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Abstract

We demonstrate that a solution to the classical Monge–Kantorovich problem of
optimally rearranging the measure µ+ = f+dx onto µ− = f−dy can be constructed by
studying the p-Laplacian equation

−div(|Dup|
p−2Dup) = f+ − f−

in the limit as p → ∞. The idea is to show up → u, where u satisfies

|Du| ≤ 1, −div(aDu) = f+ − f−

for some density a ≥ 0, and then to build a flow by solving an ODE involving a, Du,
f+ and f−.
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1 Introduction

This paper introduces some PDE and ODE methods for constructively solving one version
of the Monge–Kantorovich mass transfer problem.

The basic issue is this. Given two nonnegative, summable functions f± on R
n satisfying

the compatibility condition

∫

Rn

f+dx =

∫

Rn

f−dy, (1.1)

we consider the corresponding measures µ+ = f+dx, µ− = f−dy, and ask how we can
optimally rearrange µ+ onto µ−. If r : R

n → R
n is a smooth, one-to-one mapping, the

requirement is that r transfer µ+ onto µ−; that is,

f+(x) = f−(r(x)) detDr(x) (x ∈ R
n). (1.2)

Denote by A the admissible class of smooth, one-to-one functions r satisfying (1.2). We then
seek a mass transfer plan s ∈ A which is optimal in the sense that

I[s] = min
r∈A

I[r], (1.3)

where

I[r] =

∫

Rn

|x− r(x)|f+(x) dx =

∫

Rn

|x− r(x)|dµ+ . (1.4)

This is a form of Monge’s problem of the “déblais” and “remblais” (cf. Monge [M],
Dupin [D], Appell [A]), dating from the early 1780’s. The physical interpretation is that
we are given a pile of soil or rubble (the “déblais”), with mass density f+, which we wish
to transport to an excavation or fill (the “remblais”), with mass density f−. For a given
transport scheme r, condition (1.2) is conservation of mass. Furthermore, as each particle
of soil moves a distance |x − r(x)|, we can interpret I[r] as the total work involved. We
consequently are looking for a way to rearrange µ+ = f+dx onto µ− = f−dy, which requires
the least work.

This optimization problem, and its many, many variants and extensions (entailing for
example more general measures on more general spaces, different cost functionals, etc.)
has been intensively studied for over two hundred years. We review some of the principal
discoveries.

a. Monge. Monge himself contributed the essential insight that an optimal transfer plan
s should be in part determined by a potential u. More precisely, he deduced by heutistic,
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geometric arguments that if an optimal plan s exists, then there exists a scalar potential
function u such that

s(x) − x

|s(x) − x|
= −Du(x) (x ∈ X), (1.5)

where X = supp(f+). In other words the direction that each particle of soil should move is
determined as the (opposite of the) gradient Du of u. Observe that necessarily then

|Du| = 1 in X. (1.6)

Monge’s discovery, elaborated in the sources cited above, is deeply connected with the
theory of developable surfaces, lines of curvature, etc. he and his students discovered. See
also Struik [SD, Chapter 2, esp. pp. 95-96] for more background.

b. Appell. A hundred years later Appell [A] provided an analytic, but still formal,
proof of (1.5). His idea was to assume a smooth mapping s ∈ A minimizes I[·] and to work
out the corresponding Euler–Lagrange equation, using a Lagrange multiplier to incorporate
the constraint (1.2) for functions r ∈ A. We reproduce his result by computing the first
variation in s = (s1, . . . sn) of the augmented work functional

∫

Rn

|x− s(x)|f+(x) + λ(x)[f−(s(x)) detDs(x) − f+(x)]dx, (1.7)

where the function λ is the Lagrange multiplier corresponding to the pointwise constraint

f−(s(x)) detDs(x) = f+(x) (x ∈ R
n). (1.8)

We deduce

(λf−(s)(cof Ds)ki )xi
=
sk(x) − xk
|s(x) − x|

f+(x) + λf−
yk

(s) detDs (1.9)

for k = 1, . . . , n, where cof Ds is the cofactor matrix of Ds. Here and afterwards we sum on
repeated indices. Now ((cof Ds)ki )xi

= 0 (k = 1, . . . , n) and

{

slxi
(cof Ds)ki = δkl(det Ds) (1 ≤ k, l ≤ n)

skxj
(cof Ds)ki = δij(det Ds) (1 ≤ i, j ≤ n) .

(1.10)

Consequently (1.9) simplifies to read

λxi
f−(s)(cof Ds)ki =

sk(x) − xk
|s(x) − x|

f+.
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Multiply now by skxj
and sum on k, recalling (1.8), (1.10) to deduce

λxj
=
sk(x) − xk
|s(x) − x|

skxj
(1 ≤ j ≤ n)

on X. Now define u by

u(s(x)) = −λ(x). (1.11)

Then

uyk
(s)skxj

= −λxj
= −

sk(x) − xk
|s(x) − x|

skxj
(1 ≤ k ≤ n).

As Ds is invertible on X, we see

Du(s(x)) = −
s(x) − x

|s(x) − x|
(x ∈ X).

But Du(s(x)) = Du(x) and so Monge’s assertion (1.5) follows.
We observe from (1.11) that the potential u can be intepreted as (a transformation of)

the Lagrange multiplier for the mass conservation constraint (1.8).

c. Kantorovich. In the 1940’s Kantorovich [K1] [K2] made this last statement rigorous.
His first idea was that the minimization problem (1.3) can be relaxed, as follows. He proposed
the new task of finding a measure p ∈ M solving

J [p] = min
q∈M

J [q], (1.12)

where

M = {Radon probability measures q on R
n × R

n |
projxq = µ+ = f+(x)dx, projyq = µ− = f−(y)dy}

(1.13)

and

J [q] =

∫

Rn

∫

Rn

|x− y| dq(x, y) (q ∈ M). (1.14)

The point is that if Monge’s original problem (1.3) has a minimizer s, then the measure q
defined by

q(E) =

∫

{x|(x,s(x))∈E}

f+(x)dx (E ⊂ R
n × R

n, E Borel) (1.15)

belongs to M. Furthermore the relaxed cost functional J is linear in q and so simple
compactness arguments show (1.12) has at least one solution.
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In addition Kantorovich observed that problem (1.12)–(1.14) is an infinite dimensional
linear programming minimization problem, which has a dual maximization problem, namely
to find u ∈ L solving

K[u] = max
w∈L

K[w], (1.16)

where

L =

{

w : R
n → R | Lip[w] = sup

x6=y

|w(x) − w(y)|

|x− y|
≤ 1

}

(1.17)

and

K[w] =

∫

Rn

w(f+ − f−) dz =

∫

Rn

wf dz. (1.18)

for f = f+ − f−. Consult for instance Vershik [V] for more explanation. As we will see,
a solution u of (1.16)–(1.18) can be interpreted as Monge’s transport potential and thus as
the Lagrange multiplier for the original mass transfer problem.

Kantorovich’s optimality principle states

min
q∈M

J [q] = max
w∈L

K[w] , (1.19)

and an equivalent formulation of Kantorovich’s principle is

max

{
∫

X

uf+dx+

∫

Y

vf−dy | u(x) + v(y) ≤ |x− y| for all x ∈ X, y ∈ Y

}

= min
q∈M

J [q].

This identity is valid in far more general circumstances. Indeed there has developed a
huge body of mathematics for explicitly computing

max
Lip(w)≤1

∫

Rn

w(dµ+ − dµ−) = dist(µ+, µ−)

for general probability measures µ+, µ− on R
n and general spaces. The resulting distance

and its variants are called the Monge–Kantorovich–Rubinstein–Wasserstein–etc. metrics; see
Rachev [R] for more information.

d. Sudakov. Left open in Kantorovich’s work is the question as to whether a relaxed
measure solution p ∈ M is representable by a one-to-one mapping s ∈ A, i.e. whether p has
the form (1.15). Sudakov in [SV] shows that this is indeed the case, although the mapping
s need not be smooth. Instead we replace (1.8) with the integral condition

∫

Rn

h(s(x))f+(x)dx =

∫

Rn

h(y)f−(y)dy for each continuous function h.
(1.20)
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Sudakov’s solution is an outgrowth of his study of “measure decompositions” of probability
spaces.

Our paper presents a differential-equations-based alternative to Sudakov’s approach. The
primary new contribution is to identify an ODE flow which, taken for time one, generates
an “essentially one-to-one” mapping s, satisfying (1.20) and minimizing the Monge cost
functional I[·] among all such maps. The trick is to study the p-Laplacian PDE

− div(|Dup|
p−2Dup) = f+ − f− = f (n+ 1 ≤ p <∞) (1.21)

and then to let p→ ∞.
The diffusion coefficient in (1.21) is |Dup|p−2, which is very large in any region {|Dup| >

1 + δ} and very small in {|Dup| < 1 − δ} if δ > 0. We can consequently interpret the limit
of (1.21) as p→ ∞ as an “infinitely fast/infinitely slow” diffusion limit (cf. [A-E-W]). Since
(1.21) is the Euler–Lagrange equation for the problem of minimizing

∫

Rn

1

p
|Dw|p − wf dz ,

it is not very hard to prove that if up → u, then u ∈ L and u maximizes

K[w] =

∫

Rn

wf dz .

Thus u is a potential for the Monge–Kantorovich transport problem. Consequently, formally
at least, we see from (1.5) that Du determines the direction of an optimal transfer plan s.

But there is still another missing piece of information, namely the length |x−s(x)|, which
is not determined solely by u. Our primary new discovery is that the PDE (1.21) in fact
contains in the limit p→ ∞ a “transport density”, which will allow us to compute |x−s(x)|.
The procedure is this. If we set

Ap = |Dup|
p−2Dup,

then Ap ⇀ A weakly ∗ in L∞ and A has the form A = aDu for some nonnegative, bounded
function a, called the transport density. Thus

− div(aDu) = f+ − f− = f. (1.22)

The function a is the Lagrange multiplier for the constraint that |Du| ≤ 1 a.e. We employ u
and a to design an optimal mapping s, by solving for a.e. point z0 the ODE (cf. Dacorogna–
Moser [D-M])







ż(t) =
−a(z(t))Du(z(t))

tf−(z(t)) + (1 − t)f+(z(t))
(0 ≤ t ≤ 1)

z(0) = z0.
(1.23)
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Write z(t) = z(t, z0) to display the dependence on the initial point. We will then define

s(z0) = z(1, z0). (1.24)

In other words, we claim that the time-one flow governed by the nonautonomous ODE (1.23)
generates a solution to the Monge–Kantorovich problem, where the potential u and density
a are related by (1.22). Therefore the PDE (1.22) (which is the Euler–Lagrange equation of
Kantorovich’s dual problem) contains all the information needed to solve Monge’s original
problem, both the direction and the distance a.e. particle should move.

It is not very hard to invent formal calculations justifying the foregoing claims (cf. §8,
10). However, a rigorous proof is really, really tricky, mainly because the functions s, a
and Du are not in general even continuous. In fact we expect typically quite a complicated
pattern of optimal mass transport, as indicated schematically in the picture.

=750 Fig1.1

The overall procedure will be first to identify “transport rays”, which are segments joining
X (= supp(f+)) to Y (= supp(f−)) on which u decreases linearly at rate one. We will
show that for a “typical” such transport ray, the restriction of a to R is defined and can be
interpreted as a Lipschitz continuous function along R. The reason is that we can think of
u as known and then regard (1.22) as a first-order linear PDE for a, namely

aν − a∆u = f , where ν = −Du .

Assuming then that f± are Lipschitz, we will see that the ODE (1.23) (modified to avoid
dividing by zero) has a unique solution, which moves the point z0 “downhill” along the ray
R. We will prove as well that the density a vanishes at the ends of the ray, and so the
trajectory does not “overshoot” the end.

Establishing the measure preserving identity (1.20) for s defined by (1.23), (1.24) is much
more problematical, as s is not in general continuous. We first mollify aDu and so obtain a
smooth vector field to which the change of Jacobian calculations of Dacorogna–Moser apply.
We build therefore an approximate transfer scheme sε, and are faced with the basic task
of showing sε → s a.e. as ε → 0. This will be enough, as the integral form (1.20) of the
measure preserving requirement is conserved under a.e. convergence. It is however quite
subtle to verify the limit: a and Du, while well behaved on transport rays, are not in general
continuous, and so the effects of the mollification must be carefully tracked. A main fact
here (Proposition 4.1) is that u is basically C1,1 along the interior of any transport ray. The
corresponding estimate gives just enough control to show (Theorem 9.1) that the trajectories
of the mollified vector fields do indeed converge to the trajectory determined by the ODE
(1.23). Nonetheless the detailed proofs are extremely intricate.
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We should call to the reader’s attention to some interesting papers by Strang [S1], [S2] and
Iri [I] on a somewhat related problem. These authors note that the question of minimizing

L[ξξξ] =

∫

Rn

|ξξξ|dx (1.25)

over

V = {summable vector fields ξξξ : R
n → R

n | −div ξξξ = f} (1.26)

is another kind of convex dual problem to (1.16)–(1.18). The connection with our work is
that ηηη = aDu ∈ V solves

L[ηηη] = min
ξ∈V

L[ξξξ]. (1.27)

Strang and Iri physically interpret (1.16)–(1.18) and (1.25)–(1.27) in terms of certain max-
imal flow/minimal cut problems, but the context is not that of the Monge–Kantorovich
problem. The difference seems to be that in the Iri–Strang problem mass can be thought
of as being continuously added at the rate f+(x) at points x ∈ X, continuously being
transported by the flow

ż(t) = −a(z(t))Du(z(t)) (t > 0),

and continuously being removed at the rate f−(y) at points y ∈ Y . This situation differs
from the Monge–Kantorovich requirement that a one-time mass transfer plan be devised.

Our paper has also been inspired in large part by Bhattacharya–DiBenedetto–Manfredi
[B-D-M] and Janfalk [J]. We borrow from [B-D-M] the important observation that not
only |Dup|, but also |Dup|p, is bounded independently of p. We have taken up Janfalk’s
observation that the transport density a is supported within the collection of transport rays
[J, p. 76-79]. He seems also to have been the first actually to compute the transport density
[J, p. 93-96] and to note that it vanishes at the interior endpoints of transport rays. (Janfalk’s
notation differs from ours, as does the physical setting.)

We make in §2 a number of assumptions on f+, f−. We in particular assume f+ and f−

are Lipschitz continuous. We need this hypothesis mostly in order to ensure the ODE (1.23)
has a unique solution. In addition we suppose that X = supp(f+) and Y = supp(f−) are
a positive distance apart. The later assumption is useful in excluding certain bad behavior
(e.g. a transport ray entering Y , then entering X, then entering Y , etc., infinitely many
times), but is presumably not essential. We hope to return to this point in future work.

This work was carried out while W.G. was a member of the Mathematical Sciences
Research Institute at Berkeley, whose financial support and hospitality are gratefully ac-
knowledged.
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2 Uniform estimates on the p-Laplacian,

limits as p→ ∞

In this section we set forth our hypotheses regarding the densities f+, f− and then obtain
estimates, independent of p, on solutions of the corresponding p-Laplacian equations.

Assumptions on the mass densities f+, f−

We henceforth suppose

f−, f+ are nonnegative, Lipschitz functions on R
n with compact support,

(2.1)

satisfying the compatibility condition:
∫

Rn

f+dx =

∫

Rn

f−dy. (2.2)

We write

X = supp(f+), Y = supp(f−), (2.3)

and assume as well














X ∩ Y = ∅,
f+ > 0 on X0, f− > 0 on Y 0,
∂X, ∂Y are smooth,
X, Y ⊂ B(0, S) for some S > 0.

(2.4)

We have written X0 for the interior of X, Y 0 for the interior of Y , and B(0, S) for the closed
ball with center 0, radius S. Hereafter set

f = f+ − f−. (2.5)

As explained in §1, our intention is eventually to construct an optimal mass transport plan
using information gleaned from the p→ ∞ limit of the p-Laplacian PDE

{

−div(|Dup|
p−2Dup) = f in B(0, R)

up = 0 on ∂B(0, R).
(2.6)

Here n + 1 ≤ p < ∞ and the large radius R > S will be selected below. The unique weak
solution up of (2.5) is found as the minimizer of the functional

∫

B(0,R)

1

p
|Dw|pdx− fw dz (2.7)

over all w ∈ W 1,p
0 (B(0, R)). We have up ∈ C1,α(B(0, R)) for some α = α(p) > 0, according

to Uhlenbeck [U], Lieberman [LG], etc.
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Lemma 2.1 There exists a large radius R > 0 and a constant C1 such that

max
B(0,R)

|up| ≤ C1 (2.8)

max
∂B(0,R)

|Dup| ≤
1

2
(2.9)

for all n + 1 ≤ p <∞.

