
AN `2-BASED PROOF OF GABORIAU’S THEOREM

ANTON BERNSHTEYN

Abstract. We present the `2-based proof of the “Treeings Realize Cost” theorem due to Gaboriau.

This text is an outcome of the Operator Algebras Learning Seminar held at the UIUC mathematics
department in the Spring of 2018. It is mostly based on Section 8 of Gaboriaus’s notes [Gab16].
Some arguments pertaining to Hilbert modules and von Neumann dimension are inspired by the
paper [Eck00] of Eckmann.

Throughout, E is a countable Borel equivalence relation on a standard Borel space X and µ is
an E-invariant probability Borel measure on X. We write [x] for the E-class of x ∈ X and x ∼ y to
indicate that x and y are E-equivalent. The set of all E-classes is denoted by X/E. The following
is a fundamental result of Gaboriau:
Theorem 0.1 (Gaboriau [Gab98]). Suppose that T is a Borel treeing of E. Then Cµ(E) = Cµ(T ).
Gaboriau’s original proof of Theorem 0.1 was combinatorial and used the technique of foldings.
Later, Gaboriau found another proof of Theorem 0.1 using `2-methods. The purpose of this note is
to give a self-contained presentation of that new proof. A standard argument that we do not repeat
here reduces Theorem 0.1 to the following statement:
Theorem 0.2. Suppose that T and G are graphings of E such that:

– ∆(T ) and ∆(G) are finite;
– there is some c > 0 such that for all x, y ∈ X with x ∼ y, we have

c−1 · distT (x, y) 6 distG(x, y) 6 c · distT (x, y);
– T is acyclic (i.e, it is a treeing).

Then Cµ(T ) 6 Cµ(G).
In the sequel, we prove Theorem 0.2.

1. Hilbert E-modules

For a countable set S, we let `2S denote, as usual, the Hilbert space of all maps f : S → R satisfying∑
s∈S |f(s)|2 <∞, equipped with the inner product 〈f, g〉 :=

∑
s∈S f(s)g(s). (It is possible to work

over C instead, but that will not be necessary for our purposes.) For n ∈ N+, we let
(`2S)n := `2S ⊕ · · · ⊕ `2S︸ ︷︷ ︸

n times

.

Definition 1.1. A Hilbert E-module M is an assignment O 7→MO to each O ∈ X/E of a closed
subspace MO ⊆ (`2O)n (where n ∈ N+ is fixed) that is Borel in the following sense: Let Γ y X be
a Borel countable group action that generates E. Then the set

{(x, f1, . . . , fn) ∈ X × (RΓ)n : the tuple of maps ([x]→ R : γ · x 7→ fi(γ))ni=1 is in M[x]}
is Borel.
Exercise 1.2. Show that the above definition is independent of the choice of the action Γ y X.
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We write (somewhat ambiguously) (`2E)n to denote the Hilbert E-module that assigns to each
E-class O the entire space (`2O)n, and set `2E := (`2E)1. Given Hilbert E-modules M and N , we
write M ⊆ N and say that M is a submodule of N if MO ⊆ NO for all O ∈ X/E.

Definition 1.3. Let M ⊆ (`2E)m and N ⊆ (`2E)n be Hilbert E-modules. A fibered map
ϕ : M → N is a Borel assignment O 7→ ϕO to each O ∈ X/E of a bounded linear operator
ϕO : MO → NO such that the operator norm of ϕ, given by

‖ϕ‖ := sup
O∈X/E

‖ϕO‖,

is finite. A fibered map ϕ : M → N is an isomorphism if each ϕO : MO → NO is an isometry of
Hilbert spaces. If there is an isomorphism ϕ : M → N , then we say that M and N are isomorphic
and write M ∼= N .

Exercise 1.4. Explain what it means for an assignment O 7→ ϕO to be Borel.

Remark. For simplicity, we deliberately made our definition of the norm of a fibered map ϕ : M → N
more restrictive than necessary: It would suffice to require that ‖ϕO‖, rather than being uniformly
bounded, is “square integrable” in an appropriate sense.

Theorem 1.5. Let M ⊆ (`2E)m and N ⊆ (`2E)n be Hilbert E-modules. Suppose that there exists
a fibered map ϕ : M → N such that for each O ∈ X/E, the operator ϕO : MO → NO is injective and
its image im(ϕO) is dense in NO. Then M ∼= N .

