C)sa,Mm(C)sa) denote the space of real linear transformations Mn(C) →
Mm(C). Let K ⊆ LR(Mn(C)sa,Mm(C)sa) be a closed convex set, and let Φ 6∈ K. Then there exists
k ≤ min(n2,m2) and X ∈Mn(C)ksa and Y ∈Mn(C)ksa such that

〈Φ(X), Y 〉L2(Mm(C))ksa
> sup

Ψ∈K
〈Ψ(X), Y 〉L2(Mm(C))ksa

.

Proof. Recall that there is a linear isomorphism

T : LR(Mn(C)sa,Mm(C)sa)→ LR(Mn(C)sa ⊗Mm(C)sa,R) = (Mn(R)sa ⊗Mm(R)sa)∗

that sends Ψ ∈ LR(Mn(C)sa,Mm(C)sa) to the map

ψ : Mn(C)sa ⊗Mm(C)sa → R : A⊗B 7→ 〈Ψ(A), B〉L2(Mm(C))sa .

Of course, Mn(C)sa ⊗Mm(C)sa is finite-dimensional, so the double dual is isomorphic to the original
space. Applying the hyperplane separation theorem on the real inner-product space Mn(C)sa⊗Mm(C)sa,
we conclude that there exists some v ∈Mn(C)sa ⊗Mm(C)sa such that

T (Φ)(v) > sup
Ψ∈K

T (Ψ)(v).



DUALITY FOR OPTIMAL COUPLINGS IN FREE PROBABILITY 35

Let us decompose v into a sum of simple tensors v =
∑k
j=1Xj ⊗ Yj . The smallest k for which this

is possible is called the tensor rank of v. We claim that the tensor rank is at most min(n2,m2). The
reason is that for real vector spaces V and W , we can identify V ⊗W with LR(V,W ) and then apply
the singular value decomposition of the matrix in LR(V,W ) corresponding to a given tensor v. Since
a matrix in LR(V,W ) has rank at most min(dimV,dimW ), it follows that the tensor rank of v is at
most min(dimV,dimW ). In particular, taking V = Mn(C)sa and W = Mm(C)sa, we see that our vector
v ∈Mn(C)⊗Mm(C) has tensor rank at most min(n2,m2).

Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk). Then for Ψ ∈ LR(Mn(C)sa,Mm(C)sa), we have

T (Ψ)(v) =

k∑
j=1

〈Ψ(Xj), Yj〉L2(Mm(C))sa = 〈Ψ(X), Y 〉L2(Mm(C))ksa

Thus, by our choice of v, the tuples X and Y satisfy the desired properties. �

Corollary 5.8. If n ≥ 11 and d ∈ N, then there exist X,Y ∈ Mn(C)n
2

sa such that for every optimal
coupling (A, X ′, Y ′) of λX and λY , A must have dimension at least d. In particular, if d is sufficiently
large, then

C(λX , λY ) > sup
U∈U(Mn(C))

〈UXU∗, Y 〉Mn(C).

Proof. Let FMd(Mn(C),Mn(C)) denote the set of UCPT maps Mn(C)→Mn(C) that factorize through
a tracial W ∗-algebra A = (A, τ) of dimension at most d. As a consequence of the Artin-Wedderburn
theorem, every such ∗-algebra A is a direct sum of at most d matrix algebras of size at most d1/2; see
e.g. [25]. Moreover, the trace τA is a convex combination of the traces on each component. From these
facts, it is not hard to see that FMd(Mn(C),Mn(C)) is compact.

By Theorem 5.6, there exists Φ ∈ FMfin(Mn(C),Mn(C)) that does not factor through a finite-

dimensional algebra, and hence Φ ∈ FMfin(Mn(C),Mn(C)) \ FMd(Mn(C),Mn(C)).
Also, we also remark that a completely positive map Φ : Mn(C)→Mn(C) satisfies Φ(A∗) = Φ(A)∗, and

therefore it restricts to a real-linear transformation Mn(C)sa → Mn(C)sa, and Φ is uniquely determined
by its restriction to self-adjoint elements. Thus, we can Lemma 5.7 to conclude that there exists k ≤ n2

and X,Y ∈Mn(C)ksa such that

〈Φ(X), Y 〉L2(Mn(C))ksa
> sup

Ψ∈FMd(Mn(C),Mn(C))

〈Ψ(X), Y 〉L2(Mn(C))ksa
,

for some k ≤ n2. We can without loss of generality take k = n2 because we can always add additional
zero entries to our tuples without changing the value of the inner product of Ψ(X) and Y . Hence, by the
proof of Observation 5.5 any Ψ ∈ FMd(Mn(C),Mn(C)) cannot produce an optimal coupling. �

5.3. Optimal couplings and the Connes embedding problem. The situation is even more wild than
this. Based on the work of [42] on Tsirelson’s problem and the Connes embedding problem, as well as

work of [33], we can conclude that for some n, there exist X, Y ∈Mn(C)n
2

sa , such that a non-commutative
optimal coupling of λX and λY cannot even be approximated by couplings in finite-dimensional tracial
∗-algebras. We begin with some background on the Connes embedding problem, which includes first the
definition of ultraproducts of tracial W∗-algebras, a tool to turn approximate embeddings into literal
embeddings; [12, Appendix A], [13, §2], [2, §5.4].

Let βN denote the Stone-Čech compactification of the natural numbers; it is a compact space containing
N as an open subset,4 and satisfies the universal property that every function from N into a compact
topological space K extends uniquely to a continuous function βN → K. In particular, if (xn)n∈N is a
bounded sequence of real or complex numbers, then limn→U xn exists for every U ∈ βN. The Stone–Čech
compactification βN is characterized up to a canonical homeomorphism by its universal property. One
construction of βN is by way of ultrafilters, which is why we have used the letter U for elements of βN.
In this framework, the elements of βN\N are known as non-principal ultrafilters and the limit limn→U xn
is also called an ultralimit.

4Here N is equipped with the discrete topology. To simplify notation, we view N as a subset of βN rather than considering

an inclusion map η : N→ βN.
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Ultraproducts of tracial von Neumann algebras are defined as follows. For n ∈ N, letAn = (An, τn) be a
sequence of tracial W∗-algebras. Let

∏
n∈NAn be the set of sequences (an)n∈N such that supn‖an‖L∞(An) <

∞, which is a ∗-algebra. Let

IU =

{
(an)n∈N ∈

∏
n∈N

An : lim
n→U
‖an‖L2(An) = 0

}
.

Using the non-commutative Hölder’s inequality for L2 and L∞, one can show that IU is an ideal in∏
n∈NAn, and therefore,

∏
n∈NAn/IU is a ∗-algebra. We denote by [an]n∈N the equivalence class in∏

n∈NAn/IU of a sequence (an)n∈N ∈
∏
n∈NAn. Furthermore, we define a trace on

∏
n∈NAn/IU as

follows. if (an)n∈N ∈
∏
n∈NAn, then (τn(an))n∈N is a bounded sequence in C and therefore limn→U τn(an)

exists. Since |τn(an)| ≤ ‖an‖L2(An), we have limn→U τn(an) = 0 whenever (an)n∈N ∈ IU . Therefore, there
is a well-defined map

τU :
∏
n∈N

An/IU → C

given by τU ([an]n∈N) = limn→U τn(an). It turns out the pair (
∏
n∈NAn/IU , τU ) is already a tracial W∗-

algebra; see [2, Proposition 5.4.1]. The proof is based on the fact that a tracial C∗-algebra is a W∗-algebra
if and only if the operator-norm unit ball is complete in the L2 norm [2, Proposition 2.6.4]. See also [12,
Appendix A].

We call the tracial W∗-algebra (
∏
n∈NAn/IU , τU ) the ultraproduct of (An)n∈N with respect to U and

we denote it by ∏
n→U

An :=

(∏
n∈N

An/IU , τU

)
.

The inspiration for this notation is that ultraproduct is defined using a combination of Cartesian product
and ultralimits (of the L2-norm and the trace); in contrast to Cartesian products, the ultraproduct only
cares about the asymptotic behavior of a sequence as n→ U .

Definition 5.9. A tracial W∗-algebra A is Connes-embeddable if there exist finite-dimensional tracial
∗-algebras An for n ∈ N, an ultrafilter U ∈ βN \N, and a tracial W∗-embedding φ : A →

∏
n→U An. The

Connes embedding problem is the question of whether every tracial W∗-algebra with separable predual is
Connes-embeddable.

Embeddings into ultraproducts are closely related to convergence of non-commutative laws in Σm,R.

Lemma 5.10. Let (An)n∈N be a sequence of tracial W∗-algebras and let A be another tracial W∗-
algebra. Let X ∈ L∞(A)msa with ‖X‖L∞(A)msa

≤ R and suppose that X generates A as a W∗-algebra. Let
Xn ∈ L∞(An)msa with ‖Xn‖L∞(An)msa

≤ R. Then the following are equivalent:

(1) limn→U λXn = λX with respect to the weak-∗ topology on Σm,R.
(2) There exists a tracial W∗-embedding φ : A →

∏
n→U An such that φ(X) = [Xn]n∈N.

Proof. (1) =⇒ (2). Let Y = [Xn]n∈N ∈ L∞(
∏
n→U An)msa. Let τU be the trace on the ultraproduct.

Then for every p ∈ C〈x1, . . . , xd〉, we have

λY (p) = τU (p(Y )) = lim
n→U

τn(p(Xn)) = lim
n→U

λXn(p) = λX(p).

Because λY = λX , Lemma 2.33 implies that there is a W∗-embedding A = W∗(X) → W∗(Y ) ↪→∏
n→U An.
(2) =⇒ (1). Let φ : A →

∏
n→U An as above be a tracial W∗-embedding with φ(X) = [Xn]n∈N.

Using the fact that φ preserves addition and multiplication as well as the definition of the trace τU on
the ultraproduct,

λX(p) = τ(p(X)) = τU (φ(p(X))) = τU (p(φ(X))) = lim
n→U

τn(p(Xn)) = lim
n→U

λXn(p).

Therefore, limn→U λXn = λX in the weak-∗ topology, as desired. �

Definition 5.11. Let Σfin
m,R be the set of non-commutative laws µ in Σm,R such that µ = λX for some

X ∈ L∞(A)msa where A is a finite-dimensional tracial ∗-algebra.
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The following statement is almost a corollary of Lemma 5.10.

Lemma 5.12. Let A be a tracial W∗-algebra generated by X ∈ L∞(A)msa with ‖X‖L∞(A)m ≤ R. Then

A is Connes-embeddable if and only if λX is in the weak-∗ closure of Σfin
m,R in Σm,R.

Proof. If λX is in the closure of Σfin
m,R, then Lemma 5.10 implies thatA is Connes-embeddable. Conversely,

suppose that A is Connes-embeddable and ι : A →
∏
n→U An is an embedding into some ultraproduct of

finite-dimensional tracial ∗-algebras. Let Xn = (X
(1)
n , . . . , X

(m)
n ) ∈ L∞(An)m such that [Xn]n∈N = ι(X),

and let us also write X = (X(1), . . . , X(m)). By replacing Xn,j with (X
(j)
n + (X

(j)
n )∗)/2, we can assume

without loss of generality that X
(j)
n is self-adjoint. By assumption M := supn∈N‖Xn‖L∞(A)msa

<∞.
Although M may be larger than R, we can fix this issue through a standard argument with functional

calculus. Let f : [−M,M ] → [−R,R] be given by f(t) = sgn(t) min(|t|, R). By the Weierstrass approxi-
mation theorem, there exists a sequence of polynomials (fk)k∈N converging uniformly to f on [−M,M ].

Note that fk(ι(X(j)) = [fk(X
(j)
n )]n→N. By the spectral mapping theorem, for each j, k, and n,

‖fk(X(j)
n )− f(X(j)

n )‖L∞(An) ≤ sup
t∈[−M,M ]

|fk(t)− f(t)|,

and the same estimate holds for fk(ι(X(j))) − f(ι(X(j))). Taking k → ∞, we obtain f(ι(X(j))) =

[f(X
(j)
n )]n∈N for each j. Since ‖X(j)‖L∞(A) ≤ R, we have f(ι(X(j))) = ι(Xj). Let Yn = (f(X

(1)
n ), . . . , f(X

(m)
n )).