Proof. 1. To simplify notation we drop the subscript p. Thus, writing u = up, we have
{

−div(|Du|p−2Du) = f in B(0, R)
u = 0 on ∂B(0, R)

(2.10)

in the weak sense. Consequently
∫

B(0,R)
|Du|pdz =

∫

B(0,R)
fu dz

=
∫

B(0,R)
f(u− λ)dz

for any constant λ ∈ R, according to (2.2),(2.5). Selecting λ =
∫

−
B(0,S)

u dz = 1
|B(0,S)|

∫

B(0,S)
u dz,

we deduce
∫

B(0,R)
|Du|pdz ≤ ‖f‖L∞

∫

B(0,S)
|u− λ|dz

≤ C
∫

B(0,S)
|Du|dz

≤ C
(

∫

B(0,R)
|Du|pdz

)1/p

.

Hence
∫

B(0,R)

|Du|pdz ≤ C, (2.11)

and the constant C does not depend on p or R.
2. We claim next

there exists a point x0 ∈ ∂B(0, S) such that u(x0) = 0. (2.12)

Suppose not. Then without loss we may assume

u ≥ θ > 0 on ∂B(0, S)

for some constant θ > 0. Solve the PDE






−div(|Dũ|p−2Dũ) = 0 in B(0, R) −B(0, S)
ũ = θ on ∂B(0, S)
ũ = 0 on ∂B(0, R).
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Then u ≥ ũ in B(0, R) −B(0, S). But ũ has the form

ũ(x) = −α|x|
p−n
p−1 + β (S ≤ |x| ≤ R)

for appropriate constants α, β, with α > 0 (cf. Kawohl [KB]). Thus

∂ũ

∂ν
< 0 on ∂B(0, R),

ν denoting the outward unit normal. Since u ≥ ũ, we conclude

∂u

∂ν
< 0 on ∂B(0, R) (2.13)

as well. But the PDE (2.10) and the compatiblity condition (2.2) together imply

∫

∂B(0,R)

|Du|p−2 ∂u

∂ν
dH\−∞ = ′,

H\−∞ being (n − 1)-dimensional Hausdorff measure. Since u is C1,α up to ∂B(0, R), the
boundary integral makes sense. This equality however contradicts (2.13), and so assertion
(2.12) is proved.

3. In light of (2.11) we have

∫

B(0,S)

|Du|n+1dz ≤ C;

and this bound together with (2.12) imply

max
B(0,S)

|u| ≤ C1,

the constant C1 independent of p ≥ n+ 1 and R. The maximum principle implies the same
bound for |u| over B(0, R). This establishes estimate (2.8).

4. Now take any point x ∈ ∂B(0, R). We may as well assume x = −Ren (en = (0, . . . , 1)).
Define

v(x) = 1
2
(xn +R) (x ∈ B(0, R)).

Then






−div(|Dv|p−2Dv) = 0 in B(0, R) −B(0, S)
v ≥ 0 on ∂B(0, R)

v ≥ 1
2
(R− S) on ∂B(0, S).

Fix R so large that
1
2
(R− S) ≥ C1.
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Then
v ≥ ±u on ∂(B(0, R) − B(0, S)),

and therefore
|u| ≤ v in B(0, R) −B(0, S).

Consequently
|Du(x)| = |uxn

| ≤ vxn
= 1

2
.

This bound gives (2.9). 2

Next we estimate the sup-norm of |Dup|p. The following bound follows from Bhattacharya–
DiBenedetto–Manfredi [B-D-M, Part III, Propositions 1.1, 2.1]. For variety and to keep our
presentation self-contained, we provide a different proof (which however is not so good as
that in [B-D-M], as we require max |Df | be finite).

Proposition 2.1 There exists a constant C2 such that

max
B(0,R)

|Dup|
p ≤ C2 (2.14)

for n+ 1 ≤ p <∞.

Proof. 1. Fix 0 < ε ≤ 1
2

and write φ(q) = φε(q) = (|q|2 + ε2)1/2 (q ∈ R
n). Assume

temporarily f = f+ − f− is smooth. We approximate up by the smooth solution u = uεp of
the PDE

{

−div(φ(Du)p−2Du) = f in B(0, R)
u = 0 on ∂B(0, R).

(2.15)

As in Lemma 2.1 we have the estimates:

max
B(0,R)

|u| ≤ C1, max
∂B(0,R)

|Du| ≤ 1
2
. (2.16)

Differentiate the PDE (2.15) with respect to xk:

−(φp−2uxixk
+ (p− 2)φp−4uxi

uxj
uxjxk

)xi
= fxk

.

Multiply by uxk
and sum k = 1, . . . , n to deduce

−(φp−2uxixk
uxk

+ (p− 2)φp−4uxi
uxj

uxjxk
uxk

)xi

= Df ·Du− φp−2|D2u|2 − p−2
4
φp−4|D|Du|2|2

≤ C|Du| − p−2
4
φp−4|D|Du|2|2.

(2.17)
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2. Define
a = φ(Du)p.

Then

axi
= pφp−2uxk

uxkxi
(1 ≤ i ≤ n). (2.18)

Consequently (2.17) implies

−

(

axi

p
+

(p− 2)

p

uxi
uxj

φ2
axj

)

xi

≤ C|Du| −
p− 2

4
φp−4|D|Du|2|2. (2.19)

Next write
b = aΦ(u),

the smooth, positive function Φ : R → R to be chosen later. Observe

bxi
= axi

Φ + aΦ′uxi
(1 ≤ i ≤ n). (2.20)

3. Suppose now b attains its maximum over B(0, R) at an interior point x0. Then at this
point x0 we have
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0 ≤ −
(

bxi

p
+ p−2

p

uxi
uxj

φ2 bxj

)

xi

= −
(

Φ
(

axi

p
+ p−2

p

uxi
uxj

φ2 axj

))

xi

−
(

Φ′a
(

uxi

p
+ p−2

p

uxi
uxj

φ2 uxj

))

xi

according to (2.20)

= −Φ
(

axi

p
+ p−2

p

uxi
uxj

φ2 axj

)

xi

−Φ′uxi

(

axi

p
+ p−2

p

uxi
uxj

φ2 axj

)

−Φ′(Λauxi
)xi

−Φ′′a|Du|2Λ

≡ A +B + C +D.

(2.21)

Here we have written

Λ =
1

p
+
p− 2

p

|Du|2

φ2
. (2.22)

Owing to (2.19), we have

A ≤ CΦ|Du| − Φ
p− 2

4
φp−4|D|Du|2|2. (2.23)

Utilizing (2.20) and the fact Db = 0 at x0, we deduce as well that

B =
(Φ′)2

Φ
a|Du|2Λ. (2.24)

By definition:

D = −Φ′′a|Du|2Λ. (2.25)
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It remains to estimate the term:

C = −Φ′(Λauxi
)xi

= −Φ′(Λφ2φp−2uxi
)xi

= −Φ′

p
([(p− 1)|Du|2 + ε2]φp−2uxi

)xi

= −Φ′

p
[(p− 1)|Du|2 + ε2](φp−2uxi

)xi

−p−1
p

Φ′φp−2(D|Du|2 ·Du)

≡ E + F.

(2.26)

The PDE (2.15) implies then

E ≤ C|Φ′|(1 + |Du|2). (2.27)

Furthermore:

F ≤ |Φ′|φp−1|D|Du|2|

≤ Φp−2
4
φp−4|D|Du|2|2 + (Φ′)2

Φ
φp+2

p−2
.

(2.28)

Combining (2.21)–(2.28) yields the inequality:

Φ′′a|Du|2Λ ≤ CΦ|Du| + C|Φ′|(1 + |Du|2) +
(Φ′)2

Φ

[

a|Du|2Λ +
φp+2

p− 2

]

.
(2.29)

4. To extract useful information from this estimate let us take

Φ(z) = eµz
2

(z ∈ R),

µ > 0 to be adjusted below. Then

(Φ′)2

Φ
= 4µ2z2Φ, Φ′′ −

(Φ′)2

Φ
= 2µΦ.

Consequently (2.29) implies

2µΦa|Du|2Λ ≤ CΦ|Du| + C|2µu|Φ(1 + |Du|2) +
4µ2u2Φ

(p− 2)
a(|Du|2 + ε2).

(2.30)

15



We may assume without loss |Du(x0)| ≥ 1 ≥ ε, in which case

Λ ≥
1

p
+
p− 2

2p
=

1

2
.

Accordingly if we fix µ > 0 small enough, (2.30) implies

a = φp ≤ C at x0.

Since b = aΦ and Φ ≥ 1, we infer

max
B(0,R)

|Du|p ≤ C. (2.31)

The constant C does not depend on p on ε. Estimate (2.31) is valid provided b = aΦ attains
its maximum at an interior point of B(0, R). Should b instead attain its maximum only at
a boundary point, we invoke the second inequality in (2.16).

The estimate (2.31) holds for the solution u = uεp of (2.15). By an approximation the
same estimate holds if f± are only Lipschitz. We then send ε → 0 to obtain inequality
(2.14). 2

Remark. Related computations are in Kawohl [KB] and Payne–Phillippin [P-P]. 2

Making use of the estimates provided by Lemmas 2.1, 2.2, we can now extract a subse-
quence pk → ∞ so that

{

upk
→ u uniformly

Dupk

∗
⇀ Du weakly ∗ in L∞(B(0, R); Rn).

(2.32)

for some function u ∈ C0,1(B(0, R)), with u = 0 on ∂B(0, R). Recall from Rademacher’s
Theorem that Du exists a.e. The next Theorem and the following Remark characterize u.

Theorem 2.1 (i) There exists function a ∈ L∞(B(0, R)) such that

− div(aDu) = f in B(0, R) (2.33)

in the weak sense. In addition

|Du| ≤ 1 a.e., a ≥ 0 a.e. (2.34)

and

for a.e. z, a(z) > 0 implies |Du(z)| = 1. (2.35)

(ii) Furthermore,
∫

B(0,R)

uf dz = max
|Dw|≤1 a.e.

∫

B(0,R)

wf dz. (2.36)
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We hereafter call u the potential and a the transport density.

Proof. 1. Since estimate (2.14) implies |Dupk
| ≤ C

1/pk

2 , we deduce from (2.32) that |Du| ≤ 1
a.e.

2. Define
Ap = |Dup|

p−2Dup;

then
∫

B(0,R)

Ap ·Dv dz =

∫

B(0,R)

vf dz

for each v ∈ C0,1(B(0, R)) with v = 0 on ∂B(0, R). According to Lemma 2.2 the vector
fields {Apk

}∞k=1 are bounded in L∞; and so, passing if necessary to a further subsequence,
we have

Apk

∗
⇀ A weakly ∗ in L∞.

Thus
∫

B(0,R)

A ·Dv dz =

∫

B(0,R)

vf dz. (2.37)

2. In addition
∫

B(0,R)
|Dupk

|pkdz =
∫

B(0,R)
upk

f dz

→
∫

B(0,R)
uf dz

=
∫

B(0,R)
A ·Du dz.

(2.38)

We compute

∫

B(0,R)
|A| dz ≤ lim infk→∞

∫

B(0,R)
|Apk

| dz

≤ limk→∞

(

∫

B(0,R)
|Dupk

|pk dz
)1− 1

pk (B(0, R))
1

pk

=
∫

B(0,R)
A ·Du dz, by (2.38).

Since |Du| ≤ 1 a.e., it follows that

|A| = A ·Du a.e. (2.39)

Thus for a.e. z we can write

A(z) = a(z)Du(z), (2.40)

where a ∈ L∞, a ≥ 0. For a.e. point z such that Du(z) exists and |Du(z)| < 1, (2.39) implies
a(z) = 0. Finally (2.40) and (2.37) show −div(a Du) = f in the weak sense. Assertion (i)
is proved.
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3. To verify assertion (ii) we first take any w ∈ C0,1(B(0, R)) with w = 0 on ∂B(0, R),
|Dw| ≤ 1 a.e. In light of (2.6)

−

∫

B(0,R)

fup dz ≤

∫

B(0,R)

1

p
|Dup|

p − fup dz ≤

∫

B(0,R)

1

p
|Dw|p − fw dz.

Let p = pk → ∞:
∫

B(0,R)

fu dz ≥

∫

B(0,R)

fw dz.

If |Dw| ≤ 1 a.e. but we do not have w = 0 on ∂B(0, R), we can modify w on B(0, R)−B(0, S)
(i.e., outside the support of f) to reduce to the previous case. 2

Remark. In the language of convex analysis (cf. Ekeland–Temam [E-T]) we have shown
that

f+ − f− = f ∈ ∂I∞[u], (2.41)

where the convex function I∞ : L2(B(0, R)) → [0,∞] is defined by

I∞[w] =

{

0 if Lip[w] ≤ 1
+∞ otherwise,

and ∂I∞ denotes the subdifferential of I∞. Note carefully that (2.41) does not have a unique
solution: we can modify u in any open region where |Du| ≤ 1 − δ to create a new function
ũ still satisfying |Dũ| ≤ 1 a.e., f ∈ ∂I∞[ũ].

The particular solution u we obtain from (2.32) is a viscosity solution of the
“∞-Laplacian” PDE

−∆∞u = −uxi
uxj

uxixj
= 0 in B(0, R) − (X ∪ Y ) :

see Jensen [JR]. 2

3 The transport set and transport rays

Our goal for this and the next three sections is to examine very carefully properties of
the potential u and the transport density a (obtained in Theorem 2.1). We will eventually
need all this information to make sense of the ODE (1.23).

We will almost exclusively focus our attention upon the transport set

T = {z ∈ B(0, R) | u(z) = u(x) − |x− z| for some point
x ∈ X and u(z) = u(y) + |z − y| for some point y ∈ Y }.

(3.1)
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This is the set in which the trajectories of the ODE will lie.

Remark. Observe that if z ∈ T , then the corresponding points x, y, z are colinear. Indeed,
adding the identities u(x) − u(z) = |x− z|, u(z) − u(y) = |z − y|, we deduce

|x− z| + |z − y| = u(z) − u(y) ≤ |x− y|.

Note also T is closed. 2

We intend to study T and the behavior of u, a restricted to T . It will be convenient to
define as well the upper envelope

u∗(z) = min
y∈Y

{u(y) + |z − y|} (z ∈ B(0, R)) (3.2)

and the lower envelope

u∗(z) = max
x∈X

{u(x) − |z − x|} (z ∈ B(0, R)). (3.3)

Observe that |Du∗| = 1, a.e. in B(0, R) − Y , |Du∗| = 1 a.e. on B(0, R) −X.

Lemma 3.1 (i) We have

u∗ ≤ u ≤ u∗ on B(0, R). (3.4)

(ii) Furthermore,

T = {z ∈ B(0, R) | u∗(z) = u(z) = u∗(z)} (3.5)

and

T ⊇ X ∪ Y. (3.6)

Proof. 1. Let z ∈ B(0, R). Then since Lip[u] ≤ 1,

u(z) − u(y) ≤ |z − y| for all y ∈ Y,

and so
u(z) ≤ min

y∈Y
{u(y) + |z − y|} = u∗(z).

Similarly
u(x) − u(z) ≤ |z − x| for all x ∈ X;

whence
u(z) ≥ max

x∈X
{u(x) − |z − x|} = u∗(z).
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2. To prove (3.5) let us first select any point z ∈ T . Then there exists a point x ∈ X
with

u(z) = u(x) − |x− z| ≤ max
w∈X

{u(w) − |z − w|} = u∗(z).

Similarly, for some point y ∈ Y we have

u(z) = u(y) + |z − y| ≥ min
w∈Y

{u(w) + |z − w|} = u∗(z).

In light of (3.4) then, we see z ∈ T implies u∗ = u = u∗ at z. Conversely, assume u∗(z) =
u(z) = u∗(z). Then u(z) = u(y)+ |z− y| for some y ∈ Y , and u(z) = u(x)− |z−x| for some
point x ∈ X. Thus z ∈ T .

3. Next observe that trivially u = u∗ on X, u = u∗ on Y , since Lip[u] ≤ 1. To show
u = u∗ on X, suppose instead that

u < u∗ in some open subset of X0. (3.7)

Then
∫

B(0,R)
u∗ f dz =

∫

X
u∗ f+ dx−

∫

Y
u∗ f− dy

>
∫

X
u f+ dx−

∫

Y
u f− dy

=
∫

B(0,R)
uf dz,

where we used (3.7) and the fact f+ > 0 in X0, u = u∗ on Y . This inequality however
contradicts the maximization principle (2.36). Therefore u∗ = u = u∗ in X and, similarly,
on Y . 2

We introduce more terminology by defining for each point z0 ∈ T , the set

Rz0 = {z ∈ B(0, R) | |u(z0) − u(z)| = |z0 − z|}.