Proof. Consider any O ∈ X/E. The operator ϕ∗O◦ϕO : MO →MO is positive and its image im(ϕ∗O◦ϕO)
is dense in MO. Therefore, there exists a unique positive self-adjoint operator ψO : MO →MO with
ψ2
O = ϕ∗O ◦ ϕO. This gives a fibered map ψ : M →M .

Exercise 1.6. Verify the above claim.

Put ξO := ϕO ◦ ψ−1
O : im(ψO)→ NO. Then im(ξO) is dense in NO and for all f , g ∈ im(ψO),

〈ξO(f), ξO(g)〉 = 〈(ϕO ◦ ψ−1
O )(f), (ϕO ◦ ψ−1

O )(g)〉
= 〈ψ−1

O (f), (ϕ∗O ◦ ϕO ◦ ψ−1
O )(g)〉

= 〈ψ−1
O (f), ψO(g)〉 = 〈f, g〉,

where the last equality uses that ψO is self-adjoint. Therefore, ξO is an isometric isomorphism
between im(ψO) and im(ϕO). Since im(ψO) is dense in MO, while im(ϕO) is dense in NO, we
can extend ξO by continuity to an isometric isomorphism ξO : MO → NO. This gives the desired
isomorphism ξ : M → N . �

2. Traces

Definition 2.1. Let ϕ : `2E → `2E be a fibered map. Define the trace tr(ϕ) of ϕ by the formula

tr(ϕ) :=
∫
X
〈ϕ[x](1x), 1x〉 dµ(x),

where for x ∈ X, we use 1x to denote the map [x]→ R sending x to 1 and every y ∈ [x] \ {x} to 0.

Exercise 2.2. Show that for all ϕ : `2E → `2E, we have

tr(ϕ) =
∫
X
ϕ[x](1x)(x) dµ(x).

Exercise 2.3. Show that for all ϕ : `2E → `2E, we have |tr(ϕ)| 6 ‖ϕ‖.

Lemma 2.4. Let ϕ, ψ : `2E → `2E be fibered maps. Then
tr(ϕ ◦ ψ) = tr(ψ ◦ ϕ). (2.1)
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Proof. For O ∈ X/E and x, y ∈ O, define
A(x, y) := ψO(1x)(y) · ϕO(1y)(x).

Consider any x ∈ X. We have

ψ[x](1x) =
∑
y∼x

ψ[x](1x)(y) · 1y.

Therefore, since ϕ[x] is linear, we obtain

(ϕ ◦ ψ)[x](1x) = ϕ[x](ψ[x](1x)) = ϕ[x]

(∑
y∼x

ψ[x](1x)(y) · 1y

)
=
∑
y∼x

ψ[x](1x)(y) · ϕ[x](1y),

which yields
(ϕ ◦ ψ)[x](1x)(x) =

∑
y∼x

ψ[x](1x)(y) · ϕ[x](1y)(x) =
∑
y∼x

A(x, y).

Note that ∑
y∼x
|A(x, y)| 6 ‖ψ‖‖ϕ‖ < ∞.

Applying the same reasoning to the composition ψ ◦ ϕ, we conclude that (2.1) is equivalent to∫
X

∑
y∼x

A(x, y) dµ(x) =
∫
X

∑
y∼x

A(y, x) dµ(x). (2.2)

Now it is not hard to see that (2.2) follows from the E-invariance of µ. Indeed, let f0, f1, . . . be a
sequence of Borel partial involutions X ⇀ X that generates E. We may assume that fn(x) 6= fm(x)
for all n 6= m and x ∈ dom(fn) ∩ dom(fm). Set Dn := dom(fn). Then∫

X

∑
y∼x

A(x, y) dµ(x) =
∫
X

∑
n∈N

[x ∈ Dn] ·A(x, fn(x)) dµ(x)

=
∑
n∈N

∫
x∈Dn

A(x, fn(x)) dµ(x)

=
∑
n∈N

∫
x∈Dn

A(fn(x), x) dµ(x)

=
∫
X

∑
n∈N

[x ∈ Dn] ·A(fn(x), x) dµ(x) =
∫
X

∑
y∼x

A(y, x) dµ(x),

as desired. (Here for a statement S that can be true or false, the bracketed notation [S] stands for
1 if S is true and 0 otherwise.)

