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Abstract: We present an elementary proof of an important result of Y. Brenier ([Br1], [Br2]), namely
that vector fields in R

d satisfying a nondegeneracy condition admit the polar factorization

(∗) u(x) = ∇ψ(s(x)),

where ψ is a convex function and s is a measure-preserving mapping. Brenier solves a minimization
problem using Monge-Kantorovich theory, whereas we turn our attention to a dual problem, whose
Euler-Lagrange equation turns out to be (∗).
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1 Introduction.

Given a vector-valued mapping u ∈ Lp(Ω,Rd) (1 ≤ p ≤ ∞), we cannot expect in general that u is
the gradient of a mapping ψ : R

d → R. However Y. Brenier proved in [Br1] and in [Br2] that there
exists a convex function whose gradient is equal to u up to a rearrangement, provided that u satisfies
a nondegeneracy condition, so-called N−1-property (see below). Precisely, he proved that there exist a
convex function ψ : R

d → R ∪ {∞} and a measure-preserving mapping s : Ω̄ → Ω̄ such that u = ∇ψ ◦ s.
He termed this decomposition formula the polar factorization of u.

This paper provides a new and elementary proof of the polar factorization of vector-valued mappings
u ∈ Lp(Ω,Rd) (1 ≤ p ≤ ∞) satisfying the N−1− property. The proof does not use any tools of Monge-
Kantorovich theory as in [Br1] and in [Br2] and relies instead on convex analysis, namely on Lemma 2.4
which says under some technical assumptions, that for every h ∈ C(Ω̄) we have

lim
r→0

φr(y) − ψ∗(y)
r

= −h(∇ψ∗(y)) (1)

for almost every y ∈ BR, where

φr(y) = sup{yz − ψ(z) − rh(z) | z ∈ Ω} and ψ∗ = φ0.

We establish first the polar factorization formula for every mappings u ∈ L∞(Ω,Rd). More precisely in
Theorem 2.3, we fix Ω ⊂ R

d an open, bounded set such that meas(∂Ω) = 0, and u ∈ L∞(Ω,Rd), a
mapping that satisfies the N−1− property. We assume that the closure of u(Ω) is contained in the ball
BR of center zero and radius R. As in [Br1] we prove that the following variational problem admits a
minimizer

i∞ = inf{I(φ, ψ) | (φ, ψ) ∈ ER}, (2)

where
I(φ, ψ) =

∫
Ω

[φ(u(x)) + ψ(x)]dx,

ER = {(φ, ψ) |φ ∈ C(BR) ∩ L∞(BR), ψ ∈ C(Ω) ∩ L∞(Ω), φ(y) + ψ(z) ≥ yz ∀(y, z) ∈ BR × Ω}
and

S = {s : Ω̄ → Ω̄ | s is a measure-preserving mapping}.
We also prove that a dual problem of the problem in (2) is

sup{
∫

Ω

u(x)s(x)dx | s ∈ S}. (3)

or, equivalently, the projection problem

1
2

inf{
∫

Ω

||u(x) − s(x)||2dx | s ∈ S}. (4)

We prove that i∞ is attained by convex functions (ψ∗, ψ) ∈ ER where ψ∗ denotes the Legendre-Fenchel
transform of ψ (see Definition 4.1). As (ψ∗, ψ) is a minimizer of (2) and as ((ψ+ rh)∗, ψ+ rh) ∈ ER, one
can readily check, as we do in the next section, that

lim
r→0

I((ψ + rh)∗, ψ + rh) − I(ψ∗, ψ)
r

= 0. (5)

As u satisfies the N−1−property, (1) and (5) yield
∫

Ω

h(x)dx =
∫

Ω

h(∇ψ∗(u(x))dx.
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Since h ∈ C(Ω̄) is arbitrary, we deduce that s := ∇φ∗ ◦ u is a measure-preserving mapping from Ω̄
into Ω̄; hence, the polar factorization formula is established for L∞ mappings. Using an approximation
argument and Proposition 4.4, it is straightforward to check that the polar factorization formula holds
for Lp mappings (see Corollary 3.1).

By a well-known property of convex analysis relating ψ∗ to ψ, the equation s(x) = ∇ψ∗ ◦u(x) implies

ψ∗(u(x)) + ψ(s(x)) = u(x)s(x) (6)

for almost every x ∈ Ω. As a consequence, a dual to the problem in (2) is the problem in (3) or equivalently
the problem in (4).

This paper is organized as follows. In the second section we recall first some well-known definitions
and then we state the main result of this paper for L∞ functions, namely, the factorization formula for L∞

mappings. We deduce that a dual of the problem in (2) is the problem in (3). In the third section, using
the factorization formula for L∞ mappings and an approximation argument, we deduce the factorization
formula for Lp mappings and prove a duality result. For completeness, we end up this paper with an
appendix, where we review some well-known definitions and some properties of convex functions.

After this work was completed, I looked in L. Caffarelli’s paper, ”Boundary regularity of maps with
convex potentials”, Comm. Pure Appl. Math XLV (1992), p. 1141-1151, which notes in passing that
somewhat similar approach to Brenier’s theory has apparently been observed by S. Varadhan. I am not
aware of any detailed proofs in the literature, however.