Then ‖Y ‖L∞(An)m ≤ R and ι(X) = [Yn]n∈N, hence λX is in the closure of Σfin
m,R by Lemma 5.10. �

Decades of work found many equivalent problems in operator algebras and quantum information
theory; for a survey, see e.g. [13, 59]. In particular, building on the established connections with quantum
information theory, Haagerup and Musat showed the following result.

Theorem 5.13 (Haagerup-Musat [33, Theorem 3.6, 3.7]). A factorizable map Φ : Mn(C)→Mn(C) ad-
mits a factorization through a Connes-embeddable algebra if and only if it is in the closure of FMfin(Mn(C),Mn(C)).
Moreover, the Connes embedding problem has a positive answer if and only if

FM(Mn(C),Mn(C)) = FMfin(Mn(C),Mn(C)) for all n ∈ N.

A negative answer to the Connes embedding problem was announced in [42]. This implies the following
corollary.

Corollary 5.14. There exist n ∈ N and X,Y ∈Mn(C)n
2

sa such that

C(λX , λY ) = sup
Φ∈FM(Mn(C),Mn(C))

〈Φ(X), Y 〉L2(Mn(C))msa
> sup

Φ∈FMfin(Mn(C),Mn(C))

〈Φ(X), Y 〉L2(Mn(C))msa
.

Moreover, a non-commutative optimal coupling of λX and λY does not exist in any Connes-embeddable
tracial W∗-algebra.

Proof. Let K = FMfin(Mn(C),Mn(C)), which is compact and convex. Because the Connes embedding
problem has a negative answer [42], there exists Φ ∈ FM(Mn(C),Mn(C))\K. By Lemma 5.7, there exist

X, Y ∈Mn(C)n
2

such that

〈Φ(X), Y 〉L2(Mn(C))n2
sa
> sup

Ψ∈K
〈Ψ(X), Y 〉L2(Mn(C))n2

sa
.

Hence, by Theorem 5.13, if Ψ factors through a Connes-embeddable algebra, then 〈Ψ(X), Y 〉L2(Mn(C))n2
sa

cannot be optimal. Thus, by the proof of Observation 5.5, a coupling of λX and λY in a Connes-
embeddable algebra cannot be optimal. �

Remark 5.15. Although Corollary 5.14 is much stronger than Corollary 5.8 as stated, they are based
on different types of phenomena. Corollary 5.14 relies on the existence of factorizable maps Mn(C) →
Mn(C) that cannot be approximated by elements of FMfin(Mn(C),Mn(C)) (of which there are not yet
explicit examples known). Meanwhile, Corollary 5.8 relies on the existence of factorizable maps that are
approximated by elements of FMfin(Mn(C),Mn(C)) but are not in FMfin(Mn(C),Mn(C)) (of which [52]
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gave explicit examples). Thus, the proof of Corollary 5.8 shows that for n ≥ 11 and d ∈ N, there exist

tuples X and Y from Mn(C)n
2

sa such that

sup
Φ∈FMfin(Mn(C),Mn(C))

〈Φ(X), Y 〉L2(Mn(C))n2
sa
> sup

Ψ∈FMd(Mn(C),Mn(C))

〈Ψ(X), Y 〉L2(Mn(C))n2
sa
.

Hence, a coupling on an algebra A of dimension at most d cannot even be optimal among couplings in
Connes-embeddable algebras.

5.4. The Wasserstein and weak-∗ topologies. At the beginning, we equipped Σm,R with the weak-∗
topology as a subset of the algebraic dual of C〈x1, . . . , xm〉. Meanwhile, because d

(2)
W defines a metric

on Σm,R, it induces another topology, which we will call the Wassertein topology. We will show that
the Wasserstein topology is strictly stronger than the weak-∗ topology. This is to be contrasted with
classical probability theory where the weak-∗ topology on the space of probability measures on [−R,R]m

is metrized by the L2-Wasserstein distance.
Our first step is to prove an ultraproduct characterization of Wasserstein convergence analogous to

Lemma 5.10.

Lemma 5.16. Let (An)n∈N be a sequence of tracial W∗-algebras and let A be another tracial W∗-algebra.
Let X ∈ L∞(A)msa with ‖X‖L∞(A)msa

≤ R and suppose that X generates A. Let Xn ∈ L∞(An)msa with
‖Xn‖L∞(An)msa

≤ R. Then the following are equivalent:

(1) limn→U λXn = λX with respect to Wasserstein distance.
(2) There exists a tracial W∗-embedding φ : A →

∏
n→U An and a factorizable map Φn ∈ FM(A,An)

(for each n ∈ N) such that

φ(X) = [Xn]n∈N, φ(Z) = [Φn(Z)]n∈N for all Z ∈ L∞(A).

Proof. (1) =⇒ (2). The limit limn→U λXn = λX in Wasserstein distance means that there exists
tracial W∗ algebras Bn and tracial W∗-embeddings πn : W∗(Xn) → Bn and ρn : A → Bn such that
‖πn(Xn)− ρn(X)‖L2(Bn)msa

→ 0 as n→ U . Let Cn be the free product of An and Bn with amalgamation
over W∗(Xn), and let π̃n : An → Cn and ρ̃n : A → Cn be the corresponding tracial W∗-embeddings. It is
straightforward to check that these induce tracial W∗-embeddings

π̃ :
∏
n→U

An →
∏
n→U

Cn, ρ̃ : A →
∏
n→U

Cn

such that π̃(φ(X)) = π̃([Xn]n∈N) = ρ(X). Since π̃ ◦ φ and ρ̃ are tracial W∗-embeddings, we have
π̃(φ(Z)) = ρ̃(Z) for all Z ∈ L∞(A) (because for instance every element of L∞(A) can be approximated
in L2(A) by non-commutative polynomials of X).

Let π̃∗n and π̃∗ be the trace-preserving conditional expectations adjoint to π̃n and π̃. We claim that
for Y = [Yn]n∈N ∈

∏
n→U Cn, we have

π̃∗(Y ) = [π̃∗n(Yn)]n∈N.

Let Ã =
∏
n→U An and C̃ =

∏
n→U Cn. Note that [π̃∗n(Yn)]n∈N is in the subalgebra Ã =

∏
n→U An.

Moreover, for every Z = [Zn] ∈
∏
n→U An, we have

〈Y, π̃(Z)〉L2(C̃) = lim
n→U
〈Yn, π̃n(Zn)〉L2(Cn) = lim

n→U
〈π̃∗n(Yn), Zn〉L2(An) = 〈[π̃∗n(Yn)]n∈N, Z〉L2(Ã).

Thus, π̃∗(Y ) = [π̃∗n(Yn)]n∈N, as desired. As noted above, for every Z ∈ A, we have π̃(φ(Z)) = ρ̃(Z) and
hence φ(Z) = π̃∗π̃φ(Z) = π̃∗ρ̃(Z). This implies that

[π̃∗nρ̃(Z)]n∈N = π̃∗ρ̃(Z) = φ(Z).

Therefore, Φn := π̃∗nρ̃n is a factorizable map fulfilling condition (2).
(2) =⇒ (1). Let φ and Φn be as in (2). Then [Xn]n∈N = φ(X) = [Φn(X)]n∈N belongs to

∏
n→U An.

Letting En be the trace-preserving conditional expectation An →W∗(Xn), the map En ◦Φn : W∗(X)→
W∗(Xn) is factorizable by Proposition 5.3 (4), hence by Observation 5.5,

C(λXn , X) ≥ 〈En ◦ Φn(X), Xn〉L2(W∗(Xn))msa
= 〈Φn(X), Xn〉L2(An)msa

.
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Therefore,

lim
n→U

d
(2)
W (λXn , λX)2 = lim

n→U

(
‖Xn‖2L2(An)msa

+ ‖X‖2L2(A)msa
− 2C(λXn , λX)

)
≤ lim
n→U

(
‖X‖2L2(A)msa

+ ‖Xn‖2L2(An)msa
− 2〈Φn(X), Xn〉L2(An)msa

)
= ‖φ(X)‖2L2(

∏
n→U An)msa

+ ‖φ(X)‖2L2(
∏
n→U An)msa

− 2〈φ(X), φ(X)〉2L2(
∏
n→U An)msa

= 0.

Hence, limn→U λXn = λX in Wasserstein distance. �

The next corollary was observed in [11, Proposition 1.4(b)], and can be proved in several ways (see for
instance [35, Lemma 2.10, Corollary 2.11] for another method), but we will deduce it as a consequence
of the ultraproduct characterizations for weak-∗ and Wasserstein convergence.

Corollary 5.17. The Wasserstein topology on Σm,R is refines the weak-∗ topology.

Proof. Fix U ∈ βN \N. Using the Urysohn subsequence principle, it suffices to show that if µn, µ ∈ Σm,R
and limn→U µn = µ in the Wasserstein distance, then limn→U µn → µ in the weak-∗ topology. Letting
(An, Xn) and (A, X) be the GNS realizations of µn and µ, Lemma 5.16 implies that there is a tracial
W∗-embedding A →

∏
n→U An with φ(X) = [Xn]n∈N. By Lemma 5.10, this implies that limn→U µn = µ

in the weak-∗ topology. �

The next observation is closely related.

Lemma 5.18. The metric d
(2)
W is weak-∗ lower semi-continuous on Σm,R × Σm,R.

Proof. Fix U ∈ βN \N. Again using the Urysohn subsequence principle, it suffices to show that for every
pair of sequences (µn)n∈N and (νn)n∈N in Σm,R, letting µ = limn→U µn and ν = limn→U νn, we have

d
(2)
W (µ, ν) ≤ limn→U d

(2)
W (µn, νn). Let (An, Xn, Yn) be an optimal couplings of µn and νn. Let (B, X)

and (C, Y ) be the GNS realizations of µ and ν. By Lemma 5.10, there exist tracial W∗-embeddings
φ : B →

∏
n→U An and ψ : C →

∏
n→U An such that φ(X) = [Xn]n∈N and ψ(Y ) = [Yn]n∈N. Then

d
(2)
W (µ, ν) ≤ ‖φ(X)− ψ(Y )‖L2(

∏
n→U An)msa

= lim
n→U
‖Xn − Yn‖L2(An) = lim

n→U
d

(2)
W (µn, νn). �

We will use Lemmas 5.10 and 5.12 to characterize when the Wasserstein and weak-∗ topologies agree
at a point in Σm,R in terms of a certain stability property. To fix terminology, if S is a set and T1 and T2

are two topologies on S, we say that T1 and T2 agree at x ∈ S if every T1-neighborhood of x is contained
in a T2-neighborhood of x and vice versa. If the topologies are metrizable, this is equivalent to saying
that a sequence xn converges to x with respect to T1 if and only if it converges to x with respect T2.
Furthermore, if U is a given non-principal ultrafilter on N, then agreement of the two topologies at x is
equivalent to the claim that limn→U xn = x with respect to T1 if and only if limn→U xn = x with respect
to T2.

Definition 5.19 (FM-lifting). Let A be a tracial W∗-algebra with separable predual, and let U be a
free ultrafilter on N. If An is a sequence of tracial W∗-algebras and φ : A →

∏
n→U An is a tracial

W∗-embedding, then an FM-lifing of φ is a sequence (Φn)n∈N, where Φn ∈ FM(A,An), such that φ(Z) =
[Φn(Z)]n∈N for all Z ∈ L∞(A).

Note that the sequence Φn in Lemma 5.16 (2) is an FM-lifting of φ. In other words, Lemma 5.16
describes convergence in Wasserstein distance in terms of ultraproduct embeddings that have FM-liftings.

Definition 5.20 (FM-stability). We say that A is FM-stable if every tracial W∗-embedding φ : A →∏
n→U An into the ultraproduct of any sequence of tracial W∗-algebras An has an FM-lifting.

Our notion of FM-stability is analogous and closely related to the notions of tracial stability and
UCP-stability studied in [5, 34]. Analogously to [5, Remark 2.2], the definition of FM-stability can be
restated as an approximation property without reference to ultraproducts. This implies in particular that
the definition is independent of the choice of non-principal ultrafilter U (hence it amounts to the same
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thing whether require the lifting condition for a particular non-principal ultrafilter or for all non-principal
ultrafilters).

Proposition 5.21. Let µ ∈ Σm,R and let (A, X) be the GNS realization of µ as in Proposition 2.31.
Then the following are equivalent:

(1) The weak-∗ and Wasserstein topologies on Σm,R agree at µ.
(2) A is FM-stable.

Proof. (1) =⇒ (2). Let U ∈ βN\N. Assume that the weak-∗ and Wasserstein topologies agree at µ. Let
(An)n∈N be a sequence of tracial W∗-algebras, and let φ : A →

∏
n→U An be a tracial W∗-embedding.