This is the set containing z0 along which u changes at the maximum rate 1. Observe that
if u is differentiable at z0, then Rz0 is a line segment. We then call Rz0 the transport ray
through z0. Below we show that outside of T there are no other segments along which u
grows or decreases with the maximum slope 1. Consequently one end of Rz0 , call it a0, lies
in X and the other end, call it b0, lies in Y . We think of Rz0 as pointing “downhill” from a0

to b0.

=750 Fig3.1
Call a0 the upper end of Rz0 , b0 the lower end, and Rz0 − {a0, b0} the relative interior of

the transport ray. The potential u decreases at the rate one as we move along Rz0 from a0

to b0.

Lemma 3.2 (i) Assume z ∈ B(0, R) and u(z) = u(w) − |z − w| for some other point
w ∈ B(0, R). Then z ∈ T .

(ii) Similarly, if u(z) = u(w) + |z − w| for some other point w ∈ B(0, R), then z ∈ T .
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Remark. In particular we are asserting that any line segment leaving X (resp. Y ) on which
u decreases (resp. increases) at rate one must terminate in Y (resp. X). The union of such
segments is the transport set T . 2

Proof. Assume u(z) = u(w) ± |z − w|, w 6= z. Denote by L the longest line segment in
B(0, R) containing w, z along which u changes at rate one. Let x, y denote the end points
of L, with u(x) > u(y).

2. We claim first that x, y 6∈ B0(0, R)− (X∪Y ); that is, the segment L cannot terminate
except within X, Y or ∂B(0, R).

To verify the claim, suppose instead that y ∈ B0(0, R) − (X ∪ Y ). We may then rescale
and rotate coordinates to arrive at the following situation:







B(0, 1) ⊂ B(0, R)0 − (X ∪ Y )
u(λen) = λ for − 1

2
≤ λ ≤ 1

u(−en) > −1.
(3.8)

In other words, we are taking L to be along the zn axis, with y = − 1
2
en.

Note that in fact

u|
∂B(0,1)

≥ −η for some η < 1. (3.9)

Otherwise there would exist a point z ∈ ∂B(0, 1) at which u(z) = −1. But then u decreases
at rate one on the segment from 0 to z, a contradiction, as this segment does not point in the
same direction as the segment from 0 to −en. Define now v(x) = −η|x| (x ∈ B(0, 1)). We
have v = u = 0 at x = 0 and u ≥ v on ∂B(0, 1). In addition −∆∞v = −vxi

vxj
vxixj

= 0 in
B(0, 1)−{0}. As −∆∞u = 0 in B(0, 1)−{0}, we deduce from Jensen’s comparison principle
[JR] that u ≥ v = −η|x| in B(0, 1). But this is impossible since u(λen) = λ for −1

2
≤ λ ≤ 0.

Thus it is impossible that y ∈ B0(0, R) − (X ∪ Y ). Likewise, we cannot have x ∈
B0(0, R) − (X ∪ Y ).

3. Consequently x, y ∈ X ∪Y ∪∂B(0, R). Since u = 0 on ∂B(0, R), we cannot have both
x, y ∈ ∂B0(0, R). Furthermore since u is bounded and R is large, it is in fact impossible that
either x or y belong to ∂B(0, R). Hence x, y ∈ X ∪ Y .

4. We claim finally x ∈ X, y ∈ Y , and so z ∈ T . Suppose instead that, say x, y ∈ X.
Then by Lemma 3.1 there is a line segment L̃ connecting y to a point w ∈ Y , along which
u decreases at rate one. As the segment L terminated at y, it cannot be that L, L̃ are
colinear. But this is a contradiction, since Lip[u] ≤ 1. Thus, x, y ∈ X and likewise x, y ∈ Y
is impossible. We similarly exclude the possibility y ∈ X, x ∈ Y . 2

The importance of the transport set T is that the transport density a is supported within
T :
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Proposition 3.1 We have

supp(a) ⊆ T. (3.10)

More precisely, a = 0 a.e. in B(0, R) − T .

Proof. 1. We modify some clever calculations due to Janfalk [J, p. 76-79], being careful since
our potential u (unlike his) can change sign. Select a constant γ so large that ±u + γ > 0
everywhere on B(0, R). Define then

v(z) =































u(z) max
w∈X∪Y

[

u(w) + γ

u(z) + |w − z| + γ

]

if u(z) ≥ 0

u(z) max
w∈X∪Y

[

γ − u(w)

−u(z) + |w − z| + γ

]

if u(z) ≤ 0 .
(3.11)

2. Clearly v = 0 on ∂B(0, R), and we claim as well that

|Dv| ≤ 1 a.e. in B(0, R) . (3.12)

To prove this, first take any two points z, ẑ ∈ B(0, R) with

v(z) ≥ 0, v(ẑ) ≥ 0. (3.13)

Note that therefore u(z) ≥ 0, u(ẑ) ≥ 0. Then, interchanging z and ẑ if needs be, we may
assume

v(z) ≥ v(ẑ). (3.14)

There exists a point w ∈ X ∪ Y such that

v(z) = u(z)
u(w) + γ

u(z) + |z − w| + γ
.

Since u(ẑ) ≥ 0, we have

v(ẑ) ≥ u(ẑ)
u(w) + γ

u(ẑ) + |ẑ − w| + γ
.
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Consequently,

|v(z) − v(ẑ)| = v(z) − v(ẑ) ≤ (u(w) + γ)

[

u(z)

u(z) + |z − w| + γ
−

u(ẑ)

u(ẑ) + |ẑ − w| + γ

]

= (u(w) + γ)
[u(z)(|ẑ − w| + γ) − u(ẑ)(|z − w| + γ)]

(u(z) + |z − w| + γ)(u(ẑ) + |ẑ − w| + γ)

= (u(w) + γ)
[(u(z) − u(ẑ))(|ẑ − w| + γ) + u(ẑ)(|ẑ − w| − |z − w|)]

(u(z) + |z − w| + γ)(u(ẑ) + |ẑ − w| + γ)

≤ (u(w) + γ)
|z − ẑ|(|ẑ − w| + γ) + u(ẑ)|z − ẑ|

(u(z) + |z − w| + γ)(u(ẑ) + |ẑ − w| + γ)
,

since u(ẑ) ≥ 0. Thus

|v(z) − v(ẑ)| ≤ |z − ẑ|
u(w) + γ

u(z) + |z − w| + γ
≤ |z − ẑ|.

(3.15)

3. Next suppose instead of (3.13) that

v(z) ≤ 0, v(ẑ) ≤ 0, (3.16)

and so u(z) ≤ 0, u(ẑ) ≤ 0. We may assume (3.14) holds. There exists a point ŵ ∈ X ∪ Y
such that

v(ẑ) = u(ẑ)
γ − u(ŵ)

−u(ẑ) + |ẑ − ŵ| + γ
.

Since u(z) ≤ 0,

v(z) ≤ u(z)
γ − u(ŵ)

−u(z) + |z − ŵ| + γ
.

Computing now as in Step 2 and recalling u(ẑ) ≤ 0, we deduce

|v(z) − v(ẑ)| ≤ |z − ẑ|
γ − u(ŵ)

−u(z) + |z − ŵ| + γ
≤ |z − ẑ|.

(3.17)

4. If finally

v(z) ≥ 0, v(ẑ) ≤ 0 (3.18)

(or vice versa), there is a point z∗ on the line segment connecting z and ẑ, where v(z∗) = 0.
Thus

|v(z) − v(ẑ)| ≤ |v(z) − v(z∗)| + |v(z∗) − v(ẑ)|
≤ |z − z∗| + |z∗ − ẑ| = |z − ẑ|.

(3.19)
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This observation completes the proof of the claim (3.12).
5. Now select a closed ball B ⊂ B(0, R) which is a positive distance σ away from the

transport set T . We will show a = 0 a.e. in B. According to (3.15) if ẑ, z ∈ B with v(z) ≥ 0,
v(ẑ) ≥ 0, we have

|v(z) − v(ẑ)| ≤ |z − ẑ| max
z∈B

w∈X∪Y

[

u(w) + γ

u(z) + |z − w| + γ

]

. (3.20)

But since B ∩ T = ∅, it follows that

max
z∈B

w∈X∪Y

[

u(w) + γ

u(z) + |z − w| + γ

]

≤ 1 − δ (3.21)

for some δ > 0. Indeed, there would otherwise exist points zk ∈ B and wk ∈ X ∪ Y
(k = 1, . . . ) such that

u(wk) + γ ≥ (1 − 1/k)(u(zk) + |zk − wk| + γ).

Pass as necessary to a subsequence such that zk → z ∈ B, wk → w ∈ X ∪ Y , and deduce

u(w) ≥ u(z) + |z − w|.

Thus
u(z) = u(w) − |z − w| (w ∈ X ∪ Y ) .

But according to Lemma 3.2, this implies the contradiction z ∈ T . Estimate (3.21) is
consequently proved, and so

|v(z) − v(ẑ)| ≤ (1 − δ)|z − ẑ| .

Similarly if ẑ, z ∈ B and v(z) ≤ 0, v(ẑ) ≤ 0, we have

|v(z) − v(ẑ)| ≤ (1 − δ)|z − ẑ|.

Thus

ess sup
B

|Dv| ≤ 1 − δ. (3.22)

Observe lastly that
u = v on X ∪ Y,

since we can then take w = z in computing the max in (3.11).
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6. As up solves the p-Laplacian PDE (2.6) and v = 0 on ∂B(0, R), we have

∫

B(0,R)

fv dz =

∫

B(0,R)

|Dup|
p−2Dup ·Dv dz.

Since v = u on X ∪ Y = supp(f) and |Dv| ≤ 1, |Dv| ≤ 1 − δ on B, we discover:

∫

B(0,R)

fu dz ≤

∫

B(0,R)−B

|Dup|
p−1dz + (1 − δ)

∫

B

|Dup|
p−1dz.

Therefore

δ

∫

B

|Dup|
p−1dz ≤

(
∫

B(0,R)

|Dup|
pdz

)1− 1
p

|B(0, R)|
1
p −

∫

B(0,R)

fu dz.

Let p = pk → ∞ and recall:
∫

B(0,R)

|Dupk
|pkdz =

∫

B(0,R)

fupk
dz →

∫

B(0,R)

fu dz.

We conclude that

lim
k→∞

∫

B

|Dupk
|pk−1dz = 0.

Using then the notation from the proof of Theorem 2.1, we deduce
∫

B

a dz =

∫

B

|A|dz ≤ lim inf
k→∞

∫

B

|Dupk
|pkdz = 0.

As a ≥ 0, we conclude a = 0 a.e. in B. 2

4 Differentiability and smoothness properties of the

potential

Next we study Du and D2u on the transport set T .

Lemma 4.1 (i) We have

|Du| = 1 a.e. on T. (4.1)

(ii) If z lies in the relative interior of some transport ray, then

u is differentiable at z and |Du(z)| = 1. (4.2)
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(iii) For each δ > 0 there exists a constant Cδ such that

D2u ≤ CδI on T − Yδ (4.3)

D2u ≥ −CδI on T −Xδ, (4.4)

where Xδ (resp. Yδ) denotes the δ-neighborhood of X (resp. Y ).

Remark. Assertions (4.3), (4.4) mean

{

u− Cδ

2
|z|2 is concave on T − Yδ,

u+ Cδ

2
|z|2 is convex on T −Xδ.

We say u is semiconcave on T − Yδ, semiconvex on T −Xδ. 2

Proof. 1. We note that the upper and lower envelopes u∗, u∗ and u itself are Lipschitz
and thus differentiable a.e. Thus at a.e. point z ∈ T , Du∗(z), Du∗(z) and Du(z) exist. As
Lemma 3.1(i) asserts u∗ ≤ u ≤ u∗ everywhere, whereas u∗ = u = u∗ at z, it follows that

Du∗(z) = Du(z) = Du∗(z).

But |Du∗| = 1 a.e. on B(0, R) − Y , |Du∗| = 1 a.e. on B(0, R) −X.
2. Take a point z0 in the relative interior of some transport ray. We may assume z0 = 0,

u(z0) = 0, and the ray is along the zn-axis. Hence for some small constant r0, we have

u(ten) = t if − r0 ≤ t ≤ r0. (4.5)

We rescale by setting

ur(z) =
u(rz)

r
(0 < r ≤ r0). (4.6)

Obviously |Dur| ≤ 1 a.e. Hence for some sequence rk → 0, we have

urk → v locally uniformly on R
n,

where

|Dv| ≤ 1 a.e. on R
n, v(ten) = t for all t ∈ R, (4.7)

according to (4.5), (4.6). But (4.7) in fact implies

v(z) = zn for all z ∈ R
n. (4.8)
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To see this, observe for each z ∈ R
n that

|v(z) − t| = |v(z) − v(ten)| ≤ |z − ten|

for each t ∈ R. Square and then simplify to discover

2t[zn − v(z)] ≤ |z|2 − v(z)2.

We send t→ ±∞ and obtain a contradiction unless (4.8) is valid. Thus we conclude that

lim
r→0

u(rz)

r
= zn, uniformly for z ∈ B(0, 1).

Thus u is differentiable at 0, with Du(0) = en.
3. Take δ > 0. Pick z ∈ B(0, R) − Yδ, and choose y ∈ Y for which

u∗(z) = u(y) + |z − y|.

Then if |w| ≤ δ
2
, we have

u∗(z + w) − 2u∗(z) + u∗(z − w) ≤ |z + w − y| − 2|z − y| + |z − w − y|

≤ C|w|2

δ2
= Cδ|w|2.

If z ∈ T − Yδ, then u(z) = u∗(z) and u(z ± w) ≤ u∗(z ± w). Hence

u(z + w) − 2u(z) + u(z − w) ≤ Cδ|w|
2 (4.9)

for all |w| ≤ δ
2
. This inequality implies (4.3) and the proof of (4.4) is similar. 2

We next refine Lemma 4.1(i):

Lemma 4.2 The potential u satisfies

|Du| = 1 in X0 (4.10)

− |Du| = −1 in Y 0, (4.11)

in the sense of viscosity solutions.

See, for instance, Fleming–Soner [F-S] for relevant definitions, and Bhattacharya–DiBene-
detto–Manfredi [B-D-M] for related statements.

Assertions (4.10), (4.11) in fact imply |Du| = 1 a.e. in X0, Y 0, but are much stronger, as
they limit the types of singularities of u allowed within X0, Y 0. The strange difference with
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the minus sign between (4.10), (4.11) records the different types of singularities in the two
regions (cf. (4.3) versus (4.4)).

One direct proof uses the fact that u = u∗ in X0, u = u∗ in Y0. For variety we provide a
different demonstration, based on the p-Laplacian approximations from §2.

Proof. 1. Let φ be a smooth function and suppose u− φ has a strict local maximum (resp.
minimum) at a point x0 ∈ X0. We must prove |Dφ| ≤ 1 (resp. ≥ 1) at x0.

2. As |Du| ≤ 1 a.e., we deduce at once |Dφ(x0)| ≤ 1 in the first case. Suppose instead
u− φ has a strict local minimum at x0, but

|Dφ(x0)| < 1. (4.12)

Since upk
→ u uniformly near x0, there exist points xpk

such that upk
− φ has a minimum

at xpk
. Now upk

is a viscosity solution of (2.6), as we see by approximating up as in (2.15).
Consequently

− |Dφ(xpk
)|pk−2

[

∆φ(xpk
) − (pk − 2)

φxi
(xpk

)φxj
(xpk

)

|Dφ(xpk
)|2

φxixj
(xpk

)

]

≥ f(xpk
).

(4.13)

But |Dφ(xpk
)| → |Dφ(x0)| < 1, and so the left hand side of (4.13) goes to zero as pk → ∞.

However, since f(xpk
) → f(x0) > 0, since x0 ∈ X0 and f+ > 0 on X0, by (2.4). This

contradiction proves that in fact |Dφ(x0)| ≥ 1, as required. We have verified (4.10).
The proof of (4.11) is similar, except now we must show that |Dφ| ≥ 1 (resp. ≤ 1) if

u− φ has a strict local maximum (resp. minimum) at a point y0 ∈ Y 0. 2

Lemma 4.1(iii) provides “one-sided” estimates on D2u in various regions. We next show
that we in effect have “two-sided” control of D2u along the relative interior of any transport
ray.

In the following Lemma we write R = Rz0 to denote some transport ray passing through
z0 and joining its upper end a0 ∈ X with its lower end b0 ∈ Y . For each σ > 0 we write

Rσ = R− [B(a0, σ) ∪B(b0, σ)] (4.14)

to denote the points on the ray of distance at least σ from the ends.

Proposition 4.1 For each transport ray R as above and each σ > 0, there exist a constant
C = Cσ and a tubular neighborhood N of Rσ such that

|Du(z) −Du(ẑ)| ≤ C|z − ẑ| (4.15)

for each point z ∈ N ∩ T at which Du(z) exists. Here ẑ denotes the projection of z onto R.
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=750 Fig4.1

We may informally interpret this result as saying “u is C1,1

loc
along the transport ray R”.