2 The polar factorization for L∞ mappings.

In this section we state the main result of this paper that is the polar factorization formula for L∞

mappings (Theorem 2.3). Throughout this section γ > 0 is a constant, Ω ⊂ R
d is an open bounded set

such that meas(∂Ω) = 0 and Ω̄ ⊂ Bγ . For each R > 0 we define ER to be the set

ER = {(φ, ψ) |φ ∈ C(BR) ∩ L∞(BR), ψ ∈ C(Ω) ∩ L∞(Ω), φ(y) + ψ(z) ≥ yz ∀(y, z) ∈ BR × Ω},
and we recall the following well-known definitions.

Definition 2.1 Assume that s : Ω̄ → Ω̄. We say that s is a measure-preserving mapping if s satisfies the
following equivalent properties:

(i) s−1(A) is measurable and meas(s−1(A)) = meas(A),

for every A ⊂ Ω̄ measurable set.

(ii) f ◦ s ∈ L1(Ω) and
∫

Ω

f ◦ s(x)dx =
∫

Ω

f(x)dx,

for every f ∈ L1(Ω).

Definition 2.2 Let E ⊂ R
d be a measurable set. A mapping u : E → R

d is said to satisfy the N−1−
property if meas(u−1(N)) = 0 whenever N ⊂ R

d and meas(N) = 0.

Theorem 2.3 Let u ∈ L∞(Ω,Rd) be a vector-valued mapping satisfying the N−1−property and let R > 0
be such that u(Ω) ⊂ BR. Consider the following variational problem

i∞ = inf{I(φ, ψ) :=
∫

Ω

[φ(u(x)) + ψ(x)]dx | (φ, ψ) ∈ ER}. (7)
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Then
(i) (Brenier) The minimum is attained for some pair (φ0, ψ0) ∈ ER.
(ii) There exist two convex, Lipschitz functions φ, ψ : R

d → R that extend φ0, ψ0 respectively.
(iii) The Euler-Lagrange equation corresponding to (7) is:

u(x) = ∇ψ(s(x)), (8)

for almost every x ∈ Ω, where s : Ω̄ → Ω̄ is a measure-preserving mapping.
(iv) A dual problem of the problem in (7) is

j∞ = inf{
∫

Ω

u(x)s(x)dx | s is a measure-preserving mapping on Ω̄}, (9)

in the sense that i∞ = j∞.

We prove in the next section that there exist a unique pair of functions (ψ, s) satisfying the assumptions
of Theorem 2.3 and satisfying

∫
Ω ψ(z)dz = 0.

We prove first the following lemma, which is the main key in proof of Theorem 2.3.

Lemma 2.4 Let ψ : R
d → R be a convex function such that

ψ∗(y) = sup{yz − ψ(z) | z ∈ Ω̄} (10)

for every y ∈ R
d. For h ∈ C(Rd) ∩ L∞(Rd) and r ∈ [0, 1] define

fr(y) = sup{yz − ψ(z) − rh(z) | z ∈ Ω̄}.
Then
(i)

||fr(y) − f0(y)|| ≤ r||h||∞,
for every y ∈ R

d and
(ii)

lim
r→0

fr(y) − f0(y)
r

= −h(∇f0(y)) = −h(∇ψ∗(y))

for almost every y ∈ R
d.

Proof. Assertion (i) is trivial. To prove (ii) we first define

N = {y ∈ R
d |ψ∗ is not differentiable at y}.

By Proposition 4.5 in the Appendix, dom(ψ∗) := {x ∈ R
d | ψ∗(x) <∞} = R

d, and so by Proposition 4.3

meas(N) = 0. (11)

Let y ∈ R
d \N and let {ar, br}r∈(−1,1) ⊂ Ω̄ be such that

fr(y) ≤ ybr − ψ(br) − rh(br) + r2 ≤ f0(y) − rh(br) + r2 (12)

and
f0(y) ≤ yar − ψ(ar) + r2 ≤ fr(y) + rh(ar) + r2. (13)

We observe

−h(ari) − ri ≤ fri(y) − f0(y)
ri

≤ −h(bri) + ri (14)
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for any sequence {ri}+∞
i=1 ⊂ (0, 1) that converges to 0 as i goes to +∞. Up to a subsequence of {ri}+∞

i=1

we still denote by {ri}+∞
i=1 there exist a, b ∈ Ω̄ such that

a = lim
i→+∞

ari and b = lim
i→+∞

bri (15)

Letting i go to +∞ in (12) and (13) and noting by (i) that fr converges to f0 uniformly in R
d, we deduce

that
ψ∗(y) = f0(y) = ya− ψ(a) = yb− ψ(b). (16)

Consequently,
a, b ∈ ∂ψ∗(y) = {∇ψ∗(y)},

where ∂ψ∗(y) is the subdifferential of f at the point y ∈ R
d (see [Ro] for the definition of the subdiffer-

ential). Letting i go to +∞ in (14) we obtain

lim
i→+∞

fri(y) − f0(y)
ri

= −h(∇ψ∗(y)).

As {ri}+∞
i=1 is an arbitrary sequence of (0, 1) we deduce that

lim
r→0+

fr(y) − f0(y)
r

= −h(∇ψ∗(y)).

By a similar argument we obtain

lim
r→0−

fr(y) − f0(y)
r

= −h(∇ψ∗(y)).

As y ∈ R
d \N is arbitrary, we deduce with the help of (11) that

lim
r→0

fr(y) − f0(y)
r

= −h(∇ψ∗(y))

for almost every y ∈ R
d.