Express φ(X) as [Xn]n∈N where Xn ∈ L2(An)msa and supn‖Xn‖L∞(An)msa
< ∞. Arguing with functional

calculus as in Lemma 5.12, we can arrange that ‖Xn‖L∞(An)msa
≤ R. By Lemma 5.10, we have λXn → λX

in the weak-∗ topology on Σm,R. Hence, by hypothesis λXn → λX in the Wasserstein distance as n→ U .
By Lemma 5.16, this implies that φ has an FM-lifting.

(2) =⇒ (1). Conversely, suppose that A is FM-stable. To show that the weak-∗ and Wasserstein
topologies on Σm,R agree at µ, using the Urysohn subsequence principle, it suffices to show that if (µn)n∈N

is a sequence such that µn → µ weak-∗ as n → U , then d
(2)
W (µn, µ) → 0 as n → U . Let (An, Xn) be

the GNS-realization of µn. By Lemma 5.10, the tuple [Xn]n∈N in
∏
n→U An has the same law as X, and

therefore, there exists a tracial W∗-embedding φ : A →
∏
n→U An with φ(X) = [Xn]n∈N. By FM-stability

of A, there exist factorizable completely positive maps Φn : A → An such that φ(Z) = [Φn(Z)]n∈N for
all Z ∈ L∞(A). Hence, by Lemma 5.16, limn→U µn = µ in Wasserstein distance. �

Next, we will show that using work of Connes [17] that if the weak-∗ and Wasserstein topologies agree
at µ and the corresponding tracial W∗-algebra A is Connes-embeddable, then in fact A is approximately
finite-dimensional. We recall the following theorem of Connes [17] that shows that approximate finite-
dimensionality is equivalent to semi-discreteness for tracial W∗-algebras (and these are also equivalent,
famously, to the two other conditions of injectivity and amenability); related proofs can also be found in
[61], [67, §XIV], [12, §6.2, 6.3, 9.3], [2, §11].

Theorem 5.22 (Connes [17]). Let A = (A, τ) be a tracial W∗-algebra with separable predual. The
following are equivalent:

(1) A is approximately finite-dimensional (AFD), that is, there exists a sequence (Ak)k∈N of finite-
dimensional subalgebras with Ak ⊆ Ak+1 such that

⋃
k∈NAk is dense in A with respect to ‖·‖L2(A).

(2) A is semi-discrete, that is, there exists nets (Φα)α∈I and (Ψα)α∈I of completely positive maps Φα :
A →Mn(α)(C) and Ψα : Mn(α)(C)→ A such that Ψα ◦Φα(Z)→ Z in the weak-∗ topology for every
Z ∈ L∞(A).

We recall a few more results about AFD algebras, which are well-known in operator algebras. We
recall that a II1-factor is an infinite-dimensional tracial von Neumann algebra with trivial center.

Lemma 5.23.

(1) Let A be an AFD tracial W∗-algebra, let (Bn)n∈N be II1-factors, and let U be a free ultrafilter on N.
If φ and ψ are two embeddings of A into

∏
n→U Bn, then there exists a unitary U ∈

∏
n→U Bn such

that Uφ(Z)U∗ = ψ(Z) for Z ∈ L∞(A). See [44, 5].
(2) If (Bn)n∈N are II1-factors and U is a unitary in

∏
n→U Bn, then there exist unitaries Un ∈ L∞(Bn)

such that U = [Un]n∈N.5

Corollary 5.24. Let A be an AFD tracial W∗-algebra. Then A is FM-stable.

Proof. If A = C, then the conclusion is immediate, so assume that A 6= C. Let φ : A →
∏
n→U An be a

tracial W∗-embedding. Let B be the tracial free product A ∗An ∗L∞[0, 1] (where L∞[0, 1] has the trace

5Every unitary u in a tracial W∗-algebra can be expressed as eix for some self-adjoint x using Borel functional calculus

(Theorem A.3 (3)). Suppose U = eiX is unitary in
∏
n→U . Arguing as in the proof of Lemma 5.12, X can be expressed as

[Xn]n∈N where Xn ∈ L∞(Bn)sa, and we have [eiXn ]n∈N = U .
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coming from Lebesgue measure). Then B is a II1 factor by [68, Theorem 3.7] since A 6= C and L∞[0, 1]
is diffuse. For each, n, there is a tracial W∗-embedding ιn : An → Bn. Let ι be the induced map

ι :
∏
n→U

An →
∏
n→U

Bn.

By construct, there also exists a tracial W∗-embedding ψn : A → Bn. This sequence produces a tracial
W∗-embedding ψ : A →

∏
n→U Bn. By Lemma 5.23, there exists a unitary Un ∈ L∞(Bn) such that,

letting U = [Un]n∈N, we have Uι ◦ φ(Z)U∗ = ψ(Z) for Z ∈ L∞(A).
Let Φn : A → An be given by Φn(Z) = ι∗n[U∗nψn(Z)Un]. As observed in the proof of Proposition 5.21,

ultraproducts respect conditional expectations and therefore for Z ∈ A, we have

[Φn(Z)]n∈N = [ι∗n[U∗nψn(Z)Un]]n∈N = ι∗[U∗nψn(Z)Un]n∈N = ι∗(U∗ψ(Z)U) = ι∗ιφ(Z) = φ(Z).

Thus, Φn is the desired lifting of φ to a sequence of factorizable maps. �

Remark 5.25. In fact, [5, Theorem 2.6] implies the converse of Corollary 5.24: If A is Connes-embeddable
and FM-stable, then A is AFD. The same statement is implied by the next proposition provided that A
is finitely generated.

Proposition 5.26. Let µ be in the weak-∗ closure of Σfin
m,R, and let (A, X) be the GNS realization of µ.

The following are equivalent:

(1) A is approximately finite-dimensional.
(2) A is FM-stable.
(3) The weak-∗ and Wasserstein topologies agree at µ.
(4) µ is in the Wasserstein closure of Σfin

m,R.

Proof. (1) =⇒ (2) by Corollary 5.24.
(2) =⇒ (3) by Proposition 5.21.
(3) =⇒ (4) Since two topologies agree at µ and µ is in the weak-∗ closure of Σfin

m,R, it follows that µ

is in the Wasserstein closure of Σfin
m,R.

(4) =⇒ (1). Assume that (4) holds and we will show that A is semi-discrete, hence approximately
finite-dimensional by Connes’ theorem. Fix a free ultrafilter U on N. Let µn be a sequence in Σfin

n,R such

that limn→U d
(2)
W (µn, µ) = 0. Let (An, Xn, Yn) be an optimal coupling of µ and µn. Since W∗(Xn) ∼=

W∗(X) = A, we can assume without loss of generality that A ⊆ An and Xn = X. Let Φn : A =
W∗(X) → W∗(Yn) be the associated factorizable map. Since W∗(Yn) is finite-dimensional, if we can
show that Φ∗nΦn(Z) → Z in L2(A)msa as n → U for every Z ∈ A, that will imply semi-discreteness of A
and finish the argument.

The convergence of Φ∗nΦn(Z) follows by a similar argument to Proposition 5.21. Let Bn be the free
product of two copies of An with amalgamation over W∗(Yn) and let πn and ρn be the two inclusions of
A into the first and second copies of An. Then Φ∗nΦn = π∗nρn. Now πn and ρn induce maps

π, ρ : A →
∏
n→U

Bn.

Moreover, ‖πn(X)− ρn(X)‖L2(Bn)msa
≤ 2‖X − Yn‖L2(An)msa

→ 0, and therefore, π(X) = ρ(X), so π = ρ on
all of L∞(A). This implies that π∗ρ(Z) = Z for Z ∈ L∞(A), hence limn→U‖π∗nρn(Z)−Z‖L2(A) = 0. �

Corollary 5.27. For m > 1 and R > 0, Σm,R is not compact with respect to the Wasserstein topology.

Proof. The identity map from Σm,R with the Wasserstein topology to Σm,R with the weak-∗ topology is
a continuous bijection. If the domain were compact, then it would be a homeomorphism. The previous
proposition would then imply that every µ ∈ Σm,R that generates a Connes-embeddable tracial W∗-
algebra would in fact generate an AFD tracial W∗-algebra. However, there are many finitely generated
tracial W∗-algebras that are not AFD. �
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5.5. Non-separability of the Wasserstein space. We just showed that Σm,R with the Wasserstein
distance is not compact for m > 1, but in fact we will show that it is not separable using the results of
Gromov [30], Olshanskii [55], and Ozawa [58]. We first recall some terminology about groups and their
associated W∗-algebras.

Let Γ be a group and let `2(Γ) be the Hilbert space of square-summable functions on Γ. Let λ : Γ→
B(`2(Γ)) be the left regular representation given by u(g)δh = δgh, where δg ∈ `2(Γ) is the function which
is 1 at g and zero elsewhere. The W∗-subalgebra of B(`2(Γ)) generated by the unitary operators u(g) for
g ∈ Γ is called the group von Neumann algebra of Γ. The map τ : L(Γ)→ C given by T 7→ 〈δe, T δe〉 is a
faithful normal trace on L(Γ), so that it is a tracial W∗-algebra.

Definition 5.28. A discrete group Γ is said to have property (T) if there exist generators g1,. . . , gm and
an increasing function f : [0,∞)→ [0,∞) with limε→0+ f(ε) = 0 with the following property: For every
unitary representation π of Γ on a Hilbert space H and every unit vector ξ ∈ H, if maxj∈[m]‖π(gj)ξ−ξ‖ <
ε, then there exists η ∈ H such that π(g)η = η for all g ∈ Γ and ‖η − ξ‖ < f(ε).

Theorem 5.29 (Gromov [30], Olshanskii [55], and Ozawa [58, Theorem 1]). There exists a group Γ with
property (T) that admits uncountable family {Γα}α∈I of quotient groups that are simple and pairwise
non-isomorphic. (In fact, such a family of quotient groups exists for every group Γ that is hyperbolic,
torsion-free, and non-cyclic.)

The next lemma will allow us to translate this result into a statement about the space of non-
commutative laws. While the space of non-commutative laws is defined in terms of self-adjoint generators,
it is natural in the group setting to consider unitary rather than self-adjoint generators of a tracial W∗-
algebra. However, this issue is easily resolved by taking real and imaginary parts of operators. More pre-
cisely, if a is an operator in a tracial W∗-algebra A, let Re(a) = (a+a∗)/2 and Im(a) = (a−a∗)/2i. Then
Re(a) and Im(a) are self-adjoint and a = Re(a) + i Im(a) and ‖a‖2L2(A) = ‖Re(a)‖2L2(A) + ‖Im(a)‖2L2(A).

Lemma 5.30. Let Γ be a group with property (T), and let g1, . . . , gm ∈ Γ and f : [0,∞)→ [0,∞) be as
in Definition 5.28. Let q1 : Γ→ Γ1 and q2 : Γ→ Γ2 be quotient group homomorphisms. For j = 1, 2, let
πj : Γ→ L(Γj) be the quotient map qj composed with the left regular representation of Γj and let

Xj = (Re(πj(g1)), Im(πj(g1)), . . . ,Re(πj(gm)), Im(πj(g)) ∈ L(Γj)
2m
sa .

If f(d
(2)
W (λX1

, λX2
)) < 1/2, then ker(q1) = ker(q2) and hence Γ1 = Γ2.

Proof. Let A be a tracial W∗-algebra and let ιj : L(Γj) → A be tracial W∗-embeddings such that

‖ι1(X1)− ι2(X2)‖L2(A)2msa
= d

(2)
W (λX1

, λX2
). Note that for j = 1, . . . , m,

‖ι1(π1(gj))− ι2(π2(gj))‖2L2(A) = ‖ι1(Re(π1(gj)))− ι2(Re(π2(gj)))‖2L2(A) + ‖ι1(Im(π1(gj)))− ι2(Im(π2(gj)))‖2L2(A)

≤ ‖ι1(X1)− ι2(X2)‖2L2(A)2msa
.

Let π : Γ→ B(L2(A)) be the map given by π(g)ξ = ι1(π1(g))ξι2(π2(g−1)) for ξ ∈ L2(A); note that this

is a unitary representation. The vector 1̂ in L2(A) satisfies∥∥∥π(gj)1̂− 1̂
∥∥∥
L2(A)

=
∥∥∥ι1(π1(gj))1̂− 1̂ι2(π2(g2))

∥∥∥
L2(A)

= ‖ι1(π1(gj))− ι2(π2(g2))‖L2(A)

≤ d(2)
W (λX1 , λX2).

