left subtraction

Johan G. F. Belinfante 2002 September 12

■ subtraction

Subtraction is obtained from addition by rotation. For example, the fact 3-1=2 is obtained from 1+2=3 by rotating the three numbers:

```
image[rotate[NATADD],
   cart[singleton[succ[succ[singleton[0]]]], singleton[singleton[0]]]] // Normality
image[image[inverse[NATADD], singleton[succ[succ[singleton[0]]]]],
   singleton[singleton[0]]] == singleton[succ[singleton[0]]]
```

Since addition is commutative, adding on the left is the same as adding on the right:

```
composite[NATADD, LEFT[x]]
composite[NATADD, RIGHT[x]]
```

On the other hand, subtraction is not commutative, and so the process of subtracting a fixed number \mathbf{x} differs from the process of subtracting from a fixed number \mathbf{x} . Subtracting \mathbf{x} is just the inverse of adding \mathbf{x} .

```
composite[rotate[NATADD], RIGHT[x]]
composite[inverse[RIGHT[x]], inverse[NATADD]]
```

The process of subtracting from \mathbf{x} is an involution, that is, this process is its own inverse:

```
composite[rotate[NATADD], LEFT[x]]
image[inverse[NATADD], singleton[x]]
inverse[image[inverse[NATADD], singleton[x]]]
image[inverse[NATADD], singleton[x]]
```

Both of these processes are one-to-oneunctions:

```
ONEONE[composite[rotate[NATADD], RIGHT[x]]]
True
ONEONE[composite[rotate[NATADD], LEFT[x]]]
True
```

The goal in this notebook is to deive a formula for the domain and range of left-subtraction, **composite[rotate[NATADD],-LEFT[x]]**.

■ a formula for the successor of a natural number

We will need as a prerequisite a formula that says that the successor of a natural number \mathbf{x} is precisely the set of all natural numbers contained in \mathbf{x} . To derive this result, we begin with this observation:

```
equal[0, composite[id[omega],
   intersection[composite[complement[inverse[E]], SUCC], inverse[S]], id[omega]]]
True
```

While the **GOEDEL** program recognizes the truth of this assertion, it lacks the corresponding rewrite rule, which we now add on a temporary basis:

```
composite[id[omega],
  intersection[composite[complement[inverse[E]], SUCC], inverse[S]], id[omega]] := 0
```

When the **ImageComp** test is performed using this fact, one encounters the following expression which we simplify using **Renormality**:

```
fix[composite[complement[inverse[E]], SUCC,
   id[intersection[omega, singleton[x]]], S]] // Renormality

fix[
   composite[complement[inverse[E]], SUCC, id[intersection[omega, singleton[x]]], S]] == intersection[complement[x], complement[singleton[x]],
   image[V, intersection[omega, singleton[x]]], P[x]]

fix[composite[complement[inverse[E]], SUCC,
   id[intersection[omega, singleton[x_]]], S]] := intersection[complement[x],
   complement[singleton[x]], image[V, intersection[omega, singleton[x]]], P[x]]
```

Now the **ImageComp** test is performed, yielding almost what we want:

```
Map[equal[0, #] &, ImageComp[id[omega],
    composite[intersection[composite[complement[inverse[E]], SUCC], inverse[S]],
    id[omega]], singleton[x]]] // Reverse

or[not[member[x, omega]], subclass[intersection[omega, P[x]], succ[x]]] == True

or[not[member[x_, omega]], subclass[intersection[omega, P[x_]], succ[x_]]] := True
```

We can derive a stronger result, replacing the inclusion with equality. This is obtained by combining **AssertTest** with double negation.

This fact justifies adding the following new rewrite rule:

```
intersection[omega, image[V, intersection[omega, singleton[x_]]], P[x_]] :=
intersection[image[V, intersection[omega, singleton[x]]], succ[x]]
```

■ application to left-subtraction

The rewrite rule derived in the preceding section is used here to get a simple formula for the range of left-subtraction function:

```
SubstTest[image, rotate[w], cart[V, singleton[x]], w -> rotate[NATADD]]
range[image[inverse[NATADD], singleton[x]]] ==
  intersection[image[V, intersection[omega, singleton[x]]], succ[x]]
range[image[inverse[NATADD], singleton[x_]]] :=
  intersection[image[V, intersection[omega, singleton[x]]], succ[x]]
```

The domain is the same:

```
SubstTest[image, inverse[w], V, w -> image[inverse[NATADD], singleton[x]]] // Reverse
domain[image[inverse[NATADD], singleton[x]]] ==
  intersection[image[V, intersection[omega, singleton[x]]], succ[x]]
domain[image[inverse[NATADD], singleton[x_]]] :=
  intersection[image[V, intersection[omega, singleton[x]]], succ[x]]
```

More generally, one has the following, but it is unclear how to orient this more general formula.

```
SubstTest[image, inverse[w], V, w -> image[inverse[NATADD], x]] // Reverse
domain[image[inverse[NATADD], x]] == range[image[inverse[NATADD], x]]
```

The following involution property does not require adding any new rules:

```
composite[image[inverse[NATADD], singleton[x]], image[inverse[NATADD], singleton[x]]]
id[intersection[image[V, intersection[omega, singleton[x]]], succ[x]]]
```

■ serendipity: variable–freeformulation of the involution property

The following formula was discovered accidentally:

The following variable–freeformulation of the involution property follows as a corollary of this discovery:

```
Map[inverse, composite[RIF, cross[inverse[NATADD], inverse[NATADD]], DUP] // VSNormality]
composite[intersection[composite[NATADD, FIRST], composite[NATADD, SECOND]],
   inverse[RIF]] == composite[id[omega], S, id[omega], inverse[DUP]]
composite[intersection[composite[NATADD, FIRST], composite[NATADD, SECOND]],
   inverse[RIF]] := composite[id[omega], S, id[omega], inverse[DUP]]
```