Proof. 1. We may without loss suppose a0 = 0 ∈ X, b0 = len ∈ Y , where en = (0, 0, . . . , 1)
and l > 0. Fix a point ŵ ∈ R − (X ∪ Y ) such that the segment [0, ŵ] does not intersect Y .
This is possible since X and Y are a positive distance apart, according to (2.4).

=750 Fig4.2

Write

ŵ = ren (0 < r < l). (4.16)

We may as well assume

u(ŵ) = u∗(ŵ) = 0. (4.17)

Define

Γ∗
0 = {w ∈ B(0, R) | u∗(w) = 0}. (4.18)

Next select ẑ ∈ R such that ẑ lies between 0 and ŵ, at a distance greater than σ from both
0, ŵ. This is possible if σ > 0 is small enough. Then

ẑ = den, σ ≤ d ≤ r − σ. (4.19)

2. We claim first that there exists a small ball B = B(ẑ, ρ), such that

u(z) = dist(z,Γ∗
0) if z ∈ T ∩B. (4.20)

To see this, first select B so small that B ∩ Y = ∅, B ∩ Γ∗
0 = ∅. Observe next that if the

radius ρ is sufficiently small, then any transport ray Rz passing through B must intersect
Γ∗

0 near ŵ. (If not, there would exist points zk → ẑ such that u would be decreasing at rate
one along transport rays Rk through zk, but these Rk would not in the limit be pointing in
the direction en. This contradicts the fact (Lemma 4.1(ii)) that u is differentiable at ẑ.)

Thus if z ∈ T ∩ B lies on a transport ray Rz, we see

{

u(z) = u∗(z) = distance from z to Γ∗
0 along Rz.

= |z − w| for some point w ∈ Γ∗
0.

(4.21)

We next observe that

|z − w| = dist(z,Γ∗
0). (4.22)
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Were this false, we would have |z − w∗| < |z − w| for some other point w∗ ∈ Γ∗
0. But since

|Du∗| ≤ 1 a.e., this would at once imply:

u(z) = u∗(z) − u∗(w∗) ≤ |z − w∗| < |z − w|,

a contradiction to (4.21). Thus (4.22) holds and so (4.21) establishes the claim (4.20).
3. Keeping the notation as in Step 2, let us suppose in addition that z ∈ T ∩ B is such

that ẑ is the projection of z onto R. Assume also Du(z) exists, and so the transport ray Rz

through z is unique. We assert next that if ρ > 0 is sufficiently small, then

|w − ŵ| ≤ C|z − ẑ| (4.23)

for some constant C = C(ρ, σ).
To prove this estimate, we introduce first the notation

ẑ = (0, d), ŵ = (0, r), z = (z′, d), w = (w′, wn) (4.24)

(cf. (4.16), (4.19)). Here z′, w′ ∈ R
n−1. As ŵ ∈ Γ∗

0, (4.22) implies

|z − w| ≤ |z − ŵ|.

Squaring, we deduce

|z′ − w′|2 + (wn − d)2 ≤ ε2 + (r − d)2, (4.25)

where

ε = |z − ẑ| = |z′|. (4.26)

Now by hypotheses u grows at rate one on the segment joining ŵ ∈ Γ∗
0 to 0. Thus u(0) =

|ŵ| = r. As u∗(0) = u(0) = r and |Du∗| ≤ 1 a.e., we conclude that

B(0, r)0 ∩ Γ∗
0 = ∅.

In particular
wn ≥ (r2 − |w′|2)1/2.

Thus

wn ≥ r
(

1 − |w′|2

r2

)1/2

= r
(

1 − |w′|2

2r2
+ o(|w′|2)

)

= r − |w′|2

2r
+ o(|w′|2) as w′ → 0 .

(4.27)
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Consequently
0 < r − d = wn − d+ r − wn

≤ (wn − d) + |w′|2

2r
+ o(|w′|2),

and so

(r − d)2 ≤ (wn − d)2 + |wn − d|
|w′|2

r
+ o(|w′|2) as w′ → 0 . (4.28)

According to (4.25)

|wn − d| ≤ (ε2 + (r − d)2)1/2 = (r − d)(1 + o(1)) as w′ → 0 .

Thus (4.28) yields

(r − d)2 ≤ (wn − d)2 + (r − d) |w
′|2

r
+ o(|w′|2)

≤ (wn − d)2 + θ|w′|2
(4.29)

for θ = 1− d
2r
< 1, provided ε is small enough. Inserting estimate (4.29) into (4.25) gives us

|z′ − w′|2 ≤ ε2 + θ|w′|2. (4.30)

Since |w′| ≤ |w′ − z′| + ε, we have

|w′|2 ≤ |w′ − z′|2 + 2|w′ − z′|ε+ ε2

≤ (1 + µ)|w′ − z′|2 +
(

1
µ

+ 1
)

ε2.
(4.31)

We fix µ > 0 so small that θ(1 + µ) < 1. Then (4.30), (4.31) and (4.26) imply

|w′|2 ≤ Cε2 = C|z − ẑ|2. (4.32)

Finally observe from (4.27) that

r − wn ≤ C|w′|2 ≤ C|z − ẑ|2. (4.33)

Also, since u(ẑ) = r − d and u(z) = |z − w|, we have

wn − d ≤ |z − w| = r − d+ u(z) − u(ẑ) ≤ r − d+ ε.

Consequently
wn − r ≤ ε = |z − ẑ|.

This bound and (4.33), (4.32) imply

|w − ŵ| ≤ C|z − ẑ|,
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as asserted in (4.23).
4. Now for z, ẑ, w, ŵ as above, we have

Du(ẑ) =
ẑ − ŵ

|ẑ − ŵ|
= −en, D(z) =

z − w

|z − w|
.

Then

|Du(z) −Du(ẑ)| ≤
1

|z − w| |ẑ − ŵ|
|(z − w)|ẑ − ŵ| − (ẑ − ŵ)|z − w|| .

Add and subtract (z − w)|z − w| on the right and estimate, using (4.23) to conclude:

|Du(z) −Du(ẑ)| ≤
|z − ẑ| + |w − ŵ|

|ẑ − ŵ|
≤ C|z − ẑ| (4.34)

since |ẑ − ŵ| ≥ σ.
5. As the sets X and Y are a finite distance apart, the ray R can leave X, enter Y and

then re-enter X (or vice versa) only a finite number of times. We can therefore subdivide
R into finitely many pieces on each of which an argument similar to that leading to (4.34)
applies. Combining the resulting estimates leads us at last to (4.15). 2

Remark. The calculations above should be compared with those in Caffarelli–Friedman
[C-F], Evans–Harris [E-H], etc. 2

5 Generic properties of transport rays

As our ultimate intention is to construct an optimal mass transfer scheme by moving
points in X along corresponding transfer rays, we must show that the rays are well behaved,
at least “generically”.

First we demonstrate that a.e. point x0 ∈ X and a.e. point y0 ∈ Y are not endpoints of
a transfer ray. To see this, let us first of all define the set of endpoints

E = {z ∈ X ∪ Y | z is an endpoint of some transfer ray}.

Proposition 5.1 We have

|E| = 0. (5.1)

Thus for a.e. point z ∈ T , z is not the endpoint of the unique transport ray passing
through z.
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The proof is complicated because of the possibility that u is differentiable at an endpoint
of a ray.

Proof. 1. We note first that E is Lebesgue measurable. Indeed, E ∩ {z | Du(z) does not
exist} has measure zero, by Rademacher’s Theorem, and so is Lebesgue measurable. Since
|∂X| = |∂Y | = 0, E ∩ ∂X and E ∩ ∂Y are measurable as well. Also

E∩{x ∈ X0 | Du(x) exists} = ∩∞
k=1

{

x ∈ X0 | Du(x) exists, u

(

x +
1

k
Du(x)

)

< u(x) +
1

k

}

.

Since u is continuous, x 7→ u
(

x + 1
k
Du(x)

)

is measurable. Thus E∩{x ∈ X0 | Du(x) exists}
is measurable, as is E ∩ {y ∈ Y 0 | Du(y) exists}.

2. Suppose now, say,
|E ∩X0| > 0.

Set
F = {x ∈ E ∩X0 | Du(x) exists}.

Then

|F | = |E| > 0. (5.2)

We will force a contradiction from (5.2). Observe that if x ∈ F , then x is the upper endpoint
of exactly one transport ray (pointing in the direction −Du(x)). Otherwise u would not be
differentiable at x.

3. Since u is semiconcave in X (Lemma 4.1(iii)), Proposition A.1 in the Appendix asserts
that for each ε > 0 there exists a measurable set Xε ⊂ X and a C2 function ũ = ũε : R

n → R

such that
|X −Xε| < ε

and

ũ = u, Dũ = Du on Xε . (5.3)

Fix ε > 0 so small that Fε = F ∩Xε has positive measure:

|Fε| > 0.

Recall from Lemma 4.1(i) that |Du| = 1 a.e. in X. Hence the Coarea Formula (see, e.g.,
[E-G, Chapter 3]) implies

|Fε| =
∫

Fε
|Du|dx

=
∫∞

−∞
H\−∞(Fε ∩ Γt)dt ,

(5.4)
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where Γt = {x ∈ R
n | u(x) = t}.

Let θ > 0 be a small positive number, to be selected below, depending only on ũ. Then
since |Fε| > 0, there exists t0 > 0 such that

0 <

∫ t0+θ

t0

H\−∞(Fε ∩ Γt)dt. (5.5)

4. Fix a level t0 − θ ≤ s0 ≤ t0 such that

H\−∞(Γ∫′) <∞. (5.6)

Now for each t0 ≤ t ≤ t0 + θ define the C1 mapping

φt(x) = x− (t− s0)Dũ(x) (x ∈ B(0, R)). (5.7)

Since u = ũ and |Dũ| = |Du| = 1 on Fε ⊂ Xε, we observe

φt : Fε ∩ Γt → Γs0 . (5.8)

Indeed, the effect of φt on Fε∩Γt is to move each point x a distance t−s0 along the transport
ray beginning at x. The value of u consequently decreases from t to t− (t− s0) = s0.

We next note that the area of the image of φt is

H\−∞(φt(Fε ∩ Γt)) =

∫

Fε∩Γt

[∞− (t − ∫′)H + o(t − ∫′)]dH
\−∞,

where H = div( Dũ
|Dũ|

) = ∆ũ is the mean curvature. Hence

H\−∞(φt(Fε ∩ Γt)) ≥ ∞
∈ H

\−∞(Fε ∩ Γt) for all t′ ≤ t ≤ t′ + θ , (5.9)

provided θ > 0 is now fixed small enough. But observe also that

φt1(Fε ∩ Γt1) ∩ φt2(Fε ∩ Γt2) = ∅ (5.10)

if t0 ≤ t1, t2 ≤ t0 + θ, with t1 6= t2. For if this intersection were non-empty, it would contain
a point lying on two transport rays, one with upper endpoint in Fε ∩ Γt1 and the other with
upper endpoint in Fε ∩ Γt2 . This is not possible.

5. In view of (5.6), (5.8)–(5.10), we see that for any choices t0 ≤ t1 < t2 < · · · < tm ≤
t0 + θ, we have

1
2

∑m
j=1 H

\−∞(Fε ∩ Γt|
) ≤ H\−∞(Γ∫′) <∞.

This is only possible if

H\−∞(Fε ∩ Γt) = ′ (t′ ≤ t ≤ t′ + θ),
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except for possibly countably many values of t. This conclusion is however at variance with
(5.5). 2

Now we prove that if N is a set of Lebesgue measure zero, then a “generic” transport
ray will intersect N only on a set of one-dimensional Hausdorff measure zero.

Proposition 5.2 Let N ⊂ B(0, R) have Lebesgue measure zero. Then for a.e. z0 ∈ T ,

H∞(R‡′ ∩N ) = ′. (5.11)

Proof. 1. First of all we may as well assume

N is a Gδ set , (5.12)

as we could otherwise apply the following reasoning with Ñ replacing N , Ñ denoting a Gδ

set such that
N ⊆ Ñ , |Ñ | = 0 .

2. We claim that

the mapping z 7→ H∞(N ∩R‡) is Borel measurable from T to [′,∞) .
(5.13)

To see this, write as above E to denote the set of endpoints of the transfer rays comprising
T . We may assume E is Borel measurable, as we could otherwise replace E by a Gδ set
Ẽ with E ⊆ Ẽ, |Ẽ| = 0. If U is open and U ⊃ E, the mapping z 7→ H∞(C ∩ R‡) is
upper semicontinuous on T − U , and thus is Borel measurable, for each closed set C. Since
Proposition 5.1 asserts |E| = 0, we can find open sets Uk ⊃ E (k = 1, . . . ) with |Uk| → 0.
Thus z 7→ H∞(C ∩ R‡) is Borel measurable on T for each closed set C. If V is open, then
H∞(V ∩R‡) = H∞(R‡)−H∞((Rn −V)∩Rz) and so z 7→ H∞(V ∩R‡) is Borel measurable
on T . Finally, in light of (5.12) we can find open sets {Vk}∞k=1 such that

Vk ⊇ Vk+1 (k = 1, . . . ) , N =
∞
⋂

k=1

Vk .

Hence H∞(N ∩R‡) = lim‖→∞ H(V‖ ∩ R‡) (‡ ∈ T ), and (5.13) follows.
3. According to the Coarea Formula,

0 =

∫

N

|Du|dx =

∫ ∞

−∞

H\−∞(N ∩ Γt)dt,

where, as before, Γt = {u = t}. Therefore

H\−∞(N ∩ Γt) = ′ for a.e. t . (5.14)
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4. If the Lemma is false, then we may without loss assume that for some δ > 0, we have
H∞(R‡∩N ) > ′ for z belonging to some subset of T −Yδ having positive Lebesgue measure.
(Otherwise we consider T −Xδ.) Since u is semiconcave on T − Yδ (Lemma 4.1(iii)), there
exists according to the Appendix for each ε > 0 a measurable set Tε ⊂ T − Yδ and a C2

function ũ = ũε : R
n → R such that

|(T − Yδ) − Tε| < ε

and

ũ = u, Dũ = Du on Tε . (5.15)

(More precisely, we apply the approximation described in the Appendix to u∗, which is
semiconcave in B(0, R) − Yδ. As u ≤ u∗ on B(0, R) and u = u∗ on T , (5.15) follows.)

Our assumption is that for some σ > 0, the set

Fσ = {z ∈ T − Yδ | Du(z) exists, H∞(R‡ ∩N ) ≥ σ} (5.16)

has positive measure. We may consequently fix ε > 0 so small that

|Fσ ∩ Tε| > 0.

5. Let z0 ∈ Fσ∩Tε be a point of density one of Fσ∩Tε. We may as well assume u(z0) = 0.
Then, since |Du| = 1 a.e. on T ,

0 < |B(z0, r) ∩ Fσ ∩ Tε|
=
∫ r

−r
H\−∞(B(‡′,∇) ∩ Fσ ∩ Tε ∩ Γ∫ ) d∫ ,

(5.17)

for all r > 0.
Since z0 ∈ Tε, |Dũ(z0)| = |Du(z0)| = 1. Thus the level sets Γ̃s = {ũ = s} are C2

hypersurfaces inside B(z0, r), provided we hereafter fix r > 0 sufficiently small. Observe
Tε ∩ Γs = Tε ∩ Γ̃s.

6. As in the previous proof we introduce next the C1 mappings

φt(z) = z − tDũ(z) (z ∈ R
n)

for each t ∈ R. Note

φt(z) = z − tDu(z) if z ∈ Tε. (5.18)

For each point z ∈ B(z0, r) ∩ Fσ ∩ Tε ∩ Γs, let Rz denote the transport ray through z, and
set

{

r(z) = max{t ≥ 0 | z − tDu(z) ∈ Rz}
s(z) = max{s ≥ 0 | z + sDu(z) ∈ Rz}.