Hence, by property (T), there exists some η ∈ L2(A) such that ‖1̂ − η‖L2(A) ≤ f(d
(2)
W (λX1

, λX2
)) and

π(g)η = η for all g ∈ Γ. The latter condition implies that ι1(π1(g))η = ηι2(π2(g)) for all g ∈ Γ. Therefore,
using the triangle inequality and the fact that ιj(πj(g)) is unitary,∥∥∥ι1(π1(g))1̂− 1̂ι2(π2(g))

∥∥∥
L2(A)

≤ 2
∥∥∥1̂− η

∥∥∥
L2(A)

≤ 2f(d
(2)
W (λX1

, λX2
)) < 1.

Hence,

|τA(ι1(π1(g)))− τA(ι2(π2(g)))| ≤ ‖ι1(π1(g))− ι2(π2(g))‖L2(A) < 1.
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Now observe that

τA(ιj(πj(g))) = τL(Γj)(πj(g)) = δπj(g)=1 = δg∈ker(qj).

Since δg∈ker(qj) is either zero or one and |δg∈ker(q1) − δg∈ker(q2)| < 1, we have ker(q1) = ker(q2). �

We can now prove Theorem 1.8 that shows that for sufficiently large m, Σm,1 is not separable with

respect to d
(2)
W . The method is similar to [58, Proof of Theorem 2].

Proof of Theorem 1.8. First, we show that Σ2m,1 is not separable for some m. Let Γ be a property (T)
group with an uncountable family (Γα)α∈I of non-isomorphic quotients. Let πα : Γ → L(Γα) be the
quotient map composed with the left regular representation. Let g1, . . . , gm and f : [0,∞) → [0,∞)
witness property (T). Let ε be sufficiently small that f(ε) < 1/2. Let

Xα = (Re(πα(g1)), Im(πα(g1)), . . . ,Re(πα(gm)), Im(πα(gm))).

For α 6= β in I, since Γα and Γβ are not isomorphic, the lemma implies that f(d
(2)
W (λXα , λXβ )) ≥ 1/2, and

therefore d
(2)
W (λXα , λXβ ) ≥ ε. Hence, {λXα}α∈I is an uncountable ε-separated set in Σ2m,1 with respect

to the Wasserstein distance.
To prove that Σm,R is not separable for general m > 1 and R > 0, we first observe that there is a

bijection between Σm,R and Σm,R′ given by rescaling the non-commutative random variables. Hence, for
each m, if we prove non-separability for one value of R, then it holds for all values of R. Furthermore,
we can define a map Σm,R → Σm+1,R sending the law of (X1, . . . , Xm) to the law of (X1, . . . , Xm, 0). It
is straightforward to show that this map is isometric with respect to the Wasserstein distance. Hence,
if Σm,R is not separable, then Σm′,R is not separable for m′ ≥ m. Therefore, to prove the theorem, it
suffices to show that for some value of R, Σ2,R is not separable.

We already know that for some m, Σm,1 is not separable. Hence, for some ε > 0, there is an uncount-
able family (µα)α∈I of laws in Σm,1 that is ε-separated with respect to the Wasserstein distance. Let
(Aα, Xα) be the GNS realization of µα, where Xα = (Xα,1, . . . , Xα,m). Consider the tracial W∗-algebra
Mm(Aα) with the trace τα ⊗ trm, and let Yα ∈Mm(Aα)sa be the diagonal matrix with entries Xα,1 + 4,
Xα,2 + 8, . . . , Xα,m + 4m. Let Uα ∈ Mm(C) ⊆ Mm(Aα) be the matrix of an m-cycle permutation. By
functional calculus, Uα can be expressed as eiZα for some self-adjoint Zα ∈ Mm(C) ⊆ Mm(Aα) with
‖Zα‖L∞(Mm(C)) ≤ π/2. Since Uα is the inclusion into Mm(Aα) of an element of Mm(C) that is indepen-
dent of α, there is in fact a polynomial p such that Uα = p(Zα), and Zα and p are independent of α. We

claim that d
(2)
W (λYα,Zα , λYβ ,Zβ ) ≥ (1/K)d

(2)
W (µα, µβ) for some K > 0, which will imply that Σ2,4m+1 is

not separable and thus prove the theorem.
To accomplish this, we will express Xα,j ⊗ Im in Mm(Aα) as a function of Yα and Zα (in an explicit

way which allows us to estimate Wasserstein distances), using a well-known matrix amplification trick.
We first recall a foundational result that the weak-∗ topology of a W∗-algebra can be recovered from
any faithful representation on a Hilbert space; see e.g. [63, Corollary 1.13.3, Proposition 1.16.2, Theorem
1.16.7]. In particular, Aα can be faithfully represented on H = L2(A) and Mm(Aα) = Aα ⊗Mm(C) can
be faithfully represented on the Hilbert space H ⊗ Cm = H⊕m. Moreover, all the facts about spectral
theory and functional calculus on B(H) and B(H⊕m) can be applied to the operators from Aα and
Mn(Aα). In particular,

Spec(Yα) =

m⋃
j=1

(Spec(Xα,j) + 4j) ⊆
m⋃
j=1

[4j − 1, 4j + 1].

Let γj be the rectangular contour in C bounding the rectangle [4j − 2, 4j + 2] × [−1, 1], so that γj is
separated from Spec(Yα) by a distance of 1. Using the Cauchy integral formula and functional calculus,∫

γj

(z − 4j)(z −Xα,k)−1 dz = δj,kXα,k.

Hence, ∫
γj

(z − 4j)(z − Yα)−1 dz = Xα,j ⊗ ej,j ,
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where ej,j is the jth diagonal matrix unit in Mm(C). In particular, Xα,j ⊗ ej,j ∈ W∗(Yα) and thus
Xα,j ⊗ ek,` = Uk−jα (Xα,j ⊗ ej,j)U j−`α ∈ W∗(Yα, Zα) for every k, ` = 1, . . . , m; this implies that Yα and
Zα generate Mm(Aα). Moreover,

(5.1) Xα,j ⊗ Im =

m∑
k=1

∫
γj

Ukα(z − 4j)(z − Yα)−1U−kα dz =

m∑
k=1

∫
γj

p(Zα)k(z − 4j)(z − Yα)−1p(Zα)k dz.

Let α 6= β. Then an optimal coupling of λYα,Zα and λYβ ,Zβ on the tracial W∗-algebra B produces
two tracial W∗-embeddings ια : Mm(Aα) → B and ιβ : Mm(Aβ) → B. Because the Cauchy integral
representation (5.1) can be expressed as a Riemann integral, we have

ια(Xα,j ⊗ Im) =

m∑
k=1

∫
γj

p(ια(Zα))k(z − 4j)(z − ια(Yα))−1p(ια(Zα))k dz,

and the same holds for β. Using the resolvent identity and non-commutative Hölder’s inequality,

‖(z − ια(Yα))−1 − (z − ιβ(Yβ))−1‖L2(B) ≤ ‖(z − ια(Yα))−1‖L∞(B)‖Yα − Yβ‖L2(B)‖(z − ιβ(Yβ))−1‖L∞(B)

≤ ‖Yα − Yβ‖L2(B).

Furthermore, one checks easily that ‖p(ια(Zα))− p(ιβ(Zβ))‖L2(B) ≤ Cp‖ια(Zα)− ιβ(Zβ)‖L2(B) for some
constant Cp (since ‖Zα‖L∞(Mm(Aα)) is bounded by univeral constant). By estimating the difference

between p(ια(Zα))k(z−4j)(z− ια(Yα))−1p(ια(Zα))k and p(ιβ(Zβ))k(z−4j)(z− ιβ(Yβ))−1p(ιβ(Zβ))k and
applying the triangle inequality for integrals, we obtain for some constant C ′p that

‖ια(Xα,j ⊗ Im)− ιβ(Xβ,j ⊗ Im)‖L2(B) ≤ C ′p
(
‖ια(Yα)− ιβ(Yβ)‖2L2(B) + ‖ια(Zα)− ιβ(Zβ)‖2L2(B)

)1/2

.

Since (Xα,1 ⊗ Im, . . . , Xα,m ⊗ Im) has the same non-commutative law as Xα, we obtain

ε ≤ d(2)
W (λXα , λXβ ) ≤ m1/2C ′pd

(2)
W (λ(Yα,Zα), λ(Yβ ,Zβ)).

Hence, {λ(Yα,Zα)}α∈I is ε/(m1/2C ′p)-separated in Σ2,4m+1, as desired. �

We remark that a similar non-separability result in the context of model theory for operator algebras
was shown in [4, Proposition 4.2.9]. In the model theoretic context, one often encounters triples (Ω,T , d)
where (Ω,T ) is a topological space and d is a metric on Ω that is lower semi-continuous with respect to
T and generates a topology that is at least as strong as T ; such a triple (Ω,T , d) is called a topometric
space [9]. In particular, Σm,R with the weak-∗ topology and Wasserstein distance is a topometric space
by Corollary 5.17 and Lemma 5.18. It was shown in [9, Proposition 3.20] that if (Ω,T , d) is a topometric
space and (Ω,T ) is second countable and locally compact, then the density character of (Ω, d) is either
countable or equal to the continuum. Hence, as a corollary of Theorem 1.8, the density character of

(Σm,R, d
(2)
W ) is the continuum (of course since Σm,R with the weak-∗ topology is compact and metrizable,

it is in particular second countable and locally compact).

6. Further remarks

6.1. Non-commutative optimal couplings and random matrix theory. One of the motivations
for our paper was the following question.

Question 6.1. Suppose that X(N), Y (N) are random m-tuple of self-adjoint N ×N matrices with prob-
ability distributions µ(N) and ν(N) respectively. Let µ, ν ∈ Σn,R. Suppose that almost surely

lim sup
N→∞

‖X(N)‖L∞(MN (C))msa
< R, lim sup

N→∞
‖Y (N)‖L∞(MN (C))msa

< R, lim
N→∞

λX(N) = µ, lim
N→∞

λY (N) = ν.

Does the classical L2-Wasserstein distance of µ(N) and ν(N) (as probability measures on MN (C)msa) con-
verge to the non-commutative L2-Wasserstein distance of µ and ν?
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The results of [31, 23] combined with [41] give a positive answer when µ(N) is a random matrix

model with density proportional to e−N
2V (N)

where V (N) : MN (C)msa → R is a sufficiently regular convex
function such as the trace of a non-commutative polynomial, and where ν(N) has density proportional

to e
−N2‖X‖2

L2(MN (C))msa . The convexity of V (N) is crucial for all these arguments. By contrast, the present
work shows that Question 6.1 can have a negative answer due to the obstruction of Connes-embeddability.

Proposition 6.2. Let X,Y ∈ Mn(C)msa be matrix tuples such that an optimal coupling of λX and λY
requires a non-Connes-embeddable tracial W∗-algebra as in Corollary 5.14. Suppose X(N) and Y (N) are
random (or even deterministic) elements of MN (C)msa that converge in non-commutative law to X and Y .
Then the classical Wasserstein distance of the probability distributions of X(N) and Y (N) on MN (C)msa
(with the L2 norm associated to the normalized trace trN ) does not converge to d

(2)
W (λX , λY ).

Before proving the proposition, we make some preliminary observations. Let Σapp
m,R denote the space

of Connes-embeddable non-commutative laws in Σm,R. Let d
(2)
W,app be the non-commutative Wasserstein

distance on Σapp
m,R defined using only couplings in Connes-embeddable tracial W∗-algebras. Since Σapp

m,R

is the weak-∗ closure of Σfin
m,R, it is weak-∗ compact, which implies the existence of optimal Connes-

embeddable couplings. Moreover, the same reasoning as in Lemma 5.18 shows that d
(2)
W,app is weak-∗

lower semi-continuous. Of course, Corollary 5.14 shows that d
(2)
W,app can be strictly greater than d

(2)
W

(however, we do not know whether these two metrics generate the same topology on Σapp
m,R).