Proof of Theorem 2.3 We divide the proof into two steps.
Step1. Following Brenier (see [Br1] p.414) we prove first that there exists a pair (φ, ψ) ∈ ER such that
i∞ = I(φ, ψ). Let {(fn, gn)} ⊂ ER be a minimizing sequence. We observe that

{(φ̃n, ψ̃n)} := {(fn − inf
y∈BR

fn(y), gn + inf
y∈BR

fn(y)} ⊂ ER

and is still a minimizing sequence such that

inf
y∈BR

φ̃n(y) = 0. (17)

Set
ψn(z) = sup{yz − φ̃n(y) | y ∈ BR}, ∀y ∈ R

d (18)

and
φn(z) = sup{yz − ψn(z) | z ∈ Ω}, ∀z ∈ R

d. (19)

By Proposition 4.5, (17), (18) and (19) we have

ψn, φn ∈ C(Rd), (20)

Lip(φn) ≤ dγ
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ψn(0) = 0,

Lip(ψn) ≤ dR

0 ≤ φn(y) ≤ γ(||y|| +R) ∀y ∈ R
d

and
||ψn(z)|| ≤ R||z|| ∀z ∈ R

d.

By Ascoli’s theorem there exist two functions Lipschitz f, g : R
d → R such that ψn converges to g

uniformly in every compact set of R
d, φn converges to f uniformly in every compact set of R

d,

g(0) = 0, Lip(g) ≤ dγ, (21)

Lip(f) ≤ dR (22)

0 ≤ f(y) ≤ γ(||y|| +R) ∀y ∈ R
d (23)

and
||g(z)|| ≤ R||z|| ∀z ∈ R

d. (24)

Claim1: {(φn, ψn)} ⊂ ER and is still a minimizing sequence.
By (19) we obtain that

ψn(z) + φn(y) ≥ yz ∀(y, z) ∈ BR × Ω

and so by (20) we deduce that {(φn, ψn)} ⊂ ER. As (φ̃n, ψ̃n) ∈ ER, (18) implies that

ψn(z) ≤ ψ̃n(z)

for all z ∈ Ω. It is also straightforward to check that

φn(y) ≤ φ̃n(y)

for all y ∈ BR and so ∫
Ω

[φn(u(x)) + ψn(x)]dx ≤
∫

Ω

[φ̃n(u(x)) + ψ̃n(x)]dx.

Hence, {(φn, ψn)} is still a minimizing sequence. As ψn converges to g uniformly in every compact set of
R

d and φn converges to f uniformly in every compact set of R
d, we obtain

i∞ = I(f, g).

It is straightforward to check that f and g are convex functions and so (i) and (ii) are proved.

Step2. To prove (iii), we first define

f̃(y) = sup{yz − g(z) | z ∈ Ω̄} ∀y ∈ R
d.

and
ψ = (f̃)∗.

It is obvious that f̃ and ψ are two convex functions satisfying

f̃(y) ≤ f(y)

for every y ∈ BR,
ψ(z) ≤ g(z)

for every z ∈ R
d and

(f̃ , ψ) ∈ ER.
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Hence
i∞ = I(f̃ , ψ). (25)

By Proposition 4.5, (25) and by the definition of ψ, setting φ = f̃ we obtain that

φ∗ = ψ, ψ∗ = φ, (26)

φ|u(Ω) = f |u(Ω), ψ|Ω = g|Ω (27)

and
φ(y) = sup{yz − ψ(z), | z ∈ Ω̄} ∀y ∈ R

d. (28)

For each h ∈ C(Rd) ∩ L∞(Rd) and each r ∈ (0, 1) we define

fr(y) = sup{yz − ψ(z) − rh(z) | z ∈ Ω̄} ∀y ∈ R
d

and
gr(z) = ψ(z) + rh(z) ∀z ∈ R

d.

Lemma 2.4, (26) and (28) imply that

lim
r→0

fr(y) − f0(y)
r

= −h(∇f0(y)) = −h(∇ψ∗(y))

and

|fr(y) − f0(y)
r

| ≤ ||h||∞ + r

for almost every y ∈ R
d and so, since u satisfies the N−1− property and since meas(∂Ω) = 0 we deduce

that

lim
r→0

fr(u(x)) − f0(u(x))
r

= −h(∇f0(u(x))) = −h(∇ψ∗(u(x))) (29)

and

|fr(u(x)) − f0(u(x))
r

| ≤ ||h||∞ + r (30)

for almost every x ∈ Ω. One can readily check that {(fr, gr)} ⊂ ER and will the help of (29) and (30)
check that

lim
r→0

I(fr, gr) − I(f0, g0)
r

=
∫

Ω

[h(x) − h(∇ψ∗(u(x)))]dx

and so using the definition of f0, (26), (28), as (f0, g0) is a minimizer of I on ER and as {(fr, gr)} ⊂ ER

we deduce that
0 =

∫
Ω

[h(x) − h(∇ψ∗(u(x)))].

Since h ∈ C(Rd) ∩ L∞(Rd) is arbitrary, if we define

s(x) = ∇ψ∗(u(x)) (31)

for almost every x ∈ Ω, as meas(∂Ω) = 0 we may extend s to Ω̄ and we obtain that s : Ω̄ → Ω̄ is a
measure-preserving mapping. By (26) and (31) we deduce that

u(x) = ∇ψ∗∗(s(x)) = ∇ψ(s(x)) (32)

for almost every x ∈ Ω̄.