(5.19)
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Thus r(z) is the distance z can be moved forward along Rz and s(z) is the distance z
can be moved backward along Rz. The mappings z 7→ r(z), s(z) are upper semicontinuous
and are thus Borel measurable (cf. Evans–Harris [E-H, Proposition 3.7]). Finally, if k, l ∈
{0, 1, 2, . . .} and −r ≤ s ≤ r, write

Gkl = Gs
kl =

{

z ∈ B(z0, r) ∩ Fσ ∩ Tε ∩ Γs |
kσ

4
< r(z) ≤

(k + 1)σ

4
,
lσ

4
< s(z) ≤ (l + 1)

σ

4

}

,
(5.20)

where σ > 0 is the constant from (5.16). Consequently (5.18) implies

φt(Gkl) ⊂ Γs−t if −
lσ

4
≤ t ≤

kσ

4
. (5.21)

Since φt|Gkl
is one-to-one for t in this range, we have

∫

Gkl

f(φt(z))Jtφ(z) dH\−∞(‡) =

∫

φt(G‖l)

{(w) dH\−∞(w)

for each Borel measurable function f , Jφt > 0 denoting the Jacobian of φt. Let f = χN .
Then

∫

Gkl
χN(φt(z))Jφt(z)dH\−∞(‡) = H\−∞(N ∩ φt(G‖l))

≤ H\−∞(N ∩ Γ∫−t) by (5.21)
= 0 for a.e. t ∈

[

− lσ
4
, kσ

4

]

,

the last equality holding according to (5.14). Consequently

∫

Gkl

(

∫ kσ
4

− lσ
4

χN(φt(z))Jφt(z)dt

)

dH\−∞(‡) = ′. (5.22)

In particular, for H\−∞-a.e. z ∈ Gkl,

∫ kσ
4

− lσ
4

χN (φt(z))Jφt(z) dt = 0.

As Jφt(z) > 0 for t as above, we see:

∫ kσ
4

− lσ
4

χN(z − tDu(z)) dt = 0 (5.23)

for H\−∞-a.e. z ∈ Gkl. But such a point z lies in Fσ and so, according to (5.16),

∫ r(z)

−s(z)

χN (z − tDu(z)) dt ≥ σ. (5.24)
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However the definition (5.20) of Gkl implies

∫ r(z)

kσ
4

χN(z − tDu(z)) dt ≤
σ

4
, (5.25)

∫ − lσ
4

−s(z)

χN(z − tDu(z)) dt ≤
σ

4
. (5.26)

The inequalities (5.24)–(5.26) and the equality (5.23) are inconsistent. Thus in fact

H\−∞(G‖l) = ′.

Since

B(z0, r) ∩ Fσ ∩ Tε ∩ Γs =

∞
⋃

k,l=0

Gkl,

we deduce
H\−∞(B(‡′,∇) ∩ F∫ ∩ Tε ∩ Γ∫ ) = ′

for all −r ≤ s ≤ r. This equality is however a contradiction to (5.17). 2

Finally we need to prove that a generic transport ray penetrates the interiors of X and
Y . This will be a consequence of the following Lemma.

We call a measurable set A ⊂ B(0, R) a transport set if z ∈ A implies Rz ⊆ A. In other
words, a transport set is the union of all transport rays through its points.

Lemma 5.1 (Mass balance) Let A be a transport set, as above. Then
∫

A

f+(x)dx =

∫

A

f−(y)dy. (5.27)

This Lemma asserts that the mass of µ+ = f+dx within A equals the mass of µ− = f−dy.
This is reasonable since we intend to move mass along the transport rays in A.

Proof. 1. Suppose first A is closed. Write h = χA and set

uε(z) = u(z) + εh(z) (z ∈ B(0, R)) , (5.28)

vε(w) = min
z∈B(0,R)

{|z − w| − uε(z)} (w ∈ B(0, R)). (5.29)

Also write

v(w) = min
z∈B(0,R)

{|z − w| − u(z)} = −u(w). (5.30)
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2. Now
uε(z) + vε(w) ≤ |z − w| for w, z ∈ B(0, R),

and so, according to Kantorovich’s principle as discussed in §1,

∫

X

uε(x)f
+(x)dx +

∫

Y

vε(y)f
−(y)dy ≤

∫

X

u(x)f+(x)dy +

∫

Y

v(y)f−(y)dy.

Thus
∫

X
χAf

+dx =
∫

X

(

uε−u
ε

)

f+dx
≤
∫

Y

(

v−vε

ε

)

f−dy.
(5.31)

Now if y ∈ A ∩ Y ,
vε(y) = min

z∈B(0,R)
{|z − y| − u(z) − εχA(z)}

= −u(y) − ε
= v(y) − εχA(y).

Consequently
v(y) − vε(y)

ε
= 1 = χA(y) (y ∈ A ∩ Y ).

If y ∈ Y − A, then
min
z∈A

{|z − y| + u(y) − u(z)} = θ > 0

for some constant θ = θ(y), since A is a transport set and is closed. Therefore

min
z∈A

{|z − y| − u(z) − εχA(z)} = θ − ε− u(y).

On the other hand,

inf
z∈B(0,R)−A

{|z − y| − u(z) − εχA(z)} = −u(y).

Thus if ε = ε(y) > 0 is so small that ε < θ, then

vε(y) = −u(y) = v(y),

and so
v(y) − vε(y)

ε
= 0 = χA(y).

Hence

lim
ε→0+

v − vε

ε
= χA (y ∈ Y ). (5.32)
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Since 0 ≤ v−vε

ε
≤ 1 a.e., we deduce from (5.31),(5.32) that

∫

A

f+dx ≤

∫

A

f−dy.

The opposite inequality follows by symmetry.
Suppose now A is not closed. We have

∫

B

f+dx =

∫

B

f−dy

for each closed transport set B ⊂ A. Taking the supremum over all such sets gives (5.27).
2

Lemma 5.2 (i) For a.e. x0 ∈ X the transport ray Rx0 intersects Y 0.
(ii) Similarly, for a.e. y0 ∈ Y the transport ray Ry0 intersects X0.

Proof. Let A = {z ∈ T | Du(z) exists, Rz ∩ Y 0 = ∅}. A is measurable, since

A = T ∩ {z | Du(z) exists} ∩
∞
⋂

k=1

{z | u(z) < min
y∈Y 0

dist(y,∂Y )≥1/k

(u(y) + |y − z|)}.

Note that A is a transport set, up to a set of Lebesgue measure zero. Then Proposition 5.3
implies

∫

A

f+dx =

∫

A

f−dy = 0.

As f+ > 0 in X0, we obtain |A ∩ X0| = 0. Assertion (i) follows, as by symmetry does
assertion (ii). 2

6 Behavior of the transport density along rays

This section scrutinizes closely the behavior of the transport density restricted to a generic
transport ray.

First of all let us observe from Proposition 5.2 that for a.e. z0, the transport ray Rz0

intersects the set of Lebesgue points of a on a set of full H∞ measure. The restriction of a
to Rz0 , denoted a|

Rz0
, is thus defined H∞ a.e.

We intend to show that this restriction of the density a is locally Lipschitz along Rz0 , is
positive on certain subintervals of Rz0 , and vanishes at the endpoints of Rz0 . The main idea
in proving all this is to regard u as known and to think of the PDE −div(aDu) = f as a
linear first-order ODE for a.
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Proposition 6.1 For a.e. point z0 ∈ T ,
(i) a|

Rz0
is locally Lipschitz along Rz0 .

(ii) If I is a subinterval of Rz0 − (X0 ∪ Y 0), then a|
I

is either identically zero or else
everywhere positive.

(iii) Furthermore
a|

Rz0∩X0 and a|
Rz0∩Y 0

are both positive, except possibly at the end points a0, b0.

We will later prove (Proposition 7.1) that in fact a vanishes at a0, b0.

=750 Fig6.1

Proof. 1. Select z0 so that the ray R = Rz0 intersects the set of Lebesgue points of a on a
set of full H∞ measure. A.e. z0 ∈ T will do, according to Proposition 5.2. We may as well
assume that a0, the upper endpoint of R, is 0 and b0, the lower endpoint, is len, where l > 0.
Hence Du = −en on R. As before, we write

Rσ = R− [B(a0, σ) ∪B(b0, σ)]

to denote the points on R of distance at least σ > 0 away from the ends.
Define the cylinder

Cε = B′(0, ε) × [σ, l − σ] (ε > 0),

B′ here and hereafter denoting a ball in R
n−1.

We select 0 < ε ≤ ε0
2
, the radius ε0 adjusted so small that

Cε0 ⊆ N,

N the tubular neighborhood of Rσ from Proposition 4.1. Thus estimate (4.15) tells us

|Du(z) −Du(ẑ)| = |Du(z) + en| ≤ C|z − ẑ| ≤ Cε (6.1)

for each point z ∈ Cε ∩ T at which Du(z) exists, ẑ denoting the projection of z onto R.
2. Let φε, ψ be smooth, nonnegative functions such that φε = φε(x

′) has compact support
in B′(0, ε) and ψ = ψ(xn) has compact support in [σ, l−σ]. Then, since u is a weak solution
of −div(aDu) = f according to Theorem 2.1(i), we have

∫

Cε
fψφεdz =

∫

Cε
aDu ·D(φεψ) dz

=
∫

Cε
a(Du ·Dφε)ψ dz +

∫

Cε
a(Du ·Dψ)φε dz. (6.2)
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Define also for a.e. σ ≤ zn ≤ l − σ,

αε(zn) =

∫

B′(0,ε)

a(z′, zn)φε(z
′) dz′. (6.3)

Let us also take

φε(z
′) =

1

εn−1
φ

(

z′

ε

)

(z′ ∈ R
n−1) ,

where
{

φ : R
n−1 → R is smooth, φ ≥ 0,

∫

Rn−1 φ dz
′ = 1, supp(φ) ⊂ B′(0, 1)

(6.4)

and

φ > 0 on B′(0, 1
2
). (6.5)

Consequently we see that for a.e. zn, αε(zn) is a weighted average of a(·, zn) over the (n−1)-
dimensional disk B′(0, ε) × {zn}.

3. We will show that this average approximately solves an ODE in the variable zn. Since
Du = −en on R and ψ = ψ(zn), we have:

∫

Cε
a(Du ·Dψ)φε dz =

∫ l−σ

σ

∫

B′(0,ε)
auzn

ψ′φε dz
′dzn

= −
∫ l−σ

σ
ψ′αε dzn

+
∫ l−σ

σ

∫

B′(0,ε)
a(uzn

+ 1)ψ′φε dz
′dzn.

(6.6)

According to (6.1) we have |uzn
+ 1| ≤ |Du + en| ≤ Cε for points z lying in T ∩ Cε. As

supp(a) ⊆ T (Proposition 3.1) and a ≥ 0, we deduce

∣

∣

∣

∣

∫ l−σ

σ

∫

B′(0,ε)

a(uzn
+ 1)ψ′φε dz

′dzn

∣

∣

∣

∣

≤ Cε

∫ l−σ

σ

|ψ′|αε dzn. (6.7)

In addition, since φε = φε(z
′), we have

∣

∣

∣

∫

Cε
a(Du ·Dφε)ψ dz

∣

∣

∣
=
∣

∣

∣

∫ l−σ

σ

∫

B′(0,ε)
a(Du+ en) ·Dφεψ dz′dzn

∣

∣

∣

≤ Cε
∫ l−σ

σ

∫

B′(0,ε)
a|Dφε|ψ dz′dzn by (6.1)

≤ C
∫ l−σ

σ
ψα2ε dzn by (6.4), (6.5).

(6.8)
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Finally, let us write

βε(zn) =

∫

B′(0,ε)

f(z′, zn)φε(z
′) dz′;

whence
∫

Cε

fψφε dz =

∫ l−σ

σ

ψβε dzn. (6.9)

4. Combine (6.2), (6.6)–(6.9):

∣

∣

∣

∣

∫ l−σ

σ

ψ′αε + ψβε dzn

∣

∣

∣

∣

≤ C

∫ l−σ

σ

ψα2εdzn + Cε

∫ l−σ

σ

|ψ′|αε dzn.

Given σ < s < t < l − σ and small δ > 0, we define

ψ(zn) =























0 σ ≤ zn ≤ s
linear s ≤ zn ≤ s+ δ
1 s+ δ ≤ zn ≤ t− δ
linear t− δ ≤ zn ≤ t
0 t ≤ zn ≤ l − σ.

Substituting this choice of ψ above and sending δ → 0+, we deduce that for a.e. σ < s <
t < l − σ:

∣

∣

∣

∣

αε(s) − αε(t) +

∫ t

s

βεdzn

∣

∣

∣

∣

≤ C

∫ t

s

α2ε dzn + Cε. (6.10)

Next define for σ + ε ≤ t ≤ l − σ − ε:










aε(t) = 1
2ε

∫ t+ε

t−ε
αε(zn) dzn,

fε(t) = 1
2ε

∫ t+ε

t−ε
βε(zn) dzn.

(6.11)

Thus aε(t) is a weighted average of a over the n-dimensional cylinder B ′(0, ε)× [t− ε, t+ ε],
and fε(t) is a similar average of f .

5. We next claim
∣

∣

∣

∣

aε(s) − aε(t) +

∫ t

s

fε dr

∣

∣

∣

∣

≤ C

∫ t

s

a2ε dr + Cε (6.12)

for σ + ε ≤ s < t ≤ l − σ − ε. To see this, write the left hand side of (6.12) as
∣

∣

∣

∣

∫

R1

ηε(r)[αε(s− r) − αε(t− r) +

∫ t

s

βε(zn − r) dzn] dr

∣

∣

∣

∣

,
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where ηε = 1
2ε
χ[−ε,ε]. According to (6.10) the foregoing expression is less than or equal to

C
∫

R
ηε(r)

∫ t−r

s−r
α2ε(zn) dzndr + Cε

= C
∫ t

s

∫

R
ηε(r)α2ε(zn − r) drdzn + Cε

= C
∫ t

s
a2ε(zn) dzn + Cε.

6. Since a and f are bounded, we conclude from (6.12) first of all that

|aε(s) − aε(t)| ≤ C(t− s) + Cε (6.13)

for σ + ε ≤ s ≤ t ≤ l− σ − ε. Hence if εk → 0, the functions {aεk
(·)}∞k=1 are equicontinuous

on compact subsets of (σ, l − σ). But

aε(s) =
1

2ε

∫ s+ε

s−ε

∫

B′(0,ε)

aφε dz
′dzn → a(0, sen) = a(s) (6.14)

as ε → 0 for a.e. σ ≤ s ≤ l − σ. This is true since H∞-a.e. point along the ray R is a
Lebesgue point for the density a. Hence in fact

aε(s) → a(s)uniformly on [σ, l − σ] as ε→ 0 . (6.15)

In view of (6.13) we see that the mapping s 7→ a(s) is Lipschitz for σ ≤ s ≤ l − σ. This
proves assertion (i).

7. Let ε→ 0 in (6.12) and write f(ren) = f(r):

∣

∣

∣

∣

a(s) − a(t) +

∫ t

s

f(r) dr

∣

∣

∣

∣

≤ C

∫ t

s

a(r) dr

for each σ ≤ s < t ≤ l − σ. Thus

|a′(s) − f(s)| ≤ Ca(s) ( ′ =
d

ds
) (6.16)

for a.e. σ ≤ s ≤ l − σ. In particular,

(eCsa(s))′ ≥ eCsf(s) (6.17)

and

(e−Csa(s))′ ≤ e−Csf(s). (6.18)
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Assume a(s0) = a(s0en) = 0 and s0en lies in a subinterval I ⊂ Rz0 − (X0 ∪ Y 0). Then f = 0
along I. According to (6.16)

|a′(s)| ≤ Ca(s)

for all s such that sen ∈ I, also we deduce from Gronwall’s inequality that a(s) = 0 for all
such s. This is assertion (ii).

8. Let J denote a subinterval of Rz0 ∩ X0 and take s1 to be the smallest number such
that s1en ∈ J̄ . Then for s > s1 such that sen ∈ J we deduce from (6.17) that

eCsa(s) ≥ eCs1a(s1) +

∫ s

s1

eCrf(r)dr > 0,

as a(s1) ≥ 0 and f = f+ > 0 in X0. Similarly, if J now denotes a subinterval of Rz0 ∩ Y
0

and s2 is the largest number such that s2en ∈ J̄ , then (6.28) implies for s < s2 such that
sen ∈ J ,

e−Csa(s) ≥ e−Cs2a(s2) −

∫ s2

s

e−Crf(r)dr > 0,

since a(s2) ≥ 0 and f = f− < 0 in Y 0. 2

Remark. The previous proposition is based upon the formal observation that

f = −div(aDu) = −Da ·Du− a∆u. (6.19)

Thus along the vertical ray R in the preceding proof we have Du = −en, and so

azn
− a∆u = f. (6.20)

Since Proposition 4.1 implies that, heuristically at least, ∆u is bounded on R (away from
the endpoints), (6.20) can be thought of as a linear ODE for a, which implies a bound on
|azn

|. Statements (ii), (iii) in Proposition 6.1 follow formally as well. 2

Remark. For use later (in §9) we record a technical fact established in the proof above,
namely







aε(s) = 1
2ε

∫ s+ε

s−ε

∫

Rn−1 aφε dz
′dzn

→ a(s) = a(sen) as ε→ 0,
uniformly for σ ≤ s ≤ l − σ.

(6.21)

Note that (6.21) is valid for even if φ does not satisfy condition (6.5). (We used (6.5) only to
get the term “α2ε” on the right hand of (6.8). To prove the equicontinuity statement (6.13)
it is enough simply to estimate

∫

−
B′(0,ε)

adz′ ≤ C
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in (6.8).) 2

We next interpret the ODE (6.20) rigorously. Let us recall from Lemma 4.1(iii) that for
each δ > 0, D2u ≤ Cδ on T − Yδ; that is,

u−
Cδ
2
|x|2 is concave on T − Yδ.