Proof of Proposition 6.2. Suppose that X(N) and Y (N) are random variables on the diffuse probability
space (Ω, P ). Let µ(N) and ν(N) be the classical probability distributions of X(N) and Y (N) as random
variables with values in the vector space MN (C)msa equipped with inner product associated to trN . Let
µ̂(N) and ν̂(N) be the non-commutative laws of X(N) and Y (N) as elements of the tracial W∗-algebra
L∞(Ω, P ;MN (C)) with the trace given by E ◦ trN . A classical coupling of the probability distributions
µ(N) and ν(N) on the probability space (Ω, P ) can be interpreted as a non-commutative coupling on the
tracial W∗-algebra (L∞(Ω, P ;MN (C)),E ◦ trN ), which is Connes-embeddable. Therefore,

lim inf
N→∞

dW (µ(N), ν(N)) ≥ lim inf
N→∞

d
(2)
W,app(µ̂(N), ν̂(N)) ≥ d(2)

W,app(λX , λY ) > d
(2)
W (λX , λY ). �

This problem cannot be removed using free probabilistic regularity conditions (conditions such as finite
free entropy, finite free Fisher information and so forth; see the introduction of [16] for context).

Proposition 6.3. Again, let X,Y ∈ Mn(C)msa be as in Corollary 5.14. Let S be a free semicircular m-
tuple freely independent of X and Y . Then X+t1/2S and Y +t1/2S have finite free microstate entropy (de-

fined in [74]) and finite free Fisher information (defined in [76]). However, d
(2)
W,app(λX+t1/2S , λY+t1/2) >

d
(2)
W (λX+t1/2S , λY+t1/2) for sufficiently small t > 0. Hence, as in Proposition 6.2, there do not exist ran-

dom matrix approximations for λX+t1/2S and λX+t1/2S whose classical Wasserstein distance converges to

d
(2)
W (λX+t1/2S , λY+t1/2).

Proof. By [77, Theorem 3.9], X + t1/2S and Y + t1/2S have finite free microstate entropy, and by [76,
Corollary 6.14], they have finite free Fisher information. The free product of MN (C) and W∗(S) is
Connes-embeddable by [77, Proposition 3.3]. Hence,

d
(2)
W (λX , λX+t1/2S) ≤ d(2)

W,app(λX , λX+t1/2S) ≤ (mt)1/2,

and the same holds with X replaced by Y . Thus, using the triangle inequality, d
(2)
W (λX+t1/2S , λY+t1/2S) <

d
(2)
W,app(λX+t1/2S , λY+t1/2S) for sufficiently small t > 0, since this holds at t = 0. The same argument as

in Proposition 6.2 rules out the possibility of the classical Wasserstein distance for random matrix models

converging to d
(2)
W (λX+t1/2S , λY+t1/2S). �

Thus, at the very least, Question 6.1 needs to be reformulated using the Connes-embeddable version of
the non-commutative Wasserstein distance. Even with such a modification, our results illustrate why this
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question is so difficult.6 Indeed, in light of §5.4, random matrix models cannot converge in Wasserstein
distance to the limiting non-commutative law unless that limiting law produces an approximately finite-
dimensional tracial W∗-algebra. However, “good behavior” in random matrix theory and free probability
often entails generating a tracial W∗-algebra that is “similar to” a free group von Neumann algebra,
which is far from being approximately finite-dimensional (see e.g. [67, §XIV.3]). The random matrix
question suggests a more general question in the framework of non-commutative optimal couplings.

Question 6.4. Suppose that µn, νn ∈ Σm,R and µn → µ and νn → ν weak-∗. Under what conditions

does d
(2)
W (µn, νn)→ d

(2)
W (µ, ν)?

Monge-Kantorovich duality provides one avenue to attack this question. Indeed, suppose that (fn, gn)
are admissible pairs of E-convex functions minimizing µn(fn)+νn(gn). Suppose that (f, g) is an admissible
pair minimizing µ(f) + ν(g). To give a positive answer to Question 6.4, it suffices to show that µn(fn) +
νn(gn) → µ(f) + ν(g). Suppose that we somehow show that fn → f and gn → g uniformly on each
operator norm ball, so that µn(fn)− µn(f)→ 0 and ν(gn)− ν(g)→ 0.

Then it remains to show that µn(f)→ µ(f) and νn(g)→ ν(g). If f and g take finite values everywhere,
then for each A ∈W, fA and gA will define continuous functions on L2(A)msa, and in particular, λ 7→ λ(f)
and λ 7→ λ(g) are continuous with respect to Wasserstein distance. However, we only assumed weak-∗
convergence of µn → µ and νn → ν. Thus, in order to obtain the convergence of the Wasserstein distance,
we would want the stronger condition that f and g are continuous with respect to convergence in law,
that is, λ 7→ λ(f) and λ 7→ λ(g) are weak-∗ continuous on Σm,R for each R > 0.

The examples of Monge-Kantorovich duality in [41, Lemma 9.10, Remark 9.11] use functions that are
continuous with respect to the weak-∗ topology on Σm,R. However, we doubt that the optimizers (f, g) in
the Monge-Kantorovich duality can always be chosen to be weak-∗ continuous. Nonetheless, it is worth
investigating in future research how E-convex functions and Legendre transforms behave with respect to
convergence in law.

6.2. Bimodule couplings and UCPT-convex functions. Another operator-algebraic analog of the
idea of coupling arises from bimodules over von Neumann algebras, which have been very important in
many areas of von Neumann algebras. For further background, see [12, Appendix F] and [2, §13].

Definition 6.5. If A and B are W∗-algebras, then a Hilbert A-B-bimodule is a Hilbert space H with
an A-B-bimodule structure, such that the associated maps A → B(H) and B → B(H) are weak-∗
continuous. Given tracial W∗-algebras A = (A, τ) and B = (B, σ) and a A-B-bimodule H, we say that
a vector ξ ∈ H is bitracial if 〈ξ, aξ〉 = τ(a) for a ∈ A and 〈ξ, ξb〉 = σ(b) for b ∈ B.

For example, suppose that there are tracial W∗-embeddings ι1 : A → C and ι2 : B → C. Then
L2(C) is a Hilbert L∞(A)-L∞(B)-bimodule and ξ = 1̂ ∈ L2(C) is a bitracial vector. Thus, bimodules
with bitracial vectors are a generalization of pair of tracial W∗-embeddings. In the case of a pair of
embeddings ι1 and ι2, there is an associated factorizable map ι∗2ι1 : A → B. In a similar way, general
L∞(A)-L∞(B)-bimodules with bitracial vectors correspond to general UCPT-maps.

Lemma 6.6 (See [2, §13.1.2]). Let A, B be tracial W∗-algebras. If H is a Hilbert L∞(A)-L∞(B)-bimodule
and ξ ∈ H is a bitracial vectors, then there exists a unique Φ ∈ UCPT(A,B) such that 〈ξ, aξb〉 = τB(Φ(a)b)
for all a ∈ L∞(A) and b ∈ L∞(B). Conversely, Φ ∈ UCPT(A,B), there exists a Hilbert L∞(A)-L∞(B)-
bimodule H and a bitracial vector ξ satisfying 〈ξ, aξb〉 = τB(Φ(a)b). If we further demand that H is
generated by ξ as a Hilbert L∞(A)-L∞(B)-bimodule, then the pair (H, ξ) is unique up to isomorphism.

The bimodules and their associated UCPT-maps lead to an alternative notion of couplings for non-
commutative random variables.

Definition 6.7. Let µ and ν ∈ Σm be non-commutative laws, and let (A, X) and (B, Y ) be the GNS
realizations of µ and ν respectively. A bimodule coupling of µ and ν is a Hilbert A-B-bimodule H together

6Questions of large-N convergence in mean field games are also extremely subtle and require regularity of the putative

model for the large-N limit.
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with a bitracial vector ξ. We define Cbim(µ, ν) to be the supremum of
∑m
j=1〈ξ,XjξYj〉 over all bimodule

couplings of µ and ν, or equivalently,

Cbim(µ, ν) = sup
Φ∈UCPT(A,B)

〈Φ(X), Y 〉L2(B)msa
.

We then define dbim(µ, ν) by

dbim(µ, ν)2 =

m∑
j=1

µ(x2
j ) +

m∑
j=1

ν(x2
j )− 2Cbim(µ, ν).

We remark that dbim(µ, ν) is the infimum of ‖Xξ− ξY ‖ in Hm over Hilbert L∞(A)-L∞(B)-bimodules
with bitracial vectors (this follows from (6.1) below). Moreover, the existence of optimal bimodule
couplings can be deduced from the compactness of UCPT(A,B) in the pointwise weak-∗ topology. The

properties of Cbim and dbim are quite similar to those of C and d
(2)
W only with factorizable maps replaced

by general UCPT maps, but we will see in Corollary 6.12 that they do not agree in general. But first,
for completeness, we give proofs of some of the basic properties with the aid of the following lemma.

Lemma 6.8. Let A and B be tracial W∗-functions and Φ ∈ UCPT(A,B). Let X ∈ L∞(A)msa and
Y ∈ L∞(B)msa with ‖X‖L∞(A)msa

≤ R and ‖Y ‖L∞(A)msa
≤ R. Then for i1, . . . , i` ∈ {1, . . . ,m}, we have

‖Φ(Xi1 . . . Xi`)− Yi1 . . . Yi`‖L2(B) ≤ `R`−1
(
‖X‖2L2(A)msa

− 2〈Φ(X), Y 〉L2(B)msa
+ ‖Y ‖L2(B)msa

)1/2

.

Proof. Let H be an L∞(A)-L∞(B) bimodule with a bitracial vector ξ such that 〈Φ(Z),W 〉L2(B) =
〈ξ, ZξW 〉L2(B) for all Z ∈ L∞(A) and W ∈ L∞(B). Direct computation shows that

‖Φ(Z)−W‖2L2(B) = ‖Φ(Z)‖2L2(B) − 2 Re〈Φ(Z),W 〉L2(B) + ‖W‖2L2(B)(6.1)

≤ ‖Z‖2L2(B) − 2 Re〈Φ(Z),W 〉L2(B) + ‖W‖2L2(B)

= ‖Zξ − ξW‖2.
This implies that

‖Φ(Xi1 . . . Xi`)− Yi1 . . . Yi`‖L2(B) ≤ ‖Xi1 . . . Xi`ξ − ξYi1 . . . Yi`‖

≤
∑̀
k=1

‖Xi1 . . . XikξYik+1
. . . Yi` −Xi1 . . . Xik−1

ξYik . . . Yi`‖

≤
∑̀
k=1

‖Xi1 . . . Xik−1
‖L∞(A)‖Xikξ − ξYik‖‖Yik+1

. . . Yi`‖L∞(B)

≤ `R`−1‖Xξ − ξY ‖

= `R`−1
(
‖X‖2L2(A)msa

− 2〈Φ(X), Y 〉L2(B)msa
+ ‖Y ‖L2(B)msa

)1/2

. �

Proposition 6.9. (Σm,R, dbim) is a complete metric space. If λ, µ ∈ Σm,R, then

(6.2) |λ(xi1 . . . xi`)− µ(xi1 . . . xi`)| ≤ `R`−1dbim(λ, µ) ≤ `R`−1d
(2)
W (λ, µ),

and in particular, the topology generated by dbim refines the weak-∗ topology, and the topology generated

by d
(2)
W refines the topology generated by dbim. Moreover, dbim is lower semi-continuous on Σm,R ×Σm,R

with respect to the weak-∗ topology.

Proof. In the following, let λ, µ, and ν ∈ Σm,R, and let (A, X), (B, Y ), and (C, Z) be their respective
GNS realizations.

First, we prove (6.2). If Φ ∈ UCPT(A,B), then using (6.1),

|λ(xi1 . . . xi`)− µ(xi1 . . . xi`)| = |τB(Φ(Xi1 . . . Xi`)− Yi1 . . . Yi`)|

≤ `R`−1
(
‖X‖2L2(A)msa

− 2〈Φ(X), Y 〉L2(B)msa
+ ‖Y ‖L2(B)msa

)1/2

.
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Taking the infimum over Φ, we obtain the first inequality of (6.2). The second inequality follows because

dbim(λ, µ) ≤ d(2)
W (λ, µ) since FM(A,B) ⊆ UCPT(A,B).