Step3. We prove (iv). For every (f, g) ∈ ER and every measure-preserving mapping t on Ω, we have
∫

Ω

[f(u(x)) + g(x)]dx =
∫

Ω

[f(u(x)) + g(t(x))]dx ≥
∫

Ω

u(x)t(x)dx

7



and so
i∞ ≥ j∞. (33)

Let (φ, ψ) ∈ ER be the pair of convex functions of step2 and let s be the measure-preserving mapping on
Ω of step2, such that (32) holds. We observe that

φ(u(x)) + ψ(s(x)) = u(x)s(x)

for almost every x ∈ Ω̄ and so

j∞ ≥
∫

Ω

u(x)s(x)dx =
∫

Ω

[φ(u(x)) + ψ(s(x))]dx ≥ i∞. (34)

By (33) and (34) we deduce that i∞ = j∞, i.e. the problem in (7) is dual to the problem in (9).

3 The polar factorization for Lp mappings.

The main result of this section is the polar factorization for Lp mappings and a duality result (Corollary
3.1). In Corollary 3.2 we prove that given a mapping u, the polar factors ψ and s such that u = ∇ψ ◦ s
are uniquely determine in a sense to be precised and the mapping u → (ψ, s) is a continuous mapping.

Throughout this section γ > 0 is a constant, Ω ⊂ R
d is an open, bounded set such that Ω̄ ⊂ Bγ .

Corollary 3.1 Let 1 ≤ p ≤ +∞ and let u ∈ Lp(Ω,Rd) be a vector-valued mapping satisfying the
N−1−property. Then
(i) the problem

ip = inf{
∫

Ω

[φ(u(x)) + ψ(x)]dx | (φ, ψ) ∈ E} (35)

is dual to the problem

jp = sup{
∫

Ω

s(x)u(x) | s ∈ S}, (36)

in the sense that ip = jp, where

E = {(φ, ψ) |φ ∈ C(Rd) ∩ L1
u(Rd), ψ ∈ C(Ω) ∩ L1(Ω), φ(y) + ψ(z) ≥ yz ∀(y, z) ∈ R

d × Ω},

L1
u(Rd) = {φ : R

d → R |φ ◦ u ∈ L1(Ω)}
and as in the previous section

S = {s : Ω̄ → Ω̄ measure-preserving mapping}.

(ii) In addition u can be factored into
u(x) = ∇ψ(s(x)), (37)

for almost every x ∈ Ω, where s ∈ S, ψ ∈ W 1,p(Ω) admits a convex extension on R
d and satisfies∫

Ω ψ(x)dx = 0.

Corollary 3.2 With the assumptions of Corollary 3.1 the following properties hold:
(i) The decomposition in (37) is unique
(ii) The mapping u → (∇ψ, s) is a continuous mapping from Lp(Ω,Rd) \ P into Lp(Ω,Rd) × Lq(Ω,Rd),
for all q ∈ [1,+∞[, where P = {u ∈ Lp(Ω,Rd) |u does not satisfies the N−1 − property}.
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Before given the proof of Corollaries 3.1, 3.2 we make some remarks.

Remarks 3.3

(a) As we already mentioned in the introduction, the polar factorization theorem was first proved by
Brenier in [Br1] and [Br2] (see also the references of [Br2] for earlier related results). His proof consisted
of studying a Monge-Kantorovich problem which is a minimization problem inf{I(p) | p ∈ P}, where

P = {p probability measure on Ω̄×Ω̄ |
∫

Ω̄×Ω̄

f(x)p(dx, dy) =
∫

Ω̄×Ω̄

f(y)p(dx, dy)} =
∫

Ω̄

f(x)dx ∀f ∈ C(Ω̄)}.

and then he deduced the polar factorization theorem.

(b) For every u ∈ Lp(Ω,Rd) satisfying the N−1−property and for every Lebesgue measurable func-
tion φ : R

d → R ∪ {+∞} one can readily check that φ ◦ u is measurable.

(c) If u = ∇ψ ◦ s then for every c ∈ R setting ψc = ψ + c we also have u = ∇ψc ◦ s. Therefore we
need the condition

∫
Ω ψ(x)dx = 0 to ensure the uniqueness of the factorization in Corollary 3.1.

(d) If u = ∇ψ ◦ s are as in Theorem 2.3 we observe that
∫

Ω

||ψ(y)||pdy =
∫

Ω

||ψ(s(x))||pdx =
∫

Ω

||u(x)||pdx.

(e) Assume that 1 ≤ p ≤ +∞, u ∈ Lp(Ω,Rd) satisfies the N−1− property, (φ, ψ) ∈ E and s ∈ S.
Then ∫

Ω

[φ(u(x)) + ψ(x)]dx =
∫

Ω

[φ(u(x)) + ψ(s(x))]dx ≥
∫

Ω

s(x)u(x).

Hence if ∫
Ω

[φ0(u(x)) + ψ0(x)]dx =
∫

Ω

s0(x)u(x)dx

for some pair (φ0, ψ0) ∈ E and for some s0 ∈ S then

ip =
∫

Ω

[φ0(u(x)) + ψ0(x)]dx =
∫

Ω

s0(x)u(x)dx = jp.