Consequently we can interpret the entries of the Hessian matrix D2u as signed Radon mea-
sures on T − Yδ: see the Appendix. We write

d[D2u] = [D2u]acdx+ d[D2u]s, (6.22)

[D2u]ac denoting the absolutely continuous part of D2u (with respect to n-dimensional
Lebesgue measure) and [D2u]s the singular part. In particular, if φ is smooth and has
compact support in T − Yδ,

∫

B(0,R)

Dφ ·Du dz = −

∫

B(0,R)

φ[∆u]ac dz −

∫

B(0,R)

φ d[∆u]s , (6.23)

where [∆u]ac = trace[D2u]ac, d[∆u]s = trace d[D2u]s.

Proposition 6.2 For a.e. z0 ∈ T ,

aν − [∆u]aca = f+ H∞ a.e. on R‡′ ∩ X ′, (6.24)

where ν = −Du(z0). Similarly,

aν − [∆u]aca = f− H∞ a.e. on R‡′ ∩ Y ′.

Proof. 1. In view of Proposition 5.2 we may as before suppose z0 is selected so that the ray
R = Rz0 intersects the set of Lebesgue points of a and the set of Lebesgue points of [D2u]ac
on a set of full H∞-measure. We may also suppose that

lim
ε→0

‖[D2u]s‖(B(z, ε))

εn
= 0 (6.25)

for H∞ a.e. z ∈ R ∩ X0, and, finally, that u is twice differentiable at H∞ a.e. point
z ∈ R ∩X0.

As before, we take a0 = 0, b0 = len, Du = −en on R, ν = en. We suppose as well that
the open interval (0, ken) lies in X0 for some 0 < k < l.

Define Rσ, φε = φε(z
′), ψ = ψ(zn), etc. as in the previous proof, with k replacing l. Thus

we now write Cε = B′(0, ε) × [σ, k − σ].
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2. Recall equality (6.2), which asserts
∫

Cε

fψφεdz =

∫

Cε

a(Du ·Dφε)ψ dz +

∫

Cε

a(Du ·Dψ)φε dz. (6.26)

¿From Step 3 in the proof of Proposition 6.1 we recall as well that
∣

∣

∣

∣

∫

Cε

a(Du ·Dψ)φεdz +

∫ k−σ

σ

ψ′αε dzn

∣

∣

∣

∣

≤ Cε, (6.27)

and
∫

Cε

fψφεdz =

∫ k−σ

σ

ψβε dzn. (6.28)

3. We more carefully examine the first term on the right hand side of (6.26). We have

∫

Cε
a(Du ·Dφε)ψ dz =

∫ k−σ

σ
a(0, zn)ψ(zn)

(

∫

B′(0,ε)
Du ·Dφεdz

′
)

dzn

+
∫ k−σ

σ
ψ(zn)

∫

B′(0,ε)
(Du ·Dφε)[a(z′, zn) − a(0, zn)] dz

′dzn

≡ A1 + A2.
(6.29)

Since φε does not depend on zn, we may estimate:

|A2| ≤ C
∫ k−σ

σ
ψ
∫

B′(0,ε)
|(Du+ en) ·Dφε| |a(z′, zn) − a(0, zn)| dz′dzn

≤ C
∫ k−σ

σ
ψ
∫

−
B′(0,ε)

|a(z′, zn) − a(0, zn)| dz′dzn. (6.30)

This inequality holds since

|Du(z) + en| ≤ Cε a.e. in T ∩N ⊃ B ′(0, ε) × {zn}

(since B′(0, ε) × {zn} ⊂ X0 for ε > 0 small enough and σ ≤ zn ≤ k − σ).
4. Next, let

λε(zn) = −

∫

B′(0,ε)

Du ·Dφε dz
′. (6.31)

Then select ψ as in the proof of Proposition 6.1 (k replacing l) and let δ → 0 in (6.26) to
deduce for a.e. σ ≤ s ≤ t ≤ k − σ that

∣

∣

∣
αε(s) − αε(t) +

∫ t

s
βε(zn)dzn +

∫ t

s
a(0, zn)λε(zn)dzn

∣

∣

∣

≤ Cε+
∫ t

s

∫

−
B′(0,ε)

|a(z′, zn) − a(0, zn)| dz′dzn.
(6.32)
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Define aε, fε as before, and similarly set

lε(t) = 1
2ε

∫ t+ε

t−ε
a(0, zn)λε(zn) dzn,

vε(t) = 1
2ε

∫ t+ε

t−ε

∫

−
B′(0,ε)

|a(z′, zn) − a(0, zn)| dz
′dzn.

Then (6.32) implies
∣

∣

∣

∣

aε(s) − aε(t) +

∫ t

s

fε(r) dr +

∫ t

s

lε(r) dr

∣

∣

∣

∣

≤ Cε+

∫ t

s

vε(r) dr, (6.33)

for σ + ε ≤ s ≤ t ≤ k − σ − ε. (This is proved in the same way that (6.12) follows from
(6.10) in the previous proof.) Now

|lε(t)| ≤
1

2ε

∫ t+ε

t−ε

a(0, zn)|λε(zn)|dzn

and
|λε(zn)| =

∣

∣

∣

∫

B′(0,ε)
Du ·Dφε dz′

∣

∣

∣

=
∣

∣

∣

∫

B′(0,ε)
(Du+ en) ·Dφε dz′

∣

∣

∣
≤ C,

since |Du+ en| ≤ Cε a.e. in B′(0, ε) × {zn}. Thus

|lε(t)| ≤ C (σ + ε ≤ t ≤ k − σ − ε). (6.34)

Furthermore for σ + ε ≤ t ≤ k − σ − ε:

1
2ε

∫ t+ε

t−ε λε(zn)dzn = − 1
2ε

∫ t+ε

t−ε

∫

B′(0,ε)
Du ·Dφε dz′dzn

= 1
2ε

∫ t+ε

t−ε

∫

B′(0,ε)
φε[∆

′u]ac dz
′dzn

+ 1
2ε

∫ t+ε

t−ε

∫

B′(0,ε)
φε d[∆′u]s,

where ∆′u =
∑n−1

i=1 uxixi
. Now (6.25) implies

∣

∣

∣

∣

1

2ε

∫ t+ε

t−ε

∫

B′(0,ε)

φε d[∆′u]s

∣

∣

∣

∣

→ 0

as ε → 0, for a.e. σ ≤ t ≤ k − σ. Furthermore, as H∞ a.e. point of R is a Lebesgue point
of [D2u]ac, we have

1

2ε

∫ t+ε

t−ε

∫

B′(0,ε)

φε[∆
′u]acdz

′dzn → [∆′u]ac(ten) = [∆u]ac(ten) for a.e. σ ≤ t ≤ l − σ.
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Since zn 7→ a(0, zn) is Lipschitz, we conclude

lε(t) → [∆u]ac(ten)a(t) for a.e. σ ≤ t ≤ l − σ.

Consequently (6.34) and the Dominated Convergence Theorem imply
∫ t

s

lε(r)dr →

∫ t

s

[∆u]ac(ren)a(r) dr. (6.35)

Likewise
|vε(t)| ≤ C (σ ≤ t ≤ l − σ)

and
vε → 0 for a.e. σ ≤ t ≤ l − σ,

since H∞-a.e. point along R is a Lebesgue point of a. Thus
∫ t

s

vε(r) dr → 0.

Since aε(t) → a(ten) = a(t) for a.e. t, we conclude upon passing to limits as ε→ 0 in (6.33)
that for σ ≤ s ≤ t ≤ k − σ we have:

a(t) − a(s) =

∫ t

s

f(r) + [∆u]ac(ren)a(r) dr.

This identity proves (6.24). 2

Remark. Note carefully in Proposition 6.2 that we are asserting the ODE aν − [∆u]aca = f
holds in the interior regions X0, Y 0. The reason is that we need the transport set T to
completely fill the cylinder Cε to carry out estimate (6.30). 2

7 Vanishing of the transport density at the ends of rays

Finally we assert that the transport density a, restricted to a generic transport ray Rz0 ,
goes to zero at the endpoints a0, b0 of Rz0 .

Proposition 7.1 For a.e. z0 ∈ T ,

lim
z→a0
z∈Rz0

a(z) = 0 (7.1)

and

lim
z→b0
z∈Rz0

a(z) = 0. (7.2)
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Proof. 1. As before, fix z0 so that R = Rz0 intersects the set of Lebesgue points of a
on a set of full H∞-measure. Also, recall that u∗ (resp. u∗) is locally semiconcave (resp.
semiconvex) on B(0, R) − Y (resp. B(0, R) −X). Thus u∗ (resp. u∗) is twice differentiable
a.e. on B(0, R) − Y (resp. B(0, R) −X) by Alexandrov’s Theorem ([E-G], §6.4). We may
consequently assume that z0 is selected so that R intersects the set of twice differentiably of
u∗ on B(0, R)−Y and u∗ on B(0, R)−X on a set of full H∞-measure (cf. Proposition 5.2).
We also take (as in earlier proofs) a0 = 0, b0 = len, Du = −en on R. We will prove

lim
z∈R
z→0

a(z) = 0. (7.3)

As in the proof of Proposition 4.1, let us select a point ŵ ∈ R − (X ∪ Y ) such that the
segment [0, ŵ] does not intersect Y . We write

ŵ = ren (0 < r < l). (7.4)

We also assume

u(ŵ) = u∗(ŵ) = 0, (7.5)

and define
Γ∗

0 = {u∗ = 0}.

We may suppose as well u∗ is twice differentiable at ŵ.
Observe

u(0) = r. (7.6)

We must consider next these various possibilities: Does the endpoint a0 = 0 belong to X0

or ∂X? Is u differentiable at a0 = 0, or not? We will establish (7.3) in each situation, but
the reasoning will be different.

2. Let us first suppose

0 ∈ X0 and Du(0) exists. (7.7)

The idea is now to show that [∆u]ac(z) → −∞ as z → 0, z ∈ R. Then the ODE (6.24) will
force a(z) → 0 as z → 0, z ∈ R.

Recall u∗ is twice differentiable at ŵ and Du∗(ŵ) = −en 6= 0. Hence for some ρ > 0

∆ = Γ∗
0 ∩B(ŵ, ρ)

is the graph of a Lipschitz function γ : R
n−1 → R, which is twice differentiable at w′ = 0.

Thus, in appropriate coordinates,

∆ = {z | zn = r −
1

2

n−1
∑

i=1

κiz
2
i + o(|z′|2)} near ŵ. (7.8)
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The {κi}
n−1
i=1 are the principal curvatures of ∆ at ŵ. We record also the observation that

{

u(z) = dist(z,∆) for all z in some
neighborhood of the closed interval [0, ŵ].

(7.9)

If this were false, there would exist points zk → z ∈ [0, ŵ] such that u would be decreasing
at rate one along transport rays Rk through zk, but the Rk would not in the limit be pointing
in the direction en. This contradicts the fact (Lemma 4.1(ii) and (7.7)) that u is differentiable
at z.

3. Now set κ = max1≤i≤n−1 κi. We will next verify

κ > 0, r =
1

κ
. (7.10)

=750 Fig7.1

To see this, define for small ε > 0

γ(z′) = r −
(κ + ε)

2
|z′|2 (z′ ∈ R

n−1),

and let ∆ denote the graph of γ near ŵ. Write

u(z) = dist(z,∆).

Since γ ≤ γ for small |z′|, we see from (7.9) that

u ≤ u near the closed interval [0, ŵ]. (7.11)

If κ+ ε ≤ 0, then

u(ten) = r − t for all t ≤ r . (7.12)

If κ+ ε > 0, then

u(ten) = r − t (7.13)

so long as

0 ≤ r − t ≤
1

κ+ ε
. (7.14)

If (7.12) holds, then (7.11) implies

u(ten) = r − t for some small t < 0.
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This however is a contradiction, since a0 = 0 is the upper endpoint of the ray R. Suppose
instead (7.13), (7.14) are valid. Again we have a contradiction if t < 0. Consequently

r − t >
1

κ+ ε
for each t < 0, ε > 0;

and so

κ > 0, r ≥
1

κ
. (7.15)

On the other hand if z = (z′, zn) ∈ ∆, then

zn ≥ (r2 − |z′|2)1/2 = r −
|z′|2

2r
+ o(|z′|2).

As zn = r − 1
2

∑n−1
i=1 κiz

2
i + o(|z′|2), we deduce

1

r
≥ κi (i = 1, . . . , n− 1).

Thus
1

r
≥ κ,

and so

1

κ
≥ r (7.16)

since κ > 0. This inequality and (7.15) complete the proof of (7.10).
4. Now we estimate [∆u]ac from above along the segment [0, ŵ]. Suppose the segment

[0, ken] lies in X0. Now fix a point ẑ = ten, where 0 < t ≤ k. We may assume u = u∗ is
twice differentiable at ẑ, whence

u(z) = u(ẑ) +Du(ẑ) · (z − ẑ) +
1

2
(z − z)T [D2u(ẑ)]ac(z − ẑ) + o(|z − ẑ|2) .

(7.17)

In view of Lemma 4.1(iii),

[D2u(ẑ)]ac ≤ C. (7.18)

Define

γ̄(z′) = r −
1

2

n−1
∑

i=1

(κi − ε)z2
i (z′ ∈ R

n−1)
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and let ∆̄ denote the graph of γ̄ near ŵ. Write

ū(z) = dist(z, ∆̄).

Then
u(ẑ) = ū(ẑ) ,

and, since γ ≤ γ̄ for small |z′|,

u ≤ ū in some neighborhood of the closed line segment [0, ŵ]. (7.19)

Assuming κ = max1≤i≤n−1 κi = κ1, we note

ūx1x1(ẑ) = −
(κ− ε)

1 − (κ− ε)(r − t)
.

(See for instance, Gilbarg–Trudinger [G-T, §14.6].) Hence if h 6= 0 is small,

u(ẑ + he1) − 2u(ẑ) + u(ẑ − he1)

h2
≤
ū(ẑ + he1) − 2ū(ẑ) + ū(ẑ − he1)

h2

→ −
(κ− ε)

1 − (κ− ε)(r − t)
as h→ 0.

Consequently (7.17) and (7.18) imply

[∆u]ac(ten) ≤ C −
κ

1 − κ(r − t)
for a.e. 0 < t < k.

Since r = 1
κ

according to (7.10), we deduce:

[∆u]ac(ten) ≤ C −
1

t
for a.e. 0 < t < k. (7.20)

Next recall from Proposition 6.2 the ODE for a along the ray R:

a′ − [∆u]aca = f for a.e. 0 < t < k,

where a(t) = a(ten), and ten ∈ X0 for 0 ≤ t ≤ k. In light of (7.20) therefore,

a′ ≤ C −
a

t
.

Hence
(ta)′ = ta′ + a

≤ tC a.e.,
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and so

ta(t) ≤
Ct2

2
.

Thus

0 ≤ a(t) ≤
Ct

2
for 0 < t ≤ k.

Obviously then (7.3) is valid.
5. Consider next the possibility

0 ∈ X0 and Du(0) does not exist. (7.21)

Define ∆ as above, so that u(z) = dist(z,∆) for z near the half-open interval (0, ŵ]. Now if
κ > 0, then as in Step 3 we must have r ≤ 1

κ
. If

r =
1

κ
,

then the ODE calculations in Step 4 imply (7.3). Suppose instead

r <
1

κ
= r0 or else κ ≤ 0. (7.22)

Then, since u is not differentiable at 0, it must be that
{

a0 = 0 is the upper endpoint of at least one other
transport ray S 6= R.

(7.23)

Also, observe from (7.22) that v(z) = dist(z,∆) satisfies the conclusion of Proposition 4.1
near compact subsets of the segment ((r − r0)en, ŵ] ⊇ [0, ŵ]. In particular for some neigh-
borhood N of the closed interval [0, ŵ], we have the estimate

|Dv(z) −Dv(ẑ)| ≤ C|z − ẑ| if z ∈ T ∩N, (7.24)

provided Dv(z) exists. Here ẑ is the projection of z onto [0, ŵ] and T temporarily denotes
the transport set for v. The same conclusion holds if κ ≤ 0.

Next we claim






there exists a truncated spherical cone C, as drawn,
with axis en and vertex 0, such that
u(z) = v(z) = dist(z,∆) for z ∈ C ∩B(0, r).