Next, we show that dbim is a metric on Σm,R (postponing the proof of completeness to the end).
Clearly, dbim(λ, µ) ≥ 0. If dbim(λ, µ) = 0, then by (6.2), we have λ = µ. Because every UCPT map has
a UCPT adjoint, we have

Cbim(λ, µ) = sup
Φ∈UCPT(A,B)

〈Φ(X), Y 〉L2(B)msa
= sup

Φ∈UCPT(A,B)

〈X,Φ∗(Y )〉L2(A)msa
= Cbim(µ, λ),

and hence dbim(λ, µ) = dbim(µ, λ). To prove the triangle inequality, we use the fact that UCPT maps are
closed under composition.7 Let Φ ∈ UCPT(A,B) and Ψ ∈ UCPT(B, C) be UCPT maps corresponding
to optimal bimodule couplings between λ and µ and between µ and ν respectively, so that

dbim(λ, µ)2 = ‖X‖2L2(A)msa
− 2〈Φ(X), Y 〉L2(B)msa

+ ‖Y ‖L2(B)msa

=
(
‖X‖2L2(A)msa

− ‖Φ(X)‖2L2(B)msa

)
+ ‖Φ(X)− Y ‖2L2(B)msa

≥ ‖Φ(X)− Y ‖2L2(B)

and

dbim(ν, µ)2 = ‖Z‖2L2(C)msa − 2〈Ψ∗(Z), Y 〉L2(B)msa
+ ‖Y ‖L2(B)msa

=
(
‖Z‖2L2(C)msa − ‖Ψ

∗(Z)‖2L2(B)msa

)
+ ‖Ψ∗(Z)− Y ‖2L2(B)

≥ ‖Ψ∗(Z)− Y ‖2L2(B).

Then

dbim(λ, ν)2 ≤ ‖X‖2L2(A)msa
− 2〈Ψ ◦ Φ(X), Z〉L2(C)msa + ‖Z‖2L2(C)msa

=
(
‖X‖2L2(A)msa

− ‖Φ(X)‖2L2(B)msa

)
+ ‖Φ(X)−Ψ∗(Z)‖2L2(B)msa

+
(
‖Z‖2L2(C)msa − ‖Ψ

∗(Z)‖2L2(B)msa

)
≤
(
‖X‖2L2(A)msa

− ‖Φ(X)‖2L2(B)msa

)
+ ‖Φ(X)− Y ‖2L2(B)msa

+ 2‖Φ(X)− Y ‖L2(B)msa
‖Ψ∗(Z)− Y ‖L2(B)msa

+ ‖Ψ∗(Z)− Y ‖2L2(B)msa
+
(
‖Z‖2L2(C)msa − ‖Ψ

∗(Z)‖2L2(B)msa

)
≤ dbim(λ, µ)2 + 2dbim(λ, µ)dbim(µ, ν) + dbim(µ, ν)2.

It follows from (6.2) that the dbim-topology refines the weak-∗ topology, and the Wasserstein topology
refines the dbim-topology.

Next, we show that dbim is lower semi-continuous with respect to the weak-∗ topology. Fix a non-
principal ultrafilter U on N, and suppose that (λn)n∈N and (µn)n∈N are sequences in Σm,R and (An, Xn)
and (Bn, Yn) are their respective GNS realizations. Let λ = limn→U λn and µ = limn→U µn. Let
A =

∏
n→U An and B =

∏
n→U Bn. Let X = [Xn]n∈N ∈ L2(A)msa and [Yn]n∈N ∈ L2(B)msa. By

Lemma 5.10, X and Y have non-commutative laws λ and µ respectively. Let Φn ∈ UCPT(An,Bn)
such that Cbim(λn, µn) = 〈Φ(Xn), Yn〉L2(Bn)msa

. If (Zn)n∈N and (Z ′n)n∈N are sequences in
∏
n∈NAn and

if limn→U‖Zn − Z ′n‖L2(An) = 0, then limn→U‖Φn(Zn) − Φn(Z ′n)‖L2(Bn) = 0 because each Φn is a con-

traction with respect to the L2 norms on A and B. Therefore, the equivalence class [Φn(Zn)]n∈N in B
only depends on the equivalence class [Zn]n∈N in A, so that the sequence Φn produces a well-defined
map Φ : A → B. It is straightforward to check that Φ ∈ UCPT(A,B). Let Φ′ : W∗(X) → W∗(Y ) be
the composition of the inclusion W∗(X)→ A, the map Φ : A → B, and the trace-preserving conditional
expectation B →W∗(Y ). Then

Cbim(λ, µ) ≥ 〈Φ′(X), Y 〉L2(W∗(Y ))msa
= 〈Φ(X), Y 〉L2(B)msa

= lim
n→U
〈Φn(Xn), Yn〉L2(Bn) = lim

n→U
Cbim(λn, µn).

This implies that dbim(λ, µ) ≤ limn→U dbim(λn, µn), so dbim is weak-∗ lower semi-continuous as desired.

7The corresponding notion for bimodules is the Connes fusion, and the proof of the triangle inequality is quite natural

from this viewpoint; however, we will use a more elementary argument.
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Finally, we show that (Σm,R, dbim) is complete. Let (λn)n∈N be a Cauchy sequence with respect to
dbim. Using (6.2), for each i1, . . . , i` ∈ {1, . . . ,m}, the sequence (λn(xi1 . . . xi`))n∈N is Cauchy and hence
converges in C to some limit λ(xi1 . . . xi`). Extend λ linearly to a map on C〈x1, . . . , xm〉 → C, and then
it is straightforward to check that λ ∈ Σm,R using Definition 2.25. Then because dbim is weak-∗ lower
semi-continuous,

dbim(λn, λ) ≤ lim inf
k→∞

dbim(λn, λk) ≤ sup
k≥n

dbim(λn, λk).

The right-hand side goes to zero as n → ∞ because (λn)n∈N was assumed to be Cauchy in dbim. This
shows that λn → λ in dbim as desired. �

We saw in the preceding argument that Cbim(µ, ν) ≥ C(µ, ν). In the commutative setting, we have
equality by a similar argument as in [11, Theorem 1.5]. (For further discussion of bimodules over com-
mutative tracial W∗-algebras, see [2, Example 13.1.2].)

Lemma 6.10. Let µ and ν ∈ Σm,R be non-commutative laws that can be realized by elements of com-
mutative tracial W∗-algebras. Then Cbim(µ, ν) = C(µ, ν), and there exists an optimal coupling in a
commutative tracial W∗-algebra.

Proof. Let (A, X) and (B, Y ) be the GNS realizations of µ and ν. Consider an optimal bimodule coupling
given by a Hilbert A-B-bimodule H and a bitracial vector ξ ∈ H. Let X ′j ∈ B(H) be the operator of
left multiplication by Xj , and let Yj ∈ B(H) be the operator of right multiplication by Yj . Let M be
the W∗-subalgebra of B(H) generated by X ′ = (X ′1, . . . , X

′
m) and Y ′ = (Y ′1 , . . . , Y

′
m). Since X ′i and Y ′j

commute and X ′i and X ′j commute and Y ′i and Y ′j commute, M is commutative. Let τ : M → C be the
map T 7→ 〈ξ, T ξ〉. Since M is commutative, τ is a trace (it is a state and satisfies τ(ab) = τ(ab)). We
have not shown that it is normal or faithful, but nonetheless, the map γ = λ(X′,Y ′) : C〈x1, . . . , x2m〉 → C
given by p 7→ τ(p(X,Y )) is still an element of Σ2m,R according to Definition 2.25. Moreover, since ξ was
a bitracial vector for A and B, we have τ(p(X ′)) = τA(p(X)) = µ(p) and τ(p(Y ′)) = τB(p(Y )) = ν(p).

Therefore, γ has the marginals µ and ν. If (C, (X̂, Ŷ )) is the GNS realization of γ, then C is commutative
because for any non-commutative polynomials p and q in 2m variables,

‖(pq − qp)(X̂, Ŷ )‖2L2(C) = γ[(pq − qp)∗(pq − qp)] = τ((pq − qp)∗(pq − qp)(X ′, Y ′)) = 0,

and non-commutative polynomials of X and Y are dense in L2(C) (by Lemma 2.34). Moreover,〈
X̂, Ŷ

〉
L2(C)msa

=

m∑
j=1

γ(xjxm+j) =

m∑
j=1

τ(X ′jY
′
j ) =

m∑
j=1

〈ξ,XjξYj〉.

Hence, (C, X̂, Ŷ ) is a coupling in a commutative tracial W∗-algebra which is also an optimal bimodule
coupling of µ and ν. �

For general non-commutative laws, the inequality C(µ, ν) ≤ Cbim(µ, ν) can be strict, even for non-
commutative laws of matrix tuples. We can deduce this from another result of Haagerup and Musat that
FM(Mn(C),Mn(C)) is in general strictly smaller than UCPT(Mn(C),Mn(C)), and in particular there is
an explicit non-factorizable UCPT map on M3(C).

Theorem 6.11 (Haagerup-Musat [32, Example 3.1], [33, Theorems 5.2 and 5.6]). For n > 1, let W−n :
Mn(C) → Mn(C) be the Holevo-Werner channel W−n (x) = 1

n−1 (Trn(x) − xt). Then W−n is a UCPT
map, and it is factorizable if and only if n 6= 3.

Combining non-factorizability of W−3 with Lemma 5.7 similarly to the proof of Corollary 5.14, we
deduce the following corollary.

Corollary 6.12. There exist X,Y ∈M3(C)9
sa such that Cbim(λX , λY ) > C(λX , λY ).

This shows that the metrics dbim and d
(2)
W are distinct. It is unclear to us whether dbim and d

(2)
W

generate the same topology. However, the results of §5.4 about the Wasserstein distance adapt to the
UCPT setting without much difficulty. For instance, we have the following analog of Lemma 5.16.
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Lemma 6.13. Let (µn)n∈N and µ be non-commutative laws. Let (A, X) be the GNS realization of µ. Let
An be a tracial W∗-algebra and Xn ∈ L∞(An)msa such that λXn = µn. Then the following are equivalent:

(1) limn→U dbim(µn, µ) = 0.
(2) There exists a tracial W∗-embedding φ : A →

∏
n→U An and there exists Φn ∈ UCPT(A,An) such

that
φ(X) = [Xn]n∈N, φ(Z) = [Φn(Z)]n∈N for all Z ∈ L∞(A).

Proof. (1) =⇒ (2). By Lemma 5.10, there is a tracial W∗-embedding φ : A →
∏
n→U An with

φ(X) = [Xn]n∈N. Let Φn ∈ UCPT(A,An) such that 〈Φn(X), Xn〉L2(An)msa
= Cbim(µn, µ). As in the

previous lemma, there exists Φ ∈ UCPT(A,
∏
n→U An) such that

Φ(Z) = [Φn(Z)]n∈N for all Z ∈ L∞(A).

It remains to show that Φ = φ. Let Xn = (X
(1)
n , . . . , X

(m)
n ) and X = (X(1), . . . , X(m)). Using (6.1), for

every i1, . . . , i` ∈ {1, . . . ,m}, we have

‖Φn(X(i1), . . . , X(i`))−X(i1)
n , . . . , X(i`)

n ‖L2(An) ≤ `R`−1
(
‖X‖2L2(A)msa

− 2〈Φn(X), Xn〉+ ‖Xn‖2L2(A)msa

)1/2

= `R`−1dbim(µn, µ).

Taking n→ U , we obtain

‖Φ(X(i1), . . . , X(i`))− φ(X(i1), . . . , X(i`))‖L2(
∏
n→U An) ≤ lim

n→U
`R`−1dbim(µn, µ) = 0.

Hence, Φ(p(X)) = φ(p(X)) for every non-commutative polynomial p. Since non-commutative polynomials
are in X are dense in L2(A) and Φ and φ are both contractions with respect to the L2 norm, we have
Φ = φ.

(2) =⇒ (1). The proof is the same as in Lemma 5.16, so we leave the details to the reader. �

In a completely analogous way to Proposition 5.21, one can deduce that the weak-∗ and dbim topologies
agree at some point µ ∈ Σm,R if and only if the corresponding tracial W∗-algebra A obtained from the
GNS construction is UCPT-stable, meaning that every tracial W∗-algebra embedding from A into some
ultraproduct

∏
n→U An of tracial W∗-algebras lifts to a sequence (Φn)n∈N where Φn ∈ UCPT(A,An).

Furthermore, if A is Connes-embeddable, then these two conditions are also equivalent to A being ap-
proximately finite-dimensional; the proof is essentially the same as that of [5, Theorem 2.6] or that
of Proposition 5.26. However, it is unknown how FM-stability and UCPT-stability are related in the
non-Connes-embeddable setting.