(f) We notice by (21), (26), (27) and (28) that there exists a pair (φ, ψ) ∈ ER such that

i∞ = I(φ, ψ),

u(x) = ∇ψ(s(x)), (38)

Lip(φ) ≤ dγ, Lip(ψ) ≤ dR, (39)

φ∗ = ψ, ψ∗ = φ, (40)

and
φ(y) = sup{yz − ψ(z) | z ∈ Ω̄}, ∀y ∈ R

d. (41)
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Proof of Corollary 3.1. If p = +∞ then Theorem 2.3 implies Corollary 3.1. Assume in the sequel that
1 ≤ p < +∞. We split the proof into two steps.
Step1. We prove (i). Define un : Ω → R

d by

un(x) = rn(u(x)),

where rn is a diffeomorphism from R
d onto Bn such that

||rn(y)|| ≤ ||y||, (42)

for all y ∈ R
d and

rn(y) → y uniformly on any compact subset of R
d. (43)

We observe that for each n ∈ N, un ∈ L∞(Ω,Rd) and un satisfies the N−1− property. As

sup{||un(x)|| | x ∈ Ω} ≤ n

we obtain by Theorem 2.3 that there exist a measure preserving mapping sn and a pair of Lipschitz,
convex functions φn, ψn : R

d → R satisfying

un(x) = ∇ψn(sn(x)), (44)

for almost every x ∈ Ω,
φn(y) = sup{yz − ψn(z) | z ∈ Ω},

for every y ∈ R
d. By Remark 3.3 (d), (38), (39), (42) and the Hölder’s inequality we obtain that

Lip(φn) ≤ dγ, Lip(ψn) ≤ dn, (45)
∫

Ω

||∇ψn(x)||dx =
∫

Ω

||un(x)||dx ≤
∫

Ω

||u(x)||dx ≤ (1 +meas(Ω))(
∫

Ω

||u(x)||pdx) 1
p . (46)

We may assume without loss of generality that
∫

Ω

ψn(z)dz = 0, (47)

for every n ∈ N and so, with the help of (45) we have

ψn ∈ K0,

for every n ∈ N, where

K0 = {h ∈ W 1,1(Ω) ∩ C(Ω) |
∫

Ω

h(z)dz = 0, ∃h1 : R
d → R ∪ {+∞}, convex, l.s.c. such that h1|Ω = h}.

By Proposition 4.4, (40), (41) and (45) there exist a subsequence still labelled by n and a pair of convex
functions (φ, ψ) such that

ψ ∈ L1(Ω) ∩ C(Ω), φ ∈ C(Rd) and Lip(φ) ≤ dγ (48)

φ(y) + ψ(z) ≥ yz for all (y, z) ∈ R
d × Ω (49)

ψn → ψ in L1(Ω) and uniformly on any compact subset of Ω

φn → φ uniformly in any compact subset of R
d (50)

||φ(y)|| ≤ γ(||y|| + 2M) for all y ∈ R
d, (51)
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where M = (1+meas(Ω))(
∫
Ω
||∇u(x)||pdx) 1

p . By Proposition 4.2 and (50) ∇φn(y) converges to ∇φ(y) as
n goes to infinity, for almost every y ∈ R

d. As u satisfies the N−1− property we deduce that {∇φn(u(x))}
converges to ∇φ(u(x)) as n goes to infinity, for almost every x ∈ Ω, and so with the help of (45) we
obtain

∇φn(un(x)) → ∇φ(u(x)) in Lq(Ω,Rd), (52)

for every 1 ≤ q < +∞. We deduce that for every h ∈ C(Rd) ∩ L∞(Ω)∫
Ω

h(∇φ(u(x)))dx = lim
n→+∞

∫
Ω

h(∇φn(un(x))) = lim
n→+∞

∫
Ω

h(sn(x)) =
∫

Ω

h(x). (53)

If we define s : Ω̄ → R
d by

s(x) = ∇φ(u(x)),

(53) implies that s is a measure preserving mapping from Ω̄ into Ω̄ and by (52), sn converges to s in
Lq(Ω,Rd) for every 1 ≤ q < +∞. Theorem 2.3 implies∫

Ω

[φn(un(x)) + ψn(x)]dx =
∫

Ω

un(x)sn(x)dx

and so, letting n go to infinity we deduce that∫
Ω

[φ(u(x)) + ψ(x)]dx =
∫

Ω

u(x)s(x)dx. (54)

As u ∈ Lp(Ω,Rd) ⊂ L1(Ω,Rd), (48) and (51) imply that (φ, ψ) ∈ E and so by Remark 3.3 (e) and (54)
we have

ip =
∫

Ω

[φ(u(x)) + ψ(x)]dx =
∫

Ω

s(x)u(x) = jp. (55)

step2. We prove (ii).
Claim1. φ∗(z) = ψ(z) for all z ∈ Ω.
As (φ, ψ) ∈ E we observe that φ∗ ≤ ψ, (φ, φ∗) ∈ E and so by (55)∫

Ω

[φ(u(x)) + φ∗(x)]dx ≤
∫

Ω

[φ(u(x)) + ψ(x)]dx = ip.