(7.25)

In other words, we are saying that although u(z) does not equal dist(z,∆) in a full neigh-
borhood of 0, we do have u(z) = dist(x,∆) for z lying in a cone around the en-axis, with
vertex 0. To verify this statement, note first that (7.22) implies

ŵ = ∂B(0, r) ∩ {zn ≥ α|z′|} ∩ Γ∗
0
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for some constant α > 0. Recall B(0, r)0 ∩ Γ∗
0 = ∅. Select β > 0 such that the cone

{zn ≥ α|z′|} has twice the opening at 0 as the cone {zn ≥ β|z′|}. If

z ∈ B(0, r) and zn ≥ β|z′|, (7.26)

then dist(z,Γ∗
0 − ∆) > dist(z, ŵ) ≥ dist(z,∆). The inequality in (7.26) determines the

desired cone.

=750 Fig7.2

Combining (7.24), (7.25) we see

|Du(z) −Du(ẑ)| ≤ C|z − ẑ| if z ∈ T ∩ C (7.27)

provided Du(z) exists.
6. The plan next is to show

lim
ε→0+

∫

−
B(0,ε)

a dz = 0, (7.28)

and this we accomplish by a blow-up. Define the rescaled functions
{

uε(z) = u(εz)−u(0)
ε

,
aε(z) = a(εz), f ε(z) = f(εz).

(7.29)

Then uε(0) = 0, |Duε| ≤ 1 a.e., and so we may extract a subsequence εj → 0 and a Lipschitz
function u0 : R

n → R such that

uεj → u0 locally uniformly on R
n. (7.30)

Since |Duεj | = 1 in the viscosity sense near 0 ∈ X0 (Lemma 4.2), we deduce from (7.30)
that

|Du0| = 1 in the viscosity sense in R
n.

In particular

|Du0| = 1 a.e. in R
n. (7.31)

Consequently for each compact set K ⊂ R
n

lim supj→∞

∫

K
|Duεj |2dx = |K|

=
∫

K
|Du0|2dx

and hence

Duεj → Du0 strongly in L2

loc. (7.32)
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Also
D2uεj(z) = εjD

2u(εjz) ≤ Cεj

and so

u0 is concave. (7.33)

Recall now from (7.23) that a0 = 0 is the upper endpoint of (at least) two transport rays
R and S. Let us temporarily rotate to new coordinates, so that these rays make an equal
angle with the zn-axis. In these coordinates R = {ta1 | t ≥ 0}, S = {ta2 | t ≥ 0}, where

a1 = λen + γe′, a2 = λen − γe′ (7.34)

for 1 > λ ≥ 0, γ > 0, λ2 + γ2 = 1, and e′ 6= 0 some unit vector perpendicular to en.
Recall that the function u decreases linearly at rate one along R and S. Thus from (7.29),

(7.30) we deduce

u0(ta1) = −t, u0(ta2) = −t for t ≥ 0. (7.35)

Now observe that

u0(z) ≤ −z · a1, u
0(z) ≤ −z · a2 (z ∈ R

n). (7.36)

Indeed if t > 0, z ∈ R
n

|u0(z) + t|2 = |u0(z) − u0(tai)|2

≤ |z − tai|2 (i = 1, 2).

Consequently
u0(z)2 + 2tu0(z) + t2 ≤ |z|2 − 2tai · z + t2,

and so

2[u0(z) + ai · z] ≤
|z|2

t
(i = 1, 2) .

Letting t→ ∞ we deduce (7.36).
Using (7.36) we compute

u0(z) ≤ min(−z · a1,−z · a2)
= min(−λzn − γ(z · e′),−λzn + γ(z · e′))
= −λzn − γ|z · e′|.

Hence

u0(z) ≤ −λzn (z ∈ R
n). (7.37)
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Now take θ > 0 so small that

λ+ θ < 1, (7.38)

fix ρ� 1, and define

v(z) = −λzn + θ|z| − ρ (z ∈ R
n) . (7.39)

Then v < u0 in some large neighborhood of 0. However we also note from (7.37) that

u0(z) ≤ v(z) if |z| is large enough. (7.40)

We will employ the auxiliary function v below.
7. We next blow up the PDE −div(aDu) = f . From the scaling (7.29) it follows that

− div(aεDuε) = εf ε (7.41)

in the weak sense. We may assume

aεj ⇀ a0 weakly ∗ in L∞
loc, (7.42)

where a0 ≥ 0. Since Duεj → Du0 strongly in L2

loc, we may pass to limits in (7.41) and
deduce

− div(a0Du0) = 0 in R
n, (7.43)

in the weak sense.
We can finally establish the key assertion, namely that (7.43) and (7.31) together force

a0 to be identically zero. To prove this, let M > 0 be given and then select ρ > 0 so large
that

v < u0 in B(0,M).

We take w = (u0 − v)+ as a test function in the weak formulation of (7.43). Note that
according to (7.40) w has compact support in R

n. Consequently

0 =
∫

Rn a
0Du0 ·D(u0 − v)+ dz

=
∫

{u0>v}
a0[|Du0|2 −Du0 ·Dv] dz.

But |Du0| = 1 a.e. and |Dv| ≤ λ+ θ < 1. Hence

0 ≥

∫

{u0>v}

a0(1 − (λ+ θ)) dz
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and so a0 = 0 a.e. on B(0,M) ⊂ {u0 > v}. This is true for each M > 0 and thus

a0 = 0 a.e. in R
n. (7.44)

But then
∫

−
B(0,εj)

a dz =
∫

−
B(0,1)

aεj dz

→
∫

−
B(0,1)

a0 dz = 0.

This is true for any subsequence εj → 0 and therefore assertion (7.28) is proved.
8. Return now to the original coordinate system, in which R lies along the positive zn-

axis. We will utilize (7.27), (7.28) finally to prove (7.3). Recall the cone C introduced in
statement (7.25).

Fix µ > 0 so small that the balls B(ten, 2µt) lie in the cone C for all t > 0. Let δ > 0.
Then (7.28) implies

∫

−
B(0,ε)

a dx ≤ δ

if ε > 0 is small enough. Hence
∫

−
B( ε

2
en,µε)

a dx ≤ Cδ.

Thus

|aCε(
ε

2
)| ≤ Cδ, (7.45)

where we are using the notation (6.11) from the proof of Proposition 6.1. But recall also
estimate (6.13) from that proof, namely

|aCε(s) − aCε(t)| ≤ C|t− s| + Cε (0 < s, t < k). (7.46)

The constants C here depend only on the constant C from (7.27), and so in particular this
estimate is valid for s, t all the way down to zero. Let s = ε

2
in (7.46), recall (7.45), and then

send ε→ 0:
|a(t)| ≤ Ct+ Cδ 0 < t ≤ k.

This is true for each δ > 0 and so

a(t) ≤ Ct (0 < t ≤ k).

This inequality proves (7.3), provided (7.21) holds.
9. The last possibility is

0 ∈ ∂X. (7.47)
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In this situation a0 = 0 could be the upper endpoint of R for either of the reasons
discussed above in Steps 2–4 or Steps 5–8, or else because extending the ray R farther would
exit X. We can treat all these possibilities at once by replacing u with u∗ in B(0, R) − Y .
Since supp(a) ⊂ T and u = u∗, Du = Du∗ on T , we have

−div(aDu∗) = f in B(0, R) − Y

in the weak sense. Note that the transport set T ∗ for u∗ fills all of B(0, R)−Y . Let R∗ ⊇ R
be the corresponding transport ray for u∗. If the upper endpoint of R∗ is still 0, we apply
Steps 2–4 or 5–8 above to deduce (7.3). The remaining possibility is that the upper endpoint
of R∗ is

a∗0 = −t0en for some t0 > 0.

Now [a∗0, 0) ∩ T = ∅, as otherwise a0 = 0 would not have been the upper endpoint of R. If
a∗0 ∈ B(0, R)0, we deduce using Steps 2–4 or 5–8 above that

lim
z→a∗0
z∈R∗

a = 0.

As a|
R∗ is Lipschitz and |a′(t)| ≤ Ca(t) for a.e. −t0 ≤ t ≤ 0, since [a∗0, 0)∩X = ∅, we deduce

a(t) ≡ 0 on [a∗0, 0] and so (7.3) follows.
The remaining possibility is a0 ∈ ∂B(0, R). But since supp(a) ⊂ T ⊂ B(0, S), clearly

a|
R∗∩[B(0,R)−B(0,S)]

= 0.

2

8 Approximate mass transfer plans

The lengthy and intricate analysis of the fine properties of u and a now done with, we
turn to the primary task, namely, building an optimal mass transfer plan s. In this section
we construct an approximate transfer plan sε,δ, and in §9, 10 study the limits as ε→ 0, then
δ → 0.

Definition of the smooth approximate mass transfer plan sε,δ. Hereafter fix 0 <
ε, δ < 1. Select a function η : B(0, 1) → R such that

{

η ∈ C∞(B(0, 1)), η has compact support in B(0, 1),
η ≥ 0,

∫

B(0,1)
η dx = 1, η is radial, η > 0 on B(0, 1

2
) .

(8.1)

Next define the mollifier

ηε(z) =
1

εn
η(
z

ε
) (z ∈ R

n), (8.2)
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and write

(aDu)ε(z) = ηε ∗ (aDu)(z)
=
∫

Rn ηε(z − w)a(w)Du(w)dw (z ∈ B(0, R)).
(8.3)

Define as well for z ∈ B(0, R)

aε(z) = (ηε ∗ a)(z), (8.4)

and

νε(z) =

{

−(aDu)ε(z)
aε(z)

if aε(z) 6= 0

0 if aε(z) = 0.
(8.5)

Then

− (aDu)ε = aενε. (8.6)

Now since
−div(aDu) = f

in the weak sense, we have

div(aενε) = fε = f+
ε − f−

ε . (8.7)

Next introduce the smooth, time-varying vector field

bε(z, t) = bε,δ(z, t) =
aε(z)νε(z)

tf−
ε (z) + (1 − t)f+

ε (z) + δ
(0 ≤ t ≤ 1, z ∈ B(0, R)).

(8.8)

For a given point z0 ∈ B(0, R), let zε(·) = zε,δ(·) solve the nonautonomous ODE
{

żε(t) = bε(zε(t), t) (0 ≤ t ≤ 1)
zε(0) = z0.

(8.9)

Write zε(t) = zε(t, z0) to display the initial condition. Finally, let us define

sε,δ(z0) = w0 , (8.10)

where
w0 = zε(1, z0).

The mapping sε,δ is the approximate mass transfer plan (corresponding to ε, δ > 0). Observe
that since a = 0 on B(0, R) − B(0, S), sε,δ(z0) = z0 unless z0 is close to the ball B(0, S).

We show now that the mapping z 7→ sε,δ(z) approximately transforms the measure µ+ =
f+dx to µ− = f−dy.
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Lemma 8.1 We have

f+
ε (z) + δ = (f−

ε (sε(z)) + δ) det Dsε,δ(z) (z ∈ B(0, R)), (8.11)

and so
∫

B(0,R)

h(sε,δ(z))(f
+
ε (z) + δ)dz =

∫

B(0,R)

h(w)(f−
ε (w) + δ)dw (8.12)

for each h ∈ C(B(0, R)).

Proof. To simplify notation, drop the subscripts δ. Let us write

sε(t, z) = zε(t, z) (z ∈ B(0, R), 0 ≤ t ≤ 1),

where zε(·) solves the ODE (8.9). Let

Jε(t, z) = det Dzsε(t, z).

Then Euler’s formula states

Jε,t = (div bε)Jε. (8.13)

Following Dacorogna–Moser [D-M] we compute

∂
∂t

[(tf−
ε (sε(t, z)) + (1 − t)f+

ε (sε(t, z)) + δ)Jε]

= (f−
ε − f+

ε )Jε + (tDf−
ε · sε,t + (1 − t)Df+

ε · sε,t)Jε

+(tf−
ε + (1 − t)f+

ε + δ)Jε,t

= [(f−
ε − f+

ε ) + (tDf−
ε · bε + (1 − t)Df+

ε · bε)

+(tf−
ε + (1 − t)f+

ε + δ)(div bε)]Jε,

(8.14)

according to (8.9), (8.13).
Now

div bε = div

(

aενε
tf−
ε + (1 − t)f+

ε + δ

)

=
f+
ε − f−

ε

tf−
ε + (1 − t)f+

ε + δ
−

(tDf−
ε + (1 − t)Df+

ε ) · (aενε)

(tf−
ε + (1 − t)f+

ε + δ)2
by (8.7).

61



We insert this identity into (8.14) and deduce:

∂

∂t
[(tf−

ε + (1 − t)f+
ε + δ)Jε] = 0 (0 ≤ t ≤ 1).

Taking t = 0, 1 we obtain (8.11). 2

We must next understand what happens to sε,δ as ε→ 0, δ > 0 being fixed.

Definition of the approximate mass transfer plan sδ. Write ν = −Du. Then since
aε → a, νε → ν a.e. on {a > 0}, it is reasonable to guess sε,δ → sδ as ε → 0, sδ built as
follows.

First we select a “typical” point z0 ∈ T , satisfying these conditions:
{

Du(z0) exists and thus there exists a unique transport ray Rz0 through
z0 connecting its upper endpoint a0 ∈ X to its lower endpoint b0 ∈ Y .

(8.15)

z0 6= a0, b0, z0 /∈ ∂X ∪ ∂Y. (8.16)

{

H∞(R‡′ ∩ A) = |a′ − b′|, where A denotes
the set of Lebesgue points of a.

(8.17)

a is continuous and nonnegative on Rz0 = [a0, b0], with a(a0) = a(b0) = 0.
(8.18)

a|
Rz0

is locally Lipschitz. (8.19)

We observe that a.e. point z0 ∈ T satisfies:

(8.15) by Radamacher’s Theorem,

(8.16) by Proposition 5.1 and (2.4),

(8.17) by Propostion 5.2,

(8.18) by Proposition 7.1,

(8.19) by Proposition 6.1.

For such a point z0, we set ν = −Du(z0) and define

bδ(z, t) =
a(z)ν

tf−(z) + (1 − t)f+(z) + δ
(0 ≤ t ≤ 1, z ∈ Rz0). (8.20)
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Consider next the ODE
{

żδ(t) = bδ(zδ(t), t) (0 ≤ t ≤ 1)
z(0) = z0.

(8.21)

Since f+, f− and a|
[z0,b0)

are locally Lipschitz (according to (2.1), (8.19)), this ODE has
a unique solution zδ. Furthermore, since a(b0) = 0, we see

zδ(t) ∈ [z0, b0) (0 ≤ t ≤ 1). (8.22)

Write zδ(t) = zδ(t, z0). We define

sδ(z0) = w0, (8.23)

where

w0 = zδ(1, z0). (8.24)

We also set

sδ(z0) = z0 if z0 /∈ T. (8.25)

Definition of the optimal mass transfer plan s. Finally observe that for a.e. z0 ∈ T
is as above, the points {sδ(z0)}0<δ≤1 are arranged monotonically along the segment [z0, b0),
since a, f+, f− ≥ 0. If z0 /∈ T , then sδ(z0) = z0. In both cases the limit

lim
δ→0

sδ(z0) = s(z0) (8.26)

exists. We call s the optimal mass transfer plan generated by the potential u and transport
density a. It is in particular defined for a.e. point in X.

The remainder of the paper is devoted to showing that

lim
ε→0

sε,δ(z0) = sδ(z0) for a.e. z0 ∈ T as above, (8.27)

and that s is indeed optimal.

9 Passage to limits a.e.

In this section we confirm that the smooth mappings sε = sε,δ converge a.e. as ε→ 0.
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Theorem 9.1 For a.e. z0 ∈ B(0, R) we have

lim
ε→0

sε,δ(z0) = sδ(z0). (9.1)

Furthermore, the mapping sδ satisfies

∫

B(0,R)

h(sδ(z))(f
+(z) + δ)dz =

∫

B(0,R)

h(w)(f−(w) + δ)dw (9.2)

for each h ∈ C(B(0, R)).

Proof. We will need to consider various possibilities as to the location of z0 and whether or
not a(z0) > 0.

1. Case 1: z0 /∈ T .

Then since T is closed and supp(a) ⊂ T (Proposition 3.1), we have a = 0 a.e. in some
ball near z0. Thus (aDu)ε = 0 near z0, and so the solution zε(·) of (8.9) is constant in t, for
all small ε > 0. Clearly then

sε(z0) = sδ(z0) = z0 for all sufficiently small ε.

2. Case 2: z0 ∈ T .

We may assume that z0 satisfies conditions (8.15)–(8.19); a.e. point in T does so. The
transfer ray Rz0 has upper endpoint a0 ∈ X, lower endpoint b0 ∈ Y .