Exercise 2.5. Verify the above chain of equalities. �

Exercise 2.6. Let ϕ : (`2E)n → (`2E)n be a fibered map. Show that ϕ can be written in matrix
form; i.e., there exist unique fibered maps ϕij : `2E → `2E, 1 6 i, j 6 n, such that for all O ∈ X/E
and f1, . . . , fn ∈ `2O, we have

ϕO(f1, . . . , fn) =

 n∑
j=1

ϕ1j
O (fj), . . . ,

n∑
j=1

ϕnjO (fj)

 .
Definition 2.7. Let ϕ : (`2E)n → (`2E)n be a fibered map and let ϕij : `2E → `2E, 1 6 i, j 6 n
be the fibered maps given by Exercise 2.6 applied to ϕ. Define the trace tr(ϕ) of ϕ by the formula

tr(ϕ) :=
n∑
i=1

tr(ϕii).
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Lemma 2.8. Let ϕ, ψ : (`2E)n → (`2E)n be fibered maps. Then
tr(ϕ ◦ ψ) = tr(ψ ◦ ϕ).

Exercise 2.9. Prove Lemma 2.8.

3. Von Neumann dimension

Exercise 3.1. Let M be a Hilbert E-module and let N ⊆ M be a submodule of M . For each
O ∈ X/E, let projNO : MO → NO denote the orthogonal projection of MO onto NO. Show that this
defines a fibered map projN : M → N , which we call the projection of M onto N .

Definition 3.2. Let M ⊆ (`2E)n be a Hilbert E-module and let projM : (`2E)n → M be the
corresponding projection map. Define the von Neumann dimension dimEM of M by the
formula

dimEM := tr(projM ),
where projM is viewed as a fibered map (`2E)n → (`2E)n.

Exercise 3.3. Let M be a Hilbert E-module. Show that dimEM > 0.

Exercise 3.4. Show that dimE(`2E)n = n.

Exercise 3.5. Let M be a Hilbert E-module and let N ⊆ M be a submodule of M . Show that
dimE N 6 dimEM .

Exercise 3.6. Let M be a Hilbert E-module. Show that if every E-class is finite, then

dimEM =
∫
X

dimRM[x]
|[x]| dµ(x).

Exercise 3.7. Let M ⊆ (`2E)n be a Hilbert E-module. If m > n, then we can embed (`2E)n into
(`2E)m in the natural way. Let M ′ be the image of M under this embedding (so M ′ is a submodule
of (`2E)m). Show that dimEM = dimEM

′.

Theorem 3.8. Von Neumann dimension is an isomorphism invariant; i.e., if M ⊆ (`2E)m and
N ⊆ (`2E)n are Hilbert E-modules and ϕ : M → N is an isomorphism, then dimEM = dimE N .

Proof. After embedding (`2E)n and (`2E)m into (`2E)n ⊕ (`2E)m = (`2E)n+m in the obvious way,
we may assume that n = m (see Exercise 3.7).

Extend ϕ to a fibered map ϕ : (`2E)n → (`2E)n by putting
ϕ|M := ϕ and ϕ|M⊥ := 0,

whereM⊥ denotes the (fiber-wise) orthogonal complement ofM in (`2E)n. Let ϕ∗ : (`2E)n → (`2E)n
denote the (fiber-wise) adjoint of ϕ. Then

ϕ∗ ◦ ϕ = projM , while ϕ ◦ ϕ∗ = projN ,
and we are done by Lemma 2.8. �

4. Proof of Theorem 0.2

Let f1, . . . , fn be a finite collection of Borel partial involutions X ⇀ X such that:
– fi(x) 6= x for all i and x ∈ dom(fi); and
– fi(x) 6= fj(x) for all i 6= j and x ∈ dom(fi) ∩ dom(fj).

