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à subtraction

Subtraction is obtained from addition by rotation.  For example, the fact  3 − 1 =  2  is obtained from  1 + 2 = 3  by rotating
the three numbers:

image@rotate@NATADDD,
cart@singleton@succ@succ@singleton@0DDDD, singleton@singleton@0DDDD �� Normality

image@image@inverse@NATADDD, singleton@succ@succ@singleton@0DDDDD,
singleton@singleton@0DDD == singleton@succ@singleton@0DDD

Since addition is commutative, adding on the left is the same as adding on the right:

composite@NATADD, LEFT@xDD
composite@NATADD, RIGHT@xDD

On the other hand, subtraction is not commutative, and so the process of  subtracting a fixed number  x   differs from the
process of subtracting from a fixed number  x.  Subtracting  x  is just the inverse of adding  x.

composite@rotate@NATADDD, RIGHT@xDD
composite@inverse@RIGHT@xDD, inverse@NATADDDD

The process of subtracting from  x  is an involution, that is, this process is its own inverse:

composite@rotate@NATADDD, LEFT@xDD
image@inverse@NATADDD, singleton@xDD
inverse@image@inverse@NATADDD, singleton@xDDD
image@inverse@NATADDD, singleton@xDD

Both of these processes are one−to−one functions:
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ONEONE@composite@rotate@NATADDD, RIGHT@xDDD
True

ONEONE@composite@rotate@NATADDD, LEFT@xDDD
True

The goal in this notebook is to deive a formula for the domain and range of left−subtraction, composite[rotate[NATADD],-
LEFT[x]].

à a formula  for  the successor  of  a natural  number

We will  need as a prerequisite a formula that says that the successor of a natural number  x  is precisely the set of all natural
numbers contained in  x.  To derive this result, we begin with this observation:

equal@0, composite@id@omegaD,
intersection@composite@complement@inverse@EDD, SUCCD, inverse@SDD, id@omegaDDD

True

While the GOEDEL  program recognizes the truth of this assertion, it lacks the corresponding rewrite rule, which we now
add on a temporary basis:

composite@id@omegaD,
intersection@composite@complement@inverse@EDD, SUCCD, inverse@SDD, id@omegaDD := 0

When the ImageComp test is performed using this fact, one encounters the following expression which we simplify using
Renormality:

fix@composite@complement@inverse@EDD, SUCC,
id@intersection@omega, singleton@xDDD, SDD �� Renormality

fix@
composite@complement@inverse@EDD, SUCC, id@intersection@omega, singleton@xDDD, SDD ==
intersection@complement@xD, complement@singleton@xDD,
image@V, intersection@omega, singleton@xDDD, P@xDD

fix@composite@complement@inverse@EDD, SUCC,
id@intersection@omega, singleton@x_DDD, SDD := intersection@complement@xD,
complement@singleton@xDD, image@V, intersection@omega, singleton@xDDD, P@xDD

Now the ImageComp test is performed, yielding almost what we want:

Map@equal@0, #D &, ImageComp@id@omegaD,
composite@intersection@composite@complement@inverse@EDD, SUCCD, inverse@SDD,
id@omegaDD, singleton@xDDD �� Reverse

or@not@member@x, omegaDD, subclass@intersection@omega, P@xDD, succ@xDDD == True

or@not@member@x_, omegaDD, subclass@intersection@omega, P@x_DD, succ@x_DDD := True

We can derive a stronger result, replacing the inclusion with equality.  This is obtained by combining Asser tTest  with
double negation.
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Map@not, Map@not@implies@member@x, omegaD, #DD &,
equal@intersection@omega, P@xDD, succ@xDD �� AssertTestDD

or@equal@intersection@omega, P@xDD, succ@xDD, not@member@x, omegaDDD == True

or@equal@intersection@omega, P@x_DD, succ@x_DD, not@member@x_, omegaDDD := True

The following corollary is noted:

equal@intersection@omega, image@V, intersection@omega, singleton@xDDD, P@xDD,
intersection@image@V, intersection@omega, singleton@xDDD, succ@xDDD
True

This fact justifies adding the following new rewrite rule:

intersection@omega, image@V, intersection@omega, singleton@x_DDD, P@x_DD :=
intersection@image@V, intersection@omega, singleton@xDDD, succ@xDD

à application  to left−subtraction

The rewrite rule derived in the preceding section is used here to get a simple formula for the range of left−subtraction
function:

SubstTest@image, rotate@wD, cart@V, singleton@xDD, w -> rotate@NATADDDD
range@image@inverse@NATADDD, singleton@xDDD ==
intersection@image@V, intersection@omega, singleton@xDDD, succ@xDD
range@image@inverse@NATADDD, singleton@x_DDD :=
intersection@image@V, intersection@omega, singleton@xDDD, succ@xDD

The domain is the same:

SubstTest@image, inverse@wD, V, w -> image@inverse@NATADDD, singleton@xDDD �� Reverse

domain@image@inverse@NATADDD, singleton@xDDD ==
intersection@image@V, intersection@omega, singleton@xDDD, succ@xDD
domain@image@inverse@NATADDD, singleton@x_DDD :=
intersection@image@V, intersection@omega, singleton@xDDD, succ@xDD

More generally, one has the following, but it is unclear how to orient this more general formula.

SubstTest@image, inverse@wD, V, w -> image@inverse@NATADDD, xDD �� Reverse

domain@image@inverse@NATADDD, xDD == range@image@inverse@NATADDD, xDD
The following involution property does not require adding any new rules:

composite@image@inverse@NATADDD, singleton@xDD, image@inverse@NATADDD, singleton@xDDD
id@intersection@image@V, intersection@omega, singleton@xDDD, succ@xDDD
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à serendipity:  variable−free formulation  of  the involution  property

The following formula was discovered accidentally:

Assoc@DUP, inverse@DUPD, union@composite@DUP, id@omegaDD,
composite@inverse@ED, IMAGE@DUPD, id@omegaDDDD �� Reverse

union@composite@DUP, id@omegaDD, composite@inverse@ED, IMAGE@DUPD, id@omegaDDD ==
composite@DUP, id@omegaD, inverse@SD, id@omegaDD
union@composite@DUP, id@omegaDD, composite@inverse@ED, IMAGE@DUPD, id@omegaDDD :=
composite@DUP, id@omegaD, inverse@SD, id@omegaDD

The following variable−free formulation of the involution property follows as a corollary of this discovery:

Map@inverse, composite@RIF, cross@inverse@NATADDD, inverse@NATADDDD, DUPD �� VSNormalityD
composite@intersection@composite@NATADD, FIRSTD, composite@NATADD, SECONDDD,
inverse@RIFDD == composite@id@omegaD, S, id@omegaD, inverse@DUPDD

composite@intersection@composite@NATADD, FIRSTD, composite@NATADD, SECONDDD,
inverse@RIFDD := composite@id@omegaD, S, id@omegaD, inverse@DUPDD

left−sub.nb 4