3. Subcase A: a(z0) = 0.

Then according to Proposition 6.1(iii), we have z0 /∈ X0 ∪ Y 0. Futhermore, Proposition
6.1(ii) implies there exists a point c0 ∈ (z0, b0) such that

a|
I

= 0, (9.3)

I denoting the interval [z0, c0].
We must show that

lim
ε→0

sε(z0) = sδ(z0) = z0. (9.4)

We may as well suppose z0 = 0, c0 = len. According to Proposition 4.1 there exists a tubular
neighborhood N of I such that

|Du(z) + en| ≤ C|z′|, (9.5)
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provided z ∈ T ∩N , Du(z) exists, and z = (z′, zn). Fix any index i ∈ {1, . . . , n− 1}. Then
(8.8),(8.9) say

żε,i(t) =
−(auxi

)ε(zε(t))

tf−
ε + (1 − t)f+

ε + δ
(0 ≤ t ≤ 1). (9.6)

Let tε denote the minimum of 1 and the first time (if any) that zε(t) is within distance ε of
∂N . Then for 0 ≤ t < tε

|(auxi
)ε(zε(t))| = |

∫

ηε(zε(t) − w)a(w)uxi
(w)dw|

≤ C(|z′ε(t)| + ε),
(9.7)

according to (9.5), where
z′ε(t) = (z1,ε(t), . . . , zn−1,ε(t)).

This follows since |zε(t) − w| ≤ ε implies |w′| ≤ |z′ε(t)| + ε. Thus (9.6), (9.7) yield the
differential inequality

|ż′ε(t)| ≤ C(|z′ε(t)| + ε) for 0 ≤ t < tε;

and so, since z′ε(0) = 0, Gronwall’s inequality gives

|z′ε(t)| ≤ Cε for 0 ≤ t < tε.

Consequently if 0 ≤ t < tε

|(aDu)ε(zε(t))| = |
∫

ηε((zε(t) − w)a(w)Du(w)dw|
≤ C

∫

−
B(zε(t),ε)

a dz

≤ C
∫

−
B(ẑε(t),Cε)

a dz,
(9.8)

ẑε(t) denoting the projection of zε(t) onto I. But recalling observation (6.21) we note
∫

−
B(ẑε(t),Cε)

a dz → 0

uniformly for 0 ≤ t ≤ tε, since a|
I

= 0. Hence (9.8) and the ODE (8.8), (8.9) then imply

|żε(t)| → 0 uniformly for 0 ≤ t ≤ tε.

In particular tε = 1 for all sufficiently small ε > 0. Thus in fact (9.4) is valid, since
sε(z0) = zε(1) → z0.

4. Subcase B: a(z0) > 0.

In this situation there exists a point c0 ∈ (z0, b0] such that

a|
I
> 0 on the interval I = (z0, c0), a(c0) = 0. (9.9)
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Let l = |z0 − c0|.
Our plan is to factor zε(t) by writing

zε(t) = wε(φε(t)) (0 ≤ t ≤ 1), (9.10)

where
{

ẇε(s) = νε(wε(s)) (s ≥ 0)
wε(0) = z0

(9.11)

and
{

φ̇ε(t) = cε(φε(t), t) (0 ≤ t ≤ 1)
φε(0) = 0,

(9.12)

for

cε(s, t) =
aε(wε(s))

tf−
ε (wε(s)) + (1 − t)f+

ε (wε(s)) + δ
(0 ≤ t ≤ 1, s ≥ 0). (9.13)

Remember νε is defined by (8.5). Observe that if wε : [0,∞) → B(0, R) solves (9.11) and
φε : [0, 1] → [0,∞) solves (9.12), then zε defined by (9.10) is the unique solution of the ODE
(8.9). The advantage of this factorization is that the ODE (9.12) is scalar.

We introduce next the formal limits of (9.11)–(9.13) for ε = 0. Define

w(s) = z0 + sν (s ≥ 0), (9.14)

where, recall,
ν = −Du(z0).

In addition, let φ solve

{

φ̇(t) = c(φ(t), t) (0 ≤ t ≤ 1)
φ(0) = 0,

(9.15)

for

c(s, t) =
a(w(s))

tf−(w(s)) + (1 − t)f+(w(s)) + δ
(0 ≤ s ≤ l, 0 ≤ t ≤ 1).

(9.16)

Observe that φ(1) < l, since a(c0) = 0. Note also

zδ(t) = w(φ(t)) ,

zδ the solution of (8.20),(8.21). We intend to prove wε → w and φε → φ as ε→ 0.
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5. Lemma 9.2 For each σ > 0 there exist positive constants C, θ such that

aε(wε(s)) ≥ θ > 0 (0 ≤ s ≤ l − σ) (9.17)

and

max
0≤s≤l−σ

|wε(s) − w(s)| ≤ Cε. (9.18)

for all sufficiently small ε > 0.

Proof. As usual, we may assume z0 = 0, c0 = len, ν = en. Then

|νε(wε(s)) − ν| = |

∫

ηε(wε(s) − z)a(z)[Du(z) + en]
∫

ηε(wε(s) − z)a(z)dz
dz| (9.19)

provided the denominator aε(wε(s)) =
∫

ηε(wε(s) − z)a(z)dz 6= 0. As in (9.5) above, there
exists a neighborhood N of J = [0, (l− σ)en] such that

|Du(z) + en| ≤ C|z′| (9.20)

provided z ∈ T ∩N , Du(z) exists, and z = (z′, zn).
Let sε denote the minimum of l− σ and the first time (if any) that the trajectory wε(s)

is within distance ε of ∂N . Then if 0 ≤ s < sε and aε(wε(s)) 6= 0, we have

|νε(wε(s)) − ν| ≤ C(|w′
ε(s)| + ε), (9.21)

where w′
ε(s) = (wε,1(s), . . . , wε,n−1(s)). Since w(s) lies on I, we have |w′

ε(s)| ≤ |wε(s)−w(s)|;
and consequently

|νε(wε(s)) − ν| ≤ C(|wε(s) − w(s)| + ε). (9.22)

Now
wε(s) = z0 +

∫ s

0
νε(wε(t))dt

w(s) = z0 + sν ;

whence
|wε(s) − w(s)| ≤

∫ s

0
|νε(wε(t)) − ν|dt

≤ C
∫ s

0
|wε(t) − w(t)|dt+ Cε,

according to (9.22). Therefore Gronwall’s inequality implies

|wε(s) − w(s)| ≤ Cε, (9.23)
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provided 0 ≤ s < sε and aε(wε(t)) > 0 for 0 ≤ t ≤ s.

6. Next we estimate aε(wε(t)) from below.
Recall that mollifier function η introduced in Section 8 satisfies η > 0 on B(0, 1/2): see

(8.1). Thus for some constant C > 0,

aε(wε(t)) ≥ C
∫

−
B(wε(t), ε

2
)
a dz

≥ C
ε

∫

wε,n(t)+γε

wε,n(t)−γε
(
∫

−
B′(w′

ε(t),γε)
a dz′)dzn

(9.24)

for some constant 1 > γ > 0, depending only on dimension. (Here and afterwards, remember
our notational convention that a superscript ′ means a point, ball, etc. in R

n−1.)
Set D = C+1, C the constant from (9.23). Then there exists a small constant δ > 0 and

finitely many points {w′
k}

M
k=1 ⊂ B′(0, D) such that if B′ is any ball with center in B ′(0, D)

and of radius γ, then

B′ ⊃ B′(w′
k, δ) for some index k ∈ {1, . . . ,M}. (9.25)

For each such point w′
k, select a function φk satisfying the conditions

{

φk : R
n−1 → R is smooth, φk ≥ 0,

∫

Rn−1 φ
kdz′ = 1, supp(φk) ⊂ B′(w′

k, δ) (k = 1, . . .M).
(9.26)

Let φkε(z
′) = 1

εn−1φ
k( z

′

ε
). Then (9.24), (9.25) imply for each t that

aε(wε(t)) ≥ C
ε

∫

wε,n(t)+γε

wε,n(t)−γε

∫

−
B′(εw′

k
,εδ)
a dz′ dzn

≥ C
ε

∫

wε,n(t)+γε

wε,n(t)−γε

∫

Rn−1 a φ
k
ε dz

′ dzn
(9.27)

for some index k ∈ {1, . . . ,M}.
However for each k,

{

akε(s) = 1
2γε

∫ s+γε

s−γε

∫

Rn−1 a φ
k
ε dz

′ dzn
→ a(s) = a(sen) as ε→ 0, uniformly for 0 ≤ s ≤ l − σ.

(9.28)

This follows from observation (6.21) after the proof of Proposition 6.1. Since
min0≤s≤l−σ a(sen) > 0, we deduce from (9.27), (9.28) that for some constant θ > 0

aε(wε(t)) ≥ θ > 0

provided 0 ≤ t ≤ sε and ε is small enough.
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Consequently the estimate (9.23) forces sε = l− σ if ε > 0 is small, and so Lemma 9.2 is
proved. 2

7. Lemma 9.3 We have

φε → φ uniformly on [0, 1] (9.29)

as ε→ 0.

Proof. We first note that for each 0 ≤ t ≤ 1 we have

cε(s, t) → c(s, t) for a.e. 0 ≤ s ≤ l. (9.30)

To prove this, observe as before that if 0 ≤ s ≤ l − σ

|aε(wε(s)) − a(w(s))| ≤
∫

ηε(z − wε(s))|a(z) − a(w(s))|dz
≤ C

∫

−
B(wε(s),ε)

|a(z) − a(w(s))|dz.

Since Lemma 9.2 asserts |wε(s) − w(s)| ≤ Cε, we have

|aε(wε(s)) − a(w(s))| ≤ C

∫

−
B(w(s),Cε)

|a(z) − a(w(s))|dz.

The expression on the right hand side goes to zero for a.e. 0 ≤ s ≤ l − σ, owing to (8.17).
This is true for each σ > 0. Thus

aε(wε(s)) → a(w(s)) for a.e. 0 ≤ s ≤ l. (9.31)

Since f±
ε → f± uniformly, we have established (9.30).

We now make use of (9.30) to prove (9.29). Our argument uses very strongly the fact
(9.17) that aε, a are positive, bounded away from zero.

Now (9.12) says

φ̇ε(t)

cε(φε(t), t)
= 1 (0 ≤ t ≤ 1).

Consequently

d

dt
(

∫ φε(t)

0

ds

cε(s, t)
) = 1 +

∫ φε(t)

0

f−
ε (wε(s)) − f+

ε (wε(s))

aε(wε(s))
ds . (9.32)

Since the functions {φε}ε>0 are uniformly Lipschitz, we may extract a subsequence εj → 0
such that

φεj
→ ψ uniformly on [0, 1], (9.33)
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for some Lipschitz function ψ.
Note f±

ε → f± uniformly, and wε(s) → w(s) uniformly on [0, l − σ] for each σ > 0,
according to (9.18). Furthermore for each fixed 0 ≤ t ≤ 1

1

cε(s, t)
→

1

c(s, t)
, aε(wε(s)) → a(w(s)) for a.e. 0 ≤ s ≤ l,

according to (9.17), (9.30), (9.31). Hence for any t > 0 such that φε(t) ≤ l − σ for all small
ε > 0, we may pass to limits in (9.32) in the sense of distributions:

d

dt

(

∫ ψ(t)

0

ds

c(s, t)

)

= 1 +

∫ ψ(t)

0

f−(w(s)) − f+(w(s))

a(w(s))
ds.

For a.e. t therefore
ψ̇(t)

c(ψ(t), t)
= 1.

Thus ψ solves the ODE (9.15). Since the transport density a restricted to Rz0 is locally
Lipschitz (condition (8.19)), the solution is unique.

Thus ψ(t) = φ(t) for those t such that φε(t) ≤ l−σ if ε is sufficiently small, σ > 0. Since
φ(1) < l, in fact ψ = φ on [0, 1]. Thus the limit (9.29) is valid. 2

8. Conclusion of the proof of Theorem 9.1. According to Lemmas 9.2, 9.3 above

sε,δ(z0) = zε(1) = φε(wε(1)) → φ(w(1)) = zδ(1) = sδ(z0).

This at last verifies assertion (9.1) for a.e. z0. Using the Dominated Convergence Theorem,
we pass to limits in (8.12) as ε→ 0, and thereby derive (9.2). 2

10 Optimality

It remains to pass to limits as δ → 0. As noted in (8.26) the limit

lim
δ→0

sδ(z0) = s(z0) (10.1)

exists for a.e. z0 ∈ B(0, R). We finally verify that the mapping s, defined thusly for a.e. z0,
solves the Monge–Kantorovich mass transfer problem.

Theorem 10.1 (i) The mapping s satisfies

∫

X

h(s(x))f+(x) dx =

∫

Y

h(y)f−(y) dy (10.2)
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for each function h ∈ C(B(0, R)).
(ii) Furthermore,

∫

X

|x− s(x)|f+(x) dx = min
r∈A

∫

X

|x− r(x)|f+(x) dx. (10.3)

Here
A = {r : X → Y | r is measurable, and

∫

X
h(r(x))f+(x) dx =

∫

Y
h(y)f−(y) dy

for all h ∈ C(B(0, R))}

Proof. 1. The identity (10.2) follows from (10.1) and (9.2) as δ → 0, since sδ → s a.e.
2. To verify (10.3) we recall from the construction that for a.e. x0 ∈ X the point

y0 = s(x0) lies on the transport ray Rx0 . Thus

u(x) − u(s(x)) = |x− s(x)| (a.e. x ∈ X).

Consequently:

∫

X
|x− s(x)|f+(x) dx =

∫

X
[u(x) − u(s(x))]f+(x) dx

=
∫

X
u(x)f+(x)dx−

∫

Y
u(y)f−(y) dy by (10.2)

=
∫

B(0,R)
u(f+ − f−) dz

= max|Dw|≤1

∫

B(0,R)
wf dz (Theorem 2.1)

= minq∈M
∫

B(0,R)

∫

B(0,R)
|x− y| dq

≤ infr∈A
∫

X
|x− r(x)|f+(x) dx,

the last equality holding by Kantorovich’s principle, as explained in §1. Since s ∈ A, the
optimality condition (10.3) is proved. 2

Remark. So in particular

∫

T

a dz =

∫

B(0,R)

u(f+ − f−)dz = min
r∈A

∫

X

|x− r(x)|f+(x)dx. (10.4)

The integral of the transport density a equals the least cost for the mass transfer. 2
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11 Appendix: Approximating semiconvex and semi-

concave functions by C2 functions

Consider first a function u : B(0, R) → R and suppose u is convex. Then we can write (cf.
[E-G, §6.3])

[D2u] =







µ11 . . . µ1n

. . .

µn1 . . . µnn






,

where µij is a (signed) Radon measure satisfying

∫

B(0,R)

u φxixj
dx =

∫

B(0,R)

φ dµij (1 ≤ i, j ≤ n)

for each φ ∈ C2(B(0, R)) with compact support. Using Lebesgue’s Decomposition Theorem
for measures we write

µij = µijac + µijs (1 ≤ i, j ≤ n),

where µijac is absolutely continuous and µijs is singular with respect to n-dimensional Lebesgue
measure. Thus

d[D2u] = d[D2u]s + [D2u]acdx,

where

[D2u]ac =







u11 · · · u1n

. . .

un1 unn







and
dµijac = uijdx.

Alexandrov’s Theorem (see, e.g., [E-G, §6.4]) asserts that u is twice differentiable for a.e.
x0 ∈ B(0, R). More precisely for a.e. x,

u(y)− [u(x) +Du(x) · (y−x) + 1
2
(y − x)T [D2u]ac(x)(y−x)] = o(|y − x|2) as y → x.

(11.1)

Proposition A.1 For each ε > 0 there exists a C2 function ũ : B(0, R) → R such that

ũ = u, Dũ = Du, D2ũ = [D2u]ac,

except for a measurable set of Lebesgue measure less than ε.
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Proof. 1. For k = 1, . . . set

Ek = {x∈ B(0, R) | sup
y∈B(x,r)

|u(y)−u(x)−Du(x)·(y−x)| ≤ kr2 for 0< r<
1

k
and |u(x)|, |Du(x)| ≤ k}.

Then |B(0, R) − ∪∞
k=1Ek| = 0, according to (11.1).

Thus there exists k0 such that

|B(0, R) − Ek0| ≤ ε, (11.2)

and so there exists a compact set A ⊂ Ek0 such that

|Ek0 − A| ≤ ε. (11.3)

Then in the terminology of Ziemer [Z, §3.5.4] we see

‖u‖T∞,2(x) ≤ M

for some constant M and each x ∈ A. Thus [Z, Theorem 3, 6.2] implies that there exists a
C1,1 function ū defined on B(0, R) such that

u = ū on A.

Finally there exists a C2 function ũ which agrees with ū except for a set of measure less than
ε. This last statement follows from [Z, Theorem 3.10.5]. 2

A function u is called semiconvex if u + C
2
|x|2 is convex for some constant C, and u is

semiconcave if −u + C
2
|x|2 is convex for some C. Applying Proposition A.1 to ±u + C

2
|x|2

we deduce the same result for semiconvex and semiconcave functions.
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