Hence,
φ∗|Ω = ψ|Ω. (56)

Claim2. u(x) = ∇ψ(s(x)) for almost every x ∈ Ω.
By (48) and (56) Ω ⊂ dom(φ∗) and so by Proposition 4.3, φ∗ is differentiable at almost every point z ∈ Ω.
Since s : Ω̄ → Ω̄ satisfies the N−1− property and meas(∂Ω) = 0 we deduce that φ∗ is differentiable at
s(x) for almost every x ∈ Ω. By (55) and claim1 as (φ, ψ) ∈ E we have∫

Ω

[φ(u(x)) + φ∗(s(x))]dx =
∫

Ω

s(x)u(x)dx

and so
φ(u(x)) + φ∗(s(x)) = s(x)u(x),

for almost every x ∈ Ω. Hence,
u(x) = ∇φ∗(s(x)), (57)

for almost every x ∈ Ω. Using again that s : Ω̄ → Ω̄ satisfies the N−1− property and meas(∂Ω) = 0, by
(56) and (57) we obtain

u(x) = ∇ψ(s(x)),

for almost every x ∈ Ω.

We make first the following remark we will use often in the proof of Corollary 3.2.
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Remarks 3.4 Assume that u ∈ Lp(Ω,Rd) is a mapping satisfying the N−1− property such that

u(x) = ∇ψ(s(x)), (58)

for almost every x ∈ Ω, where ψ ∈ C(Ω) ∩ L1(Ω), is a function satisfying,
∫
Ω
ψ(x)dx = 0 and s : Ω̄ → Ω̄

is a measure-preserving mapping. Then by Remark 3.3 (d) we observe that in fact, ψ ∈ W 1,p(Ω)∩C(Ω).
If we define ψ̃ : R

d → R by
ψ̃(y) = sup{yz − ψ(z) | z ∈ Ω}

then Proposition 4.4 (i), (vi) (with ψn = ψ) we deduce that

Lip(ψ̃) ≤ γd, ||ψ̃(y)|| ≤ γ(||y|| + 2M)

for all y ∈ R
d, where M =

∫
Ω ||∇ψ(x)||dx. By Proposition 4.5 and by a technique we already used in the

claim1 of the proof of Corollary 3.1 we deduce that ψ admits a convex, lower semicontinuous extension
on R

d we still denote by ψ, so that
ψ∗ = ψ̃, ψ̃∗ = ψ.

It follows from (58) that
ψ∗(u(x)) + ψ(s(x)) = s(x)u(x),

for almost every x ∈ Ω.

Proof of Corollary 3.2 We divide the proof into two parts.
Part1. We prove the uniqueness of the factors. One can notice that it suffices to prove the uniqueness of
the factors in the case p = 1 and the case 1 ≤ p ≤ +∞ readily follows.
Assume that

u(x) = ∇ψ1(s1(x)) = ∇ψ2(s2(x)), (59)

for almost every x ∈ Ω, where s1, s2 : Ω̄ → Ω̄ are measure-preserving mappings,

ψ1, ψ2 ∈ C(Ω) ∩W 1,1(Ω), i = 1, 2 (60)

and ∫
Ω

ψ1(z)dz =
∫

Ω

ψ2(z)dz = 0. (61)

Assume moreover that ψ1 and ψ2 admit a convex lower semicontinuous extension on R
d we still denote

by ψ1 and ψ2. By (59) we have

ψ∗
1(u(x)) + ψ1(s1(x)) = s1(x)u(x), ψ∗

2(u(x)) + ψ2(s2(x)) = s2(x)u(x), (62)

for almost every x ∈ Ω.

Claim1. s1(x) = s2(x) for almost every x ∈ Ω.
Indeed, by Remark 3.3 (e) and (62) as s1 and s2 are measure-preserving mappings, we have

∫
Ω

s1(x)u(x)dx =
∫

Ω

s2(x)u(x)dx =
∫

Ω

[ψ∗
2(u(x)) + ψ2(s2(x))] =

∫
Ω

[ψ∗
2(u(x)) + ψ2(s1(x))]

and so, as
ψ∗

2(u(x)) + ψ2(s1(x)) ≥ s1(x)u(x),

for almost every x ∈ Ω, we deduce that

ψ∗
2(u(x)) + ψ2(s1(x)) = s1(x)u(x),

for almost every x ∈ Ω and so
s1(x) = ∇ψ∗

2(u(x)),

12



for almost every x ∈ Ω. The equation above combined with (59) yields

s1(x) = ∇ψ∗
2(u(x)) = s2(x),

for almost every x ∈ Ω.

In the sequel we set
s(x) = s1(x) = s2(x), (63)

for almost every x ∈ Ω.

Claim2. For every N ⊂ Ω̄ subset of zero measure we have meas(s(Ω \N)) = meas(Ω).
Indeed, as meas is a Borel regular measure, there exists a measurable set B such that

s(Ω \N) ⊂ B ⊂ Ω̄ (64)

and
meas(s(Ω \N)) = meas(B). (65)

As s is a measure-preserving mapping and as meas(∂Ω) = 0, (64) and (65) imply that

meas(B) = meas(s−1(B)) ≥ meas(s−1(s(Ω \N))) ≥ meas(Ω \N) = meas(Ω) ≥ meas(B)

and so
meas(s(Ω \N)) = meas(Ω).

Claim3 ψ1(z) = ψ2(z) for almost every z ∈ Ω.
Define

Ni = {z ∈ Ω | ψi is not differentiable at z}, i = 1, 2

and
M = {x ∈ Ω | s1(x) = s2(x)}.

By Proposition 4.3 and (63)
meas(N1 ∪N2) = meas(M) = 0. (66)

By (59) and (63) we observe that
∇ψ1(z) = ∇ψ2(z) (67)

for every z ∈ A := s(Ω \M) \ (N1 ∪N2 ∪ ∂Ω). As meas(∂Ω) = 0, we obtain by Claim2 and (66) that

meas(A) = meas(Ω). (68)

Let z ∈ A \ (N1 ∪N2) and let {zn} ⊂ A \ (N1 ∪N2) be a sequence such that

z = lim
n→+∞ zn.