To circle back to Monge-Kantorovich duality, given the relationship of optimal couplings with factoriz-
able maps on the one hand and E-convex functions on the other hand, one might wonder whether there is
an alternative version of the theory of convex functions and Legendre transforms that is based on UCPT
maps rather than factorizable maps. Indeed, this is possible, and we will sketch here some of the basic
properties and the parts of the proof that are different from the E-convex case.

Definition 6.14. A W∗-function with values in [−∞,∞] is UCPT-convex if either f is identically −∞,
or else for every A, fA is a convex and lower semi-continuous function with values in (−∞,∞], and we
have fA(X) ≤ fB(Φ(X)) for every A, B ∈W and Φ ∈ UCPT(A,B) and X ∈ L2(A)msa.

Definition 6.15. The UCPT-Legendre transform of a tracial W∗-function f is the tracial W∗-function
Kf given by

(Kf)A(X) = sup
B∈W

Φ∈UCPT(A,B)

Y ∈L2(B)msa

〈Φ(X), Y 〉L2(B)msa
− fB(Y ).

We have the following analog of Proposition 3.17.

Proposition 6.16. If f , g be a tracial W∗-functions.

(1) Kf is UCPT-convex.
(2) If f ≤ g, then Kf ≥ Kg.
(3) We have K2f ≤ f with equality if and only if f is UCPT-convex.
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(4) K2f is the maximal UCPT-convex function that is less than or equal to f .

The proof is essentially the same as that of Proposition 3.17, modulo the necessary changes to work
with UCPT maps rather than tracial W∗-embeddings and conditional expectations. For instance, to
show monotonicity of Kf under UCPT maps, suppose that Φ ∈ UCPT(A,B) and X ∈ L2(A)msa. If
Ψ ∈ UCPT(B, C), then Ψ ◦ Φ ∈ UCPT(A, C). Therefore,

KfA(X) ≥ sup
C∈W

Ψ∈UCPT(B,C)
Y ∈L2(C)msa

(
〈Ψ ◦ Φ(X), Y 〉 − fC(Y )

)
= KfB(Φ(X)).

The relationship between the UCPT Legendre transform and the E-convex Legendre transform is as fol-
lows (compare the relationship between the E-convex Legendre transform and the Hilbert-space Legendre
tranform).

Corollary 6.17. Let f be a tracial W∗-function.

(1) If f is UCPT-convex, then f is E-convex.
(2) Kf ≥ Lf .
(3) K2f ≤ L2f .
(4) If f is UCPT-convex, then Kf = Lf .

Proof. (1) and (2) are immediate from the definitions of L and K since every tracial W∗-embedding is a
UCPT map.

(3) Observe that K2f is E-convex by (1) and K2f ≤ f . Therefore, Proposition 3.17 (4) implies that
K2f ≤ L2f .

(4) We already know that Lf ≤ Kf . For the reverse inequality, the idea is already contained in the
proof of Proposition 6.16 (3). Note that for A,B ∈ W and Φ ∈ UCPT(A,B) and X ∈ L2(A)msa and
Y ∈ L2(B)msa, we have

〈Φ(X), Y 〉L2(B)msa
− fB(Y ) ≤ 〈X,Φ∗(Y )〉L2(A)msa

− fA(Φ∗(Y )) ≤ LfA(X).

Taking the supremum over B, Φ, and Y , we obtain Kf ≤ Lf . �

The UCPT-analog of Monge-Kantorovich duality is as follows.

Definition 6.18. A pair of tracial W∗-functions (f, g) with values in (−∞,∞] is said to be UCPT-
admissible if for every A, B ∈W and X ∈ L2(A)msa and Y ∈ L2(B)msa and Φ ∈ UCPT(A,B), we have

fA(X) + gB(Y ) ≥ 〈Φ(X), Y 〉L2(B)msa
.

Proposition 6.19. Cbim(µ, ν) is equal to the infimum of µ(f) + ν(g) over all UCPT-admissible pairs of
tracial W∗-functions, as well as the infimum of µ(f) + ν(g) over all UCPT-admissible pairs of UCPT-
convex functions.

The proof is the same as that of Proposition 3.22; similarly, there is an UCPT analog of Proposition
3.23. However, although there is an analog of Monge-Kantorovich duality, there are many questions
about bimodule couplings for which the answer is not immediately clear:

• Is there a bimodule analog of the displacement interpolation?
• Is there a bimodule analog of the Lp Wasserstein distance for p 6= 2?
• Is there a useful subgradient characterization of UCPT-convexity analogous to Lemma 3.10?

• Do dbim and d
(2)
W generate the same topology on Σm,R?

Appendix A. Non-commutative laws and couplings for Lp variables

Although we have focused in this paper on the non-commutative L2-Wasserstein distance, Biane
and Voiculescu [11] also defined Lp Wasserstein distance for p ∈ [1,∞). Although they only defined
the Wasserstein distance for tuples of bounded operators, it is natural to extend the theory to non-
commutative Lp spaces. In this section, after reviewing the properties of affiliated operators to a tracial
W∗-algebra, we define laws, couplings, and Lp Wasserstein distance for m-tuples of self-adjoint operators
in non-commutative Lp space, and show the existence of optimal couplings and Wasserstein geodesics.
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A.1. Affiliated operators, Lp spaces. For background on unbounded operators, refer for instance
to [62, §VIII]. We recall that if H is a Hilbert and T : H ⊇ dom(T ) → H is a closed densely defined
unbounded operator, then T has a polar decomposition as U |T | where |T | is a positive self-adjoint operator
with dom(|T |) = dom(T ) and U is a partial isometry [62, §VIII.9].

We quote without proof the basic definitions and results about affiliated operators and non-commutative
Lp spaces. Affiliated operators were first studied by Murray and von Neumann in [50, §XVI], and the
non-commutative Lp spaces were studied in [24]. For a modern exposition of affiliated operators and Lp

spaces in English, see [20] as well as [2, §7.2].
Let A = (A, τ) be a tracial W∗-algebra. To avoid ambiguity, we use the notation HA rather than L2(A)

for the completion of A with respect to the inner product (a, b) 7→ τ(a∗b). We still use the notation â for
the element of HA corresponding to a ∈ A.

Definition A.1. Let A = (A, τ) be a tracial W∗-algebra, and let us view A as a subset of B(HA) as
in Theorem 2.8. A closed densely defined operator T : dom(T ) → HA with polar decomposition U |T |
is affiliated to A if U ∈ A and the spectral projection 1S(|T |) ∈ A for every Borel set S ⊆ [0,∞). We
denote the set of affiliated operators by Aff(A).

Example A.2. Let (Ω, P ) be a probability space and let A be L∞(Ω, P ) equipped with the trace given by
integration against P . Then Aff(A) can be canonically identified with measurable functions on Ω that
are finite almost everywhere, viewed as unbounded multiplication operators on L2(Ω, P ).

Theorem A.3. Let A = (A, τ) be a tracial W∗-algebra.

(1) Aff(A) satisfies the following properties:
• If T ∈ Aff(A), then T ∗ ∈ Aff(A).
• If T1, T2 ∈ Aff(A), then T1|dom(T1)∩dom(T2) + T2|dom(T1)+dom(T2) is closeable, and its closure

is in Aff(A).
• If T1, T2 ∈ Aff(A), then T1T2|T−1

2 (dom(T1)) is closeable and its closure is in Aff(A).

In this way, Aff(A) can be equipped with the structure of a ∗-algebra.
(2) The canonical inclusion A→ Aff(A) is a ∗-homomorphism. Moreover, if T ∈ Aff(A) is a bounded

operator, then T ∈ A.
(3) If T ∈ Aff(A) is a normal operator, and f is a Borel function on its spectrum, then f(T ) ∈ Aff(A).

If f is bounded, then f(T ) ∈ A. There is a unique probability measure µT on C such that
τ(f(T )) =

∫
f dµT for all bounded Borel functions f . The spectrum of T is exactly the closed

support of µT .
(4) Let Aff(A)+ be the set of positive operators affiliated to A = (A, τ). Then τ extends to a map

Aff(A)+ → [0,∞] satisfying

τ(T ) = lim
n→∞

τ(fn(T )),

whenever fn is any sequence of nonnegative Borel functions increasing to the identity function
on [0,∞).

Definition A.4. For a tracial W∗-algebra A = (A, τ) and p ∈ [1,∞), we define

Lp(A) = {T ∈ Aff(A) : τ(|T |p) <∞},

and we write

‖T‖Lp(A) = τ(|T |p)1/p.

As stated above, L∞(A) = A and ‖T‖L∞(A) is the norm on A.

Theorem A.5. Let A = (A, τ) as above.

(1) For p ∈ [1,∞], ‖·‖p defines a norm on Lp(A), and Lp(A) is a complete with respect to this norm,
hence it is a Banach space.

(2) A is a dense subspace of Lp(A) for p ∈ [1,∞).
(3) Let p, p1, p2 ∈ [1,∞] with 1/[= 1/p1 + 1/p2. If T1 ∈ Lp1(A) and T2 ∈ Lp2(A), then T1T2 ∈ Lp(A)

and ‖T1T2‖p ≤ ‖T1‖p1‖T2‖p2 .
(4) For p ∈ [1,∞], if T ∈ Lp(A), then T ∗ ∈ Lp(A) with ‖T‖p = ‖T ∗‖p.
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(5) τ extends uniquely to a bounded map L1(A)→ C (still denoted by τ or τA) that satisfies τ(a∗) = τ(a)
(6) Let p ∈ [1,∞) and let 1/p + 1/q = 1. Then Lq(A) may be canonically identified with the dual of

Lp(A) through the pairing (T1, T2) 7→ τ(T1T2). In particular, this yields an identification between
L1(A) and A∗.

(7) If A∗ is separable, then Lp(A) is separable for p ∈ [1,∞).

Theorem A.6. Let A = (A, τ), and T ∈ Aff(A). Then T ∈ L2(A) if and only if 1̂ ∈ dom(T ). There is

unitary isomorphism of Hilbert spaces φ : L2(A) → HA given by T 7→ T 1̂. Furthermore, for T ∈ L2(A)
and a ∈ A, we have φ(aT ) = aφ(T ).

The next lemma can be deduced from well-known facts about C∗-algebras as well as the properties of
affiliated operators and Lp spaces in the previous section.

Lemma A.7. Let ι : A → B be a tracial/ W∗-embedding. Then ‖ι(a)‖ = ‖a‖ for a ∈ A. Moreover, for
a ∈ A and p ∈ [1,∞), we have ι((a∗a)p/2) = (ι(a)∗ι(a))p/2. Hence, ‖ι(a)‖Lp(B) = ‖a‖Lp(A) for a ∈ A,
and therefore, ι extends to an isometric linear map Lp(A) → Lp(B) for every p ∈ [1,∞). In fact, ι
extends to an injective ∗-homomorphism Aff(A)→ Aff(B).

Notation A.8. If ι : A → B is a tracial W∗-embedding, we will denote the extended map Aff(A) →
Aff(B) also by ι.

Proposition A.9. Let ι : A = (A, τ)→ B = (B, σ) be a tracial W∗-embedding. Let E : L2(B)→ L2(A)
be the adjoint of the map ι : L2(A)→ L2(B).

(1) For p ∈ [1,∞], E to a unique bounded linear map Lp(B)→ Lp(B), and (denoting the extended map
still by E) we have ‖E(b)‖Lp(A) ≤ ‖b‖Lp(B).

(2) For all b ∈ L1(B), we have τ(E(b)) = σ(b); in other words, E is trace-preserving.
(3) For all b ∈ L1(B), we have E(b∗) = E(b)∗.
(4) If b ∈ Lp(B) and a ∈ Lq(A) with 1/p+ 1/q = 1, then E[ι(a)b] = aE[b] and E[bι(a)] = E[b]a.

Sketch of proof. (1) Fix p, q ∈ [1,∞] with 1/p+ 1/q = 1. If a ∈ L∞(A) and b ∈ L∞(B), we have

|〈a,E[b]〉A| = |〈ι(a), b〉L2(B)msa
| ≤ ‖ι(a)‖Lq(B)‖b‖Lp(B) = ‖a‖Lq(A)‖b‖Lp(B).

By density of L∞(A) in Lq(A) and the duality of Lq(A) and Lp(A), we obtain ‖E[b]‖Lp(A) ≤ ‖b‖Lp(B),
and the extension follows from this.

(2) Since ι(1) = 1 and E = ι∗, we obtain τ(E(b)) = σ(b) for b ∈ L2(B) and this extends to L1(B) by
density.