We say that f1, . . . , fn is a non-redundant family. We use G(f1, . . . , fn) to denote the graph
generated by f1, . . . , fn:

xG(f1, . . . , fn) y :⇐⇒ x ∈ dom(fn) and y = fn(x) for some n.
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Exercise 4.1. If G is a Borel graph on X and ∆(G) is finite, then G is generated by a finite
non-redundant family.
Suppose that G := G(f1, . . . , fn) is a graphing of E. The corresponding Hilbert E-module
M(f1, . . . , fn) ⊆ (`2E)n is defined as follows: For each O ∈ X/E, the space MO(f1, . . . , fn) consists
of all tuples (a1, . . . , an) ∈ (`2E)n such that for every x ∈ O,

– x 6∈ dom(fi) implies ai(x) = 0; and
– x ∈ dom(fi) implies ai(x) = −ai(fi(x)).

The elements of MO(f1, . . . , fn) can be thought of as `2-combinations of the edges in G|O, where an
edge (x, y) is interpreted as −(y, x).
Lemma 4.2. Let f1, . . . , fn be a non-redundant family such that G := G(f1, . . . , fn) is a graphing
of E and let M := M(f1, . . . , fn). Then

Cµ(G) = dimEM.

Proof. Let πij : `2E → `2E be the matrix coefficients of the projection map projM : (`2E)n → M .
For any x ∈ X, we have

πii[x](1x) =
{

(1/2) · 1x − (1/2) · 1fi(x) if x ∈ dom(fi);
0 if x 6∈ dom(fi).

Exercise 4.3. Verify the above equality.
Since the family f1, . . . , fn is non-redundant, we conclude that

n∑
i=1

πii[x](1x)(x) = 1
2 degG(x).

Thus,

dimEM = tr(projM ) =
n∑
i=1

tr(πii) =
∫
X

n∑
i=1

πii[x](1x)(x) dµ(x) = 1
2

∫
X

degG(x) dµ(x) = Cµ(G),

as desired. �

Now we are ready to prove Theorem 0.2.

Proof of Theorem 0.2. Let T and G be as in the statement of Theorem 0.2. Since ∆(T ) and ∆(G)
are finite, there are finite non-redundant families of partial Borel involutions f1, . . . , fm and
g1, . . . , gn such that G = G(f1, . . . , fm) and T = G(g1, . . . , gn). Let M := M(f1, . . . , fm) and
N := M(g1, . . . , gn). In view of Lemma 4.2, we wish to show that dimE N 6 dimEM .

A G-representation of an edge (x, y) ∈ T is an xy-path in G. Note that every edge of T admits
a G-representation of length at most c, where c is the Lipschitz constant from the statement of
Theorem 0.2. Since there are only finitely many xy-paths in G of length at most c, we can choose
one such G-representation P (x, y) in a Borel fashion. Furthermore, we may assume that P (y, x) is
the reverse of P (x, y).

Now let O ∈ X/E and consider the spaces NO and MO. Their elements can be naturally identified
with the `2-combinations of the edges in T |O and G|O respectively, and we can use this identification
to define a map ϕO : NO → MO by sending the characteristic function of every edge (x, y) ∈ T |O
to the sum of the characteristic functions of the edges on P (x, y), and extending to all of NO by
linearity. Note that ‖ϕO‖ 6

√
c, so this gives a fibered map ϕ : N →M .

The key observation is that, since T is acyclic, ϕO is injective for every O ∈ X/E.
Exercise 4.4. Prove this claim. (Hint: Each edge of G has a unique T -representation.)
Therefore, by Theorem 1.5, N is isomorphic to the submodule ofM that associates to each O ∈ X/E
the closure of im(ϕO). Hence, dimE N 6 dimEM by Exercise 3.5, and the proof is complete. �



6 AN `2-BASED PROOF OF GABORIAU’S THEOREM

References
[Eck00] B. Eckmann. Introduction to `2-methods in topology: reduced `2-homology, harmonic chains,

`2-Betti numbers, Israel J. Math., 117 (2000), 183–219
[Gab98] D. Gaboriau. Mercuriale de groupes et de relations (French) [A list of prices for groups and

relations], C.R. Acad. Sci. Paris, Sér. I Math., 326 (1998), 219–222
[Gab16] D. Gaboriau. Around the orbit equivalence theory of the free groups, cost and `2 Betti numbers,

http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/Copenhagen/Copenhagen-lectures.
pdf (preprint), 2016

http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/Copenhagen/Copenhagen-lectures.pdf
http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/Copenhagen/Copenhagen-lectures.pdf

	1. Hilbert E-modules
	2. Traces
	3. Von Neumann dimension
	4. Proof of Theorem 0.2
	References