By Proposition 4.3 ∇ψ1 and ∇ψ2 are respectively continuous on Ω \N1 and Ω \N2 and so with the help
of (67) we observe that

∇ψ1(z) = lim
n→+∞∇ψ1(zn) = lim

n→+∞∇ψ2(zn) = ∇ψ2(z). (69)

Using (68) one can readily check that

meas(A \ (N1 ∪N2)) = meas(Ω),

hence, (69) holds for almost every z ∈ Ω. Set

ψ = ψ1 − ψ2.
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By (60), (61) and (69) we have
ψ ∈W 1,1(Ω),∫
Ω

ψ(z)dz = 0

and
∇ψ(z) = 0,

for almost every z ∈ Ω. Hence by Poincare’s inequality we deduce that

ψ(z) = 0,

for almost every z ∈ Ω. As by (60) ψ ∈ C(Ω) we deduce that

ψ(z) = 0,

for every z ∈ Ω.

Part2. Let q ∈ [1,+∞[. We prove that for each 1 ≤ p ≤ +∞ the mapping Hp : u → (∇ψ, s) a
continuous mapping from Lp(Ω,Rd) \ P into Lp(Ω,Rd) × Lq(Ω,Rd). One can notice that it suffices to
prove that H := H1 is continuous. Let u ∈ L1(Ω,Rd) \ P and let {un} ⊂ L1(Ω,Rd) \ P be an arbitrary
sequence converging to u in L1(Ω,Rd). As L1(Ω,Rd) \ P is a normed space, if we prove that we may
extract a subsequence {uni} ⊂ Lp(Ω,Rd) \ P such that H(uni) converges to H(u) we are done. Assume
as in Corollary 3.1 that un and u are factored

un = ∇ψn ◦ sn, u = ∇ψ ◦ s, (70)

where ψn, ψ ∈ K0 (see Appendix for the definition of K0) and sn, s : Ω̄ → Ω̄ are measure-preserving
mappings. Define

φ(y) = sup{yz − ψ(z) | z ∈ Ω}, ∀y ∈ R
d,

φn(y) = sup{yz − ψn(z) | z ∈ Ω}, ∀y ∈ R
d

and
M = max{sup{

∫
Ω

||∇ψn(z)||dz n ∈ N},
∫

Ω

||∇ψ(z)||dz}.

Since ∫
Ω

||∇ψn(z)||dz =
∫

Ω

||un(z)||dz,
∫

Ω

||∇ψ(z)||dz =
∫

Ω

||u(z)||dz

and since {un} converges to u in L1(Ω,Rd) we observe that

M < +∞
and so, by Proposition 4.4 there exists a subsequence still labelled by n and a pair (f, g) such that

(i) f ∈ C(Rd) and Lip(f) ≤ dγ

(ii) g ∈ L1(Ω) ∩ C(Ω),
(iii) f(y) + g(z) ≥ yz for all (y, z) ∈ R

d × Ω
(iv) ψn → g in L1(Ω) and uniformly on any compact subset of Ω
(v) φn → f uniformly in any compact subset of R

d (71)
(vi) ||φn(y)|| ≤ γ(||y|| + 2M) for all y ∈ R

d,

By Remark 3.4 and (70) we obtain that

sn = ∇φn ◦ un and s = ∇φ ◦ u. (72)
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As {un} converges to u in L1(Ω,Rd), up to a subsequence we still labelled by n, {un(x)} converges to
u(x) for almost every x ∈ Ω and so as un and u satisfy the N−1− property we obtain by Proposition 4.2
and (71) that sn = ∇φn ◦ un(x) converges to ∇f ◦ u(x) for almost every x ∈ Ω. As {sn} is bounded in
L∞(Ω,Rd), using Egorov’s theorem we deduce that

sn ≡ ∇φn ◦ un → ∇f ◦ u in Lq(Ω,Rd).

One can readily check that ∇f ◦ u is a measure-preserving mapping. Using an argument similar to the
one above we may deduce that

un = ∇ψn ◦ sn → ∇g ◦ ∇f ◦ u in L1(Ω,Rd)

and so as by assumption {un} converges to u in L1(Ω,Rd), we deduce that

u = ∇g ◦ ∇f ◦ u.

By the uniqueness property of the polar decomposition we obtain that

g = ψ and s = ∇f ◦ u.

Therefore
sn → s in Lq(Ω,Rd)

and
ψn → ψ in L1(Ω,Rd)

hence H is continuous.

Warning If s : Ω̄ → Ω̄ is a measure-preserving mapping then, meas(s(Ω)) = meas(Ω), but, as we
don’t know whether or not s(Ω) is measurable we cannot deduce that meas(Ω \ s(Ω)) = 0.

4 Appendix.

Throughout this section Ω ⊂ R
d is an open, bounded of R

d. We recall some definitions and review some
results of the convex analysis needed in this paper. We complete the section by making a remark on
measure-preserving mappings.

Definition 4.1 If ψ : R
d → R ∪ {+∞} we define ψ∗ the Legendre-Fenchel transform of ψ by

ψ∗(y) = sup{yz − ψ(z) | z ∈ R
d}

and we define ψ∗∗ to be (ψ∗)∗.