(3) (4) The claims are first checked for b ∈ L∞(B) and a ∈ L∞(A) using the properties of the trace
and the fact that E is the adjoint of ι, by similar reasoning as in Lemma 1.17. Then we use density of
L∞ in Lp to conclude. �

Notation A.10. Let A = (A, τ) be a tracial W∗-algebra. Let X = (X1, . . . , Xm) ∈ Aff(A)m. We denote
by W∗(X) the smallest W∗-subalgebra of A to which X1, . . . , Xm are affiliated operators. Equivalently,
letting Xj = Uj |Xj | be a polar decomposition of Xj , W∗(X) is the weak-∗ closure of the ∗-algebra
generated by Uj and f(|Xj |) for bounded Borel functions f : R→ C and j = 1, . . . , m. We view W∗(X)
as a tracial W∗-algebra, where the trace is the simply the restriction of τ .

Notation A.11. Let A = (A, τ) and B = (B, σ) be tracial W∗-algebras. For p ∈ [1,∞], we equip
Lp(A)m with the norm

‖(X1, . . . , Xm)‖Lp(A)m =


(∑m

j=1 τ((X∗jXj)
p/2)

)1/p

, p <∞,
maxj=1,...,m‖Xj‖A, p =∞

Note that Lp(A)msa is a real subspace of Lp(A)m. For X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) in L2(A)m,
we define

〈X,Y 〉L2(A)m =

m∑
j=1

τ(X∗j Yj) =

m∑
j=1

〈Xj , Yj〉A.
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Given a tracial W∗-embedding ι : A → B and the corresponding conditional expectation E : B → A, if
X ∈ L1(A)m and Y ∈ L1(B)m, we write

ι(X) := (ι(X1), . . . , ι(Xm)), E[Y ] := (E[Y1], . . . , E[Ym]).

Note that ι and E both preserve the real subspaces of self-adjoint tuples.

A.2. Laws and the Wasserstein distance for Lp variables. To extend the notion of non-commutative
laws and couplings to Lp variables, we use a fairly standard trick in operator algebras, namely transforming
an unbounded operator into a bounded operator using functional calculus. If (X1, . . . , Xm) ∈ Lp(A)msa,
then arctan(X) := (arctan(X1), . . . , arctan(Xm)), where arctan(Xj) is defined by functional calculus,
is an m-tuple of bounded self-adjoint operators with has a non-commutative law λarctan(X) ∈ Σm,π/2.
Rather than defining λX directly, we will work with λarctan(X) instead. The analogous procedure in
classical probability theory would be to study a probability distribution µ on Rm through the com-
pactly supported probabilitity distribution arctan∗ µ obtained by pushing forward µ by the function
(x1, . . . , xd) 7→ (arctan(x1), . . . , arctan(xd)).

Given a law λ ∈ Σm,π/2, the following criterion decides whether λ = λarctan(X) for some m-tuple X in
a non-commutative Lp-space:

Lemma A.12. Let λ ∈ Σm,π/2. For each j there is a measure λj on [−π/2, π/2] with
∫
f(x) dλj(x) =

λ(f(xj)) for all non-commutative polynomials f . The following are equivalent:

(1) tan ∈ Lp(λj) for every j.
(2) There exists a tracial W∗-algebra A and X ∈ Lp(A)msa such that λ = λarctan(X).

Proof. (1) =⇒ (2). Let (A, Y ) be the GNS realization of λ given by Proposition 2.31. Then λj is the
spectral distribution of Yj with respect to τ . Because tan ∈ Lp(λj) for each j, we know that λj has no mass
at ±π/2 and therefore Xj = tan(Yj) is a well-defined self-adjoint operator affiliated to A. Using Theorem
A.3 (3), we have µtan(Yj) = tan∗ µYj = tan∗ λj . Hence, τ(|Xj |p) =

∫
|t|p dµXj (t) =

∫
| tan t|p dλj(t) <∞.

Therefore, Xj ∈ Lp(A)sa and λarctan(Xj) = λ.
(2) =⇒ (1). If X is as in (2), then let Yj = arctan(Xj). The spectral distribution of Yj with respect

to τ is thus µYj = λ. �

Definition A.13. We define Σ
(p)
m as the set of non-commutative laws λ in Σm,π/2 such that tan ∈ L2(λj)

for every j. We define the weak-∗ topology on Σ
(p)
m as the restriction of the weak-∗ topology on Σm,π/2.

Next, we define couplings of laws in Σ
(p)
m . It will be useful to have two different points of view on

couplings, one more measure-theoretic, and the other more probabilistic.

Definition A.14. Given µ, ν ∈ Σ
(p)
m , a measure-theoretic coupling of µ and ν is a law γ ∈ Σ

(p)
2m

such that γ(f(x1, . . . , xm)) = µ(f(x1, . . . , xm)) and γ(f(xm+1, . . . , x2m)) = ν(f(x1, . . . , xm)) for all

f ∈ C〈x1, . . . , xm〉. We denote by Γ(p)(µ, ν) ⊆ Σ
(p)
2m the space of measure-theoretic couplings.

Definition A.15. A probabilistic coupling of µ and ν is a tuple (A, X, Y ), where A is a tracial W∗-algebra
and X,Y ∈ Lp(A)msa with λarctan(X) = µ and λarctan(Y ) = ν.

Of course, if (A, µ, ν) is a probabilistic coupling, then γ = λarctan(X),arctan(Y ) is a measure-theoretic
coupling. Conversely, if γ is a measure-theoretic coupling, then a probabilistic coupling can be obtained
from the GNS construction of γ.

Definition A.16 (Wasserstein distance). For a given µ, ν ∈ Σ
(p)
m , we define d

(p)
W (µ, ν) to be the infimum

‖X − Y ‖Lp(A)msa
over all probabilistic couplings (A, X, Y ) with A ∈W.

Proposition A.17. The Wasserstein distance d
(p)
W defines a metric on the set Σ

(p)
m which makes it into

a complete metric space.

The argument to show that d
(p)
W is a metric on Σ

(p)
m is exactly the same as in [11]. The hardest axiom

to verify is the triangle inequality, but this follows because a coupling of µ1 and µ2 and a coupling of µ2

and µ3 can be joined by taking the amalgamated free product of the tracial W∗-algebras corresponding

to the two couplings over the subalgebra generated by the variables corresponding to µ2. Hence, Σ
(p)
m is

a metric space.
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A.3. Optimal couplings and Wasserstein geodesics.

Definition A.18. A probabilistic coupling (A, X, Y ) of µ and ν ∈ Σ
(p)
m is said to be optimal if ‖X −

Y ‖Lp(A)msa
= d

(p)
W (µ, ν); in this case we also say that the corresponding measure-theoretic coupling is

optimal. We denote the space of optimal measure-theoretic couplings by Γ
(p)
opt(µ, ν).

To show the existence of optimal couplings, we use a certain type of continuity and compactness.

Lemma A.19. Let p ∈ [1,∞). Then Γ(p)(µ, ν) is compact in the weak-∗ topology. For γ ∈ Γ(p)(µ, ν),
the quantity

N(γ, p) := ‖X − Y ‖Lp(A)msa
where γ = λarctan(X),arctan(Y ),

where (X,Y ) ∈ L2(A)msa is a 2m-tuple with λarctan(X),arctan(X), only depends on γ, and moreover γ 7→
N(γ, p) is continuous.

Proof. First, Γ(p)(µ, ν) is compact because it is a closed subset of Σ2m,π/2, which is compact. To show
well-definedness and continuity γ 7→ N(γ, p), first note that for any polynomial φ, the map

λZ,Z′ 7→ ‖φ(Z)− φ(Z ′)‖Lp(A)msa

is well-defined and continuous on Σ2m,π. Indeed, let M be an upper bound on |φ| and let gm be a

sequence of polynomials that converge uniformly on [−2M, 2M ] to the function | · |p/2. Then gm((φ(Z)−
φ(Z ′))∗(φ(Z)−φ(Z ′))) converges to |φ(Z)−φ(Z ′)|p and the rate of convergence is uniform for all A and
all (Z,Z ′) with ‖(Z,Z ′)‖∞ ≤ π because of the spectral mapping theorem. The continuity of

λZ,Z′ 7→
m∑
j=1

gm(φ(Z)− φ(Z ′)) = λZ,Z′(gm(φ(xj)− φ(xm+j)))

is immediate by definition of the weak-∗ topology. Thus, the continuity of λZ,Z′ 7→ ‖φ(Z) − φ(Z ′)‖p
follows from uniform convergence. Similarly, using uniform convergence, we can generalize φ from a
polynomial to an arbitrary continuous real-valued function on [−π/2, π/2].

Now let φm ∈ C([−π/2, π/2];R) be a sequence such that |φm| ≤ | tan | and φm → tan pointwise.
Suppose that γ ∈ Γ(p)(µ, ν) and γ = λ(Z,Z′). Then (tan(Z), τ(Z ′)) ∈ Lp(A)msa. Also,

|‖tan(Z)− tan(Z ′)‖p − ‖φm(Z)− φm(Z ′)‖| ≤
m∑
j=1

‖tan(Zj)− φm(Zj)‖Lp(A) +

m∑
j=1

‖tan(Z ′j)− φm(Z ′j)‖Lp(A)

=

m∑
j=1

(∫
| tan−φm|p dµj

)1/p

+

m∑
j=1

(∫
| tan−φm|p dνj

)1/p

,

where µj and νj are the measures on [−π/2, π/2] representing the jth marginals of µ and ν respectively.
The bound on the right-hand side only depends on µ and ν and thus is a uniform bound for all γ ∈
Γ(p)(µ, ν). Furthermore, by the dominated convergence theorem | tan−φm| → 0 in Lp(µj) and Lp(νj).
Therefore, the map sending γ to ‖tan(Z)−tan(Z ′)‖Lp(A)msa

is continuous as the uniform limit of continuous
maps. �

Corollary A.20. For each µ, ν ∈ Σ
(p)
m , the space of optimal couplings Γ

(p)
opt is nonempty and compact.

Given the existence of L2 optimal couplings, all the theorems from §3 and §4 can be generalized to

Σ
(2)
m with the appropriate changes to notation. Almost no change is needed for the proofs since E-convex

functions were defined for L2 non-commutative random variables to begin with.
Just as in the case of classical probability theory, the existence of optimal couplings and the ability

to take convex combinations of non-commutative random variables immediately leads to the existence of

geodesics between any two points in Σ
(p)
m .

Definition A.21. Let (Ω, d) be a metric space. A geodesic in (Ω, d) is a continuous map g : I → Ω,
where I ⊆ R is an interval (of positive length), such that for all t1 < t2 < t3 in I, we have

d(g(t1), g(t3)) = d(g(t1), g(t2)) + d(g(t2), g(t3)).

The geodesic is said to be constant speed if d(g(t1), g(t2))/(t2 − t1) is constant for all t1 < t2.



56 WILFRID GANGBO, DAVID JEKEL, KYEONGSIK NAM, AND DIMITRI SHLYAKHTENKO

Proposition A.22. Let p ∈ [1,∞). Let µ, ν ∈ Σ
(p)
d , and let (A, X, Y ) be a probabilistic optimal coupling.

For t ∈ [0, 1], let Xt = (1− t)X + tY . Let µt = λarctan(Xt). Then t 7→ µt is a constant speed geodesic in

(Σ
(p)
m , d

(p)
W ). Moreover, for s, t ∈ [0, 1], (A, Xs, Xt) is an optimal coupling of µs and µt.

Proof. Of course,

d
(p)
W (µs, µt) ≤ ‖Xs −Xt‖Lp(A)msa

= |s− t|‖X − Y ‖Lp(A)msa
.

Thus, for s < t,

‖X − Y ‖Lp(A)msa
= d

(p)
W (X,Y )

≤ d(p)
W (X,Xs) + d

(p)
W (Xs, Xt) + d

(p)
W (Xt, Y )

≤ ‖X −Xs‖Lp(A)msa
+ ‖Xs −Xt‖Lp(A)msa

+ ‖Xt − Y ‖Lp(A)msa

= ‖X − Y ‖Lp(A)msa
.

Thus, all the inequalities are forced to be equalities. Hence, d
(p)
W (µs, µt) = (t − s)d(p)

W (µ, ν). Therefore,

t 7→ µt is a constant speed geodesic. Also, d
(p)
W (µs, µt) = ‖Xs − Yt‖Lp(A)msa

, so that (A, Xs, Xt) is an
optimal coupling. �
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