Proposition 4.2 Let C ⊂ R
d be a convex, open set let fi : C → R i = 0, 1, 2, · · · , be a sequence of convex

functions converging pointwise to f : C → R on C. Let

N = {x ∈ C | ∃i ∈ N,∇fi is not differentiable at x} ∪ {x ∈ C | ∇f is not differentiable at x}.
Then,

meas(N) = 0

and
∇fi(xi) → ∇f(x)

for every x ∈ C \N and for every sequence {xi} ⊂ C \N converging to x.
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Proof. The Proposition is a consequence of Theorem 24.5 and 25.5 in [Ro].

Proposition 4.3 Let f : R
d → R ∪ {+∞} be a convex function and let D ⊂ R

d be the set of the points
where f is differentiable. Then D is a dense subset of int(dom(f)) and its complement in int(dom(f))
is a set of zero measure. Furthermore, the gradient mapping ∇f : x→ ∇f(x) is continuous on D.

Proof.We refer the reader to Theorem 25.5 in [Ro].

Following [Br1] we define the set K0.

K0 = {ψ ∈W 1,1(Ω) ∩ C(Ω) |
∫

Ω

ψ(z)dz = 0, ∃ψ1 : R
d → R ∪ {+∞}, convex, l.s.c. such that ψ1|Ω = ψ},

where l.s.c. stands for the abreviation of the expression lower semicontinuous.

Proposition 4.4 Let M > 0 be a constant and {ψn}∞n=1 ⊂ K0 be a sequence such that

M := sup
n∈N

∫
Ω

||ψn(z)||dz < +∞.

Then there exists a subsequence, still labelled by n, and a pair (φ, ψ) such that

(i) φ ∈ C(Rd) and Lip(φ) ≤ dγ

(ii) ψ ∈ L1(Ω) ∩ C(Ω),
(iii) φ(y) + ψ(z) ≥ yz for all (y, z) ∈ R

d × Ω
(iv) ψn → ψ in L1(Ω) and uniformly on any compact subset of Ω
(v) ψ̃n → φ uniformly in any compact subset of R

d

(vi) ||ψ̃n(y)|| ≤ γ(||y|| + 2M) for all y ∈ R
d,

where ψ̃n : R
d → R is the convex function defined by

ψ̃n(y) = sup{yz − ψn(z) | z ∈ Ω}.

Proof. We refer the reader to Proposition 3.3 in [Br1].

Proposition 4.5 Assume that Ω̄ ⊂ BR and f : R
d → R. Define f̃ : R

d → R by

f̃(y) = sup{yz − f(z) | z ∈ Ω}.

(a) If f ∈ L∞(Ω) then f̃ is a convex, Lipschitz function and

|f̃(y1) − f̃(y2)| ≤ dR||y1 − y2||

for every y1, y2 ∈ R
d.

(b)
f̃(y) = sup{yz − (f̃)∗(z) | z ∈ Ω} = sup{yz − (f̃)∗(z) | z ∈ R

d}
for every y ∈ R

d.
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Proof
Proof of (a). Since f̃ is a supremum of convex functions it is straightforward to check that f̃ is still a
convex function and as Ω is bounded and f ∈ L∞(Ω) one can readily check that dom(f̃) = R

d. Hence
(see Proposition 4.3) f̃ is differentiable at almost every point of R

d. Let y ∈ R
d be a point such that f̃ is

differentiable at y and let zh, z̄h ∈ Ω be such that

f̃(y + h) ≤ (y + h)zh − f(zh) + ||h||2 ≤ f̃(y) + hzh + ||h||2

and
f̃(y) ≤ yz̄h − f(z̄h) + ||h||2 ≤ f̃(y + h) − hz̄h + ||h||2.

We obtain that

−||h|| + h

||h|| z̄h ≤ f̃(y + h) − f̃(y)
||h|| ≤ ||h|| + h

||h||zh

and so

|∂f̃(y)
∂yi

| ≤ R

for every i = 1, · · · , d which completes the proof of (a).
Proof of (b). We define φ : R

d → R ∪ {+∞} by

φ(z) =
{
f(z) if z ∈ Ω
+∞ if z 6∈ Ω

We have (see [Da]) φ∗∗∗ = φ∗ = f̃ and φ∗∗ ≤ φ. Hence

φ∗(y) = φ∗∗∗(y) = sup{yz − φ∗∗(z) | z ∈ R
d}

≥ sup{yz − φ∗∗(z) | z ∈ Ω}
≥ sup{yz − φ(z) | z ∈ Ω}
= sup{yz − f(z) | z ∈ Ω} = φ∗(y) (73)

and so
φ∗(y) = sup{yz − φ∗∗(z) | z ∈ R

d} = sup{yz − φ∗∗(z) | z ∈ Ω}
for every y ∈ R

d.

We end this section by making a remark on measure-preserving mappings.

Remarks 4.6 It is well known that a measure-preserving mapping s is not necessarily one-to-one. In-
deed, if Ω = [0, 1]d and if s : Ω̄ → Ω̄ is defined by s(x1, · · · , xd) = (min(2x1, 2− 2x1), x2, · · · , xd) then s is
a measure-preserving mapping such that

s ∈ W 1,∞(Ω,Rd),

|det(∇s(x)| = 2,

for almost every x ∈ Ω and
s(x1, x2 · · · , xd) = s(1 − x1, x2 · · · , xd),

for every x ∈ Ω